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Abstract—A source of error in most of the existing catheter car-
diac mapping approaches is that they are not capable of acquiring
epicardial potentials even though arrhythmic substrates involving
epicardial and subepicardial layers account for about 15% of the
ventricular tachycardias. In this subgroup of patients, mapping
techniques that are limited to the endocardium result in localiza-
tion errors and failure in subsequent ablation procedures. In addi-
tion, catheter-based electrophysiological studies of the epicardium
are limited to regions near the coronary vessels or require transtho-
racic access. We have developed a statistical approach by which to
estimate high-resolution maps of epicardial activation from very
low-resolution multi-electrode venous catheter measurements. A
training set of previously recorded maps is necessary for this tech-
nique so that composition of the database becomes an important
determinant of accuracy. The specific hypothesis of the study was
that estimation accuracy would be best when the training data set
matches that of the test beat(s), whereby the matching was ac-
cording to the site of initiation of the beats. This hypothesis sug-
gests approaches to optimized selection of the training set, three of
which we have developed and evaluated. One of these methods, the
high-CC refinement method, was able to estimate the earliest ac-
tivation site of left ventricularly paced maps within an average of
4.67 mm of the true site; in 89% of the cases (a total of 231 cases)
the error was smaller than 10 mm. In another method, MHC-Spa-
tial activation, right ventricularly paced maps (239 maps) were es-
timated with an error of 7.15 mm. The average correlation coeffi-
cient between the original and the estimated maps was also very
high (0.97), which shows the ability of the training data set refine-
ment methods to estimate the epicardial activation sequence. The
results of these tests support the hypothesis and, moreover, sug-
gest that such an approach is feasible for providing accurate recon-
struction of complete epicardial activation-time maps in a clinical
setting.

Index Terms—Catheter mapping, epicardial activation map-
ping, statistical estimation, training set selection.
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I. INTRODUCTION

I N THIS PAPER, we describe progress in an approach
for cardiac mapping based on predicting high-resolution

epicardial activation maps from sparse multi-electrode venous
catheter measurements using a statistical estimation technique.
Cardiac mapping is a method that involves the acquisition and
display of spatial distributions of cardiac electric potential
as functions of time (isopotential mapping) or of the time of
activation (isochrone mapping) [25]. One of the main objectives
of cardiac mapping is to detect and analyze the path of reentry,
especially the activation wavefronts emerging from regions of
abnormally slow conduction that are known to play a key role in
arrhythmogenesis [18]. Correct localization of such substrates
is critical for understanding the pathophysiologic mechanisms
of cardiac rhythm disturbances, evaluating the effect of a drug,
or directing surgical and catheter ablation techniques.

Catheter-based approaches to cardiac mapping have rev-
olutionized the field of arrhythmia diagnosis and treatment
because they do not require thoracotomy. The systems that
have been developed over the last 20 years for this purpose
include commercial systems that enable mapping by means of
localizable catheters [15] and [42], noncontact multi-electrode
catheters [2], [5], [33], balloon and superelastic, collapsible,
basket-shaped contact catheters [11], [13], [32], magnetically
guided catheters [14], and bi-plane navigational catheters [12].

A source of error in most of the existing approaches is that
they are not capable of acquiring data from the epicardium even
though arrhythmic substrates involving epicardial and subepi-
cardial layers account for about 15% of the ventricular tachycar-
dias [20], [24]. In this subgroup of patients, mapping techniques
that are limited to the endocardium result in localization errors
and failure in subsequent ablation procedures. Several authors
[4], [7], [34], [39] have recently reported unsuccessful endocar-
dial ablation procedures due to epicardial origin of the reentrant
pathways, which required subsequent epicardial mapping either
by open-chest surgery or by transthoracic mapping and ablation.
In 1996, Sosa et al. [38] developed a technique to introduce a
standard ablation catheter into the pericardial space through a
puncture in the subxiphoid region [36], [37]. Although this tech-
nique provides access to the epicardium, its elevated level of in-
vasiveness makes its use difficult to justify if there is not strong
evidence of epicardial involvement. Thus, there is a well-de-
fined need to develop less invasive techniques that are capable
of measuring and/or computing excitation times not only from
the endocardium but also over the epicardium. Therefore, we
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concentrated in this study on epicardial mapping even though
the approaches we describe also apply to endocardial mapping.

The aim of these studies is to use multi-electrode coronary
venous catheters to carry out mapping of the epicardium. Such
techniques are widely used to diagnose and treat supraventric-
ular arrhythmias, however, their application to the epicardium is
severely limited because of much of the heart does not lie close
to a major vessel segment.

We have shown that even elaborate interpolation schemes
are inadequate for the sparse electrode arrangements in this
problem, especially in their ability to identify accurately focal
sites of early activation [22]. In the same study we described
a statistical estimation technique by which it is possible to
reconstruct the activation pattern over the entire epicardium
using only values measured from venous catheter electrode
recordings. This technique uses a linear estimation model that
derives a relationship between venous catheter measurements
and unmeasured epicardial sites from a set of previously
recorded, high-resolution epicardial activation maps used as a
training data set.

The main purpose of this study was to address systematically
and comprehensively the relationship between training data set
selection and estimation accuracy and thus bring the technique
closer to clinical utility. This topic has challenged investigators
for many years in a large number of application areas, for ex-
ample, pattern recognition [17], [19], [31], pattern classification
[3], medical image segmentation [6], and remote sensing [40].
The specific hypothesis of the present study was that training
data sets matched in some way to the test activation map would
perform better than training sets containing a broader, more di-
verse, mix of activation maps, where the matching criterion was
based on the earliest activation site of the beats. If correct, this
hypothesis suggests approaches to optimizing selection of the
training data set, three of which we have developed and evalu-
ated.

Our evaluation of this hypothesis and the resulting estimation
methods was based on a database of 470 beats recorded from 12
different animals. We sampled the epicardial potentials using a
flexible sock electrode array containing 490 unipolar electrodes
and stimulated the activations via unipolar pacing from all over
the epicardium. The study involved selecting subsets of the full
database that, to varying degrees, matched the test beats on the
basis of site of earliest activation. We first selected the training set
manually with full knowledge of the test beat activation maps and
found that estimation accuracy improved as the earliest activa-
tion site of the training beats more closely matched that of the test
beat. We then applied several algorithms to automatically select
the composition of the training set without explicit knowledge of
the test beat map, but rather based only on the knowledge of the
test beat activation times at the surrogate catheter lead sites. The
results of these tests supported our hypothesis and, moreover,
suggest that such an approach is feasible for providing accurate
reconstruction of complete venous catheter-based epicardial
activation-time maps in a clinical setting.

II. METHODS

A. Experimental Setup and Data Acquisition

In all the experiments from this study we used a 490-electrode
sock array to record epicardial electrograms from dog hearts.

Fig. 1. Diagram representing the 490-lead epicardial electrode sock. Each
node of the mesh represents a single silver-wire electrode; the 42 leads used as
a surrogate catheter subset are indicated by larger dots. The top row contains
the anterior and posterior view of the sock including coronary vessels and the
lower row show the sets of nodes on the sock corresponding to the 42-lead
subset. The vessels include the great cardiac vein (GCV), the coronary sinus
(CS), the left ventricular posterior vein (LVP), and the middle cardiac vein
(MCV).

The layout of the electrodes followed markings on a mold of
a medium sized dog heart, with a mean interelectrode distance
of 4.3 mm. The same heart mold also contained the locations
of the coronary vessels, from which we defined a 42-lead sur-
rogate catheter subset to lie along the major veins, as shown in
Fig. 1. Our previous studies have shown the equivalence of elec-
trograms recorded from venous catheter and epicardial contact
electrodes [22], which provides a simple means of both gath-
ering the required test data and evaluating the results. Markings
on the sock of anatomic landmarks, such as left anterior de-
scending artery (LAD), provided consistent—although clearly
not identical—placement of the electrodes across experiments.

We performed 12 separate experiments using two different
types of animal preparations, both of which were approved by
our institution’s animal care and use committee, to create the
epicardial activation map database. The first preparation used
an in situ canine heart model in which anesthetized dogs were
midsternally incised and the exposed hearts suspended in a peri-
cardial cradle. The second preparation used isolated dog hearts
suspended in a torso-shaped, isotonic electrolyte-filled tank. A
support dog provided the blood for the isolated heart. From the
resulting 823 recorded heart beats, we created a database for this
study that included 470 maps, each paced from a unique site
(239 from the right ventricle and 231 from the left ventricle).
The purpose of using single site stimulation was to simulate the
early activation that occurs from both the exit sites in reentry
and the focal activation that occurs in ectopic tachycardias. 96%
of the maps came from the in situ preparation and 90% came
from healthy hearts. In the remaining experiments we applied
interventions that included localized heating and cooling, local
injection of procainamide (a Class I antiarrhythmic drug), infu-
sion of ethanol into a coronary artery, a five day old infarction,
and acute restriction of coronary artery flow.

The custom-built measurement system used for the study
saved signals continuously to magnetic disk from up to 1024
simultaneous channels with 1 kHz sampling rate and 12-bit
resolution. Processing of the resulting recordings consisted
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of selecting one representative beat from each three-second
recording. Determination of activation times was by means of
the minimum slope during the QRS complex of each of the
electrograms. When the signal quality was low due to poor
contact or broken leads (which occurred in less than 4% of all
measurements), we applied wave-equation-based interpolation
[28] to compute the potential values at the locations for which
measured signals were not available. We then manually checked
each resulting activation map for anomalous features or obvious
errors using our custom-built visualization software [26].

B. Linear Estimation Method

Details of the estimation algorithm have been reported else-
where [23]. Briefly, we first defined a training database con-
sisting of up to 470 activation-time maps and selected the surro-
gate catheter leadset (42 leads) as a subset of the 490-lead sock.
We assumed that those 42 leads contained “known” values (sur-
rogates for the venous catheter leads) and the remaining 448
leads (for which we wished to estimate values) contained “un-
known” activation values. We reordered the training set in such
a way that the activation times for a given beat were treated as
elements of a column vector, and then the various beats stacked
side-by-side to form a matrix, , such that the known values
comprised the first 42 rows of the matrix. We then calculated
the covariance matrix, , by the usual means. We then formed
a transformation matrix, , to be used to estimate the activa-
tion-times at the unmeasured sites as

(1)

where and are submatrices of representing the
auto-covariance of the known leads and the cross-covariance of
known and unknown leads, respectively. is a matrix of basis
vectors unique to the training set such that left multiplication by

of any measurement vector of the 42 leads (with some manip-
ulation to take care of the means, see (2)) yields an estimate of
the activation values at all remaining sites and thus a complete,
high-resolution map

(2)

where and are the measured and estimated portions,
respectively, of the ’th map. and are the rows of the
first column of that correspond to the known and unknown
leads, respectively. In the computation of the inverse of ,
we used the truncated singular-value decomposition technique
[30] when the condition number (ratio between the largest and
smallest singular value) of the matrix was greater than
100 000. The number of singular values used in the truncation
was set equal to the number of largest singular values whose
summation comprised 99% of the cumulative sum of all of them.

C. Testing Paradigms and Error Metrics

To evaluate the performance of the estimation, we used a
“leave-one-out” protocol (LMap), in which we kept the map
to be estimated (test map) out of the data set and trained the
transformation matrix with the remaining maps. Repeating this
process for each of the maps in the database and then comparing
each test map to the associated estimate provided a means of
computing overall statistics that included beats from a range of
pacing sites.

We used two different metrics: the Euclidean distance be-
tween the actual and the estimated site of earliest activation,
LDist, and the absolute difference in activation times between
the actual and the estimated site of earliest activation, .
LDist and are thereby specific and clinically relevant
measures based on the anticipated use of such a procedure.
A further metric of overall performance was the percentages
of cases in which the error fell into one of three ranges: 1)

, in which LDist was smaller than it was
possible to resolve between electrodes, 2) mm, in
which LDist was smaller than 5 mm, and 3) mm,
in which LDist was smaller than 10 mm. Histograms of the
error metrics indicated a non-Gaussian distribution and thus we
applied a Wilcoxon rank-sum test for pairwise comparisons and
a Kruskal-Wallis test for comparisons among more than two
samples to determine statistical significance between different
optimization strategies .

D. Effect of Training Set Selection

In a preliminary study [43], we found that selection of the
training data set affected the accuracy of the resulting estima-
tion, so here we set out to examine this behavior in more de-
tail. We sought to determine specifically what constitutes a good
training set, how to select one a priori, and whether a refinement
scheme can improve on a first-guess training set.

In order to address the first question, we tested two different
approaches for selecting a good training set. We either maxi-
mized the variety of maps in the training set, i.e., ensuring that
the training set included maps paced from wide range of sites or
maximized the similarity of the maps in the training set to the
map to be reconstructed (test map) according to some matching
feature.

Here we evaluated training sets that included beats paced
from the first, second, and third order neighbors around the
pacing site of the test beat. We compared the results of these
matched training sets to the entire database (“all maps estimate”
or AME). Matched training sets included the maps from the
database that were paced from the first order (“F”), first and
second order (“ ”), or first, second, and third order (“

”) neighboring electrodes as shown in Fig. 2. Evaluation
of each estimate was by means of visual examination and the
LDist and error metrics.

E. Uninformed Selection of Training Sets

An important component of this study was to evaluate several
training data set selection schemes that do not require any a
priori information about the site of earliest activation.

Our approach was to find a good first guess (estimate) based
on either all maps in the database or a substantial subset and
then refine the training set—select matched training sets auto-
matically—using different strategies. The first guess was based
either on the entire database, the AME first guess, or from a
subset of training maps that were well correlated with the test
beat based on the 42-lead subset common to both, referred to
as the “most highly correlated” (MHC) first guess. The idea be-
hind the correlation-based first guess method was that the maps
in the database that were similar to the test map should have
similar waveforms in the corresponding 42 measured leads so
we could select the beats that were highly correlated. We then
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Fig. 2. Description of different orders of neighbors. Labeled with shaded
ellipses are the first, second, and third order neighbors for a pacing location
marked with a star near the center of this view of the 490-lead sock mesh.

used the MHC or AME first guesses as the starting points for
training data set refinement.

For the refinement of the training data set we tested three
schemes whose schematic descriptions are illustrated in Fig. 3.
The first refinement scheme used the correlation values from
the first step to select the 12 most highly correlated maps as the
training data set, which we referred to as “high-CC.” The second
and third schemes used the results of the first guess methods
(MHC or AME maps) as their inputs. The second refinement
method consisted of selecting the maps that had their earliest ac-
tivation site within a 15 mm radius of the earliest activation site
of the first-guess map. This scheme included the nearest spatial
neighbors and we referred to it as “spatial activation.” For these
first two schemes, we experimented with different numbers of
highly correlated beats for high-CC, and radius values for the
spatial activation method, and found 12 maps and 15 mm, re-
spectively, to perform the best.

The third scheme consisted of computing the range of acti-
vation times by subtracting the earliest activation value from
the latest activation value within the first-guess map and iden-
tifying the region on the epicardium that included the first 25%
of the activation range, known as the “early activated region” or
EAR. The associated training data set then consisted of all the
maps from the database that were stimulated from a site within
this EAR, which we referred to as “temporal activation.” When
the number of maps in the temporal activation training set was
greater than 50 we halved the percentage value that defined the
EAR, and when the number of maps was less than 6, we dou-
bled the percentage value.

We computed results using all these methods but will present
in detail only those from the “MHC-Spatial activation” method,
which started with the most highly correlated (MHC) map as
the first guess and refined the training set according to spatial
activation refinement method, and the “AME-Temporal activa-
tion” method, which used all-maps-estimate (AME) as the first
guess and refined the training set with the temporal activation
refinement scheme.

F. Presentation of Results

We present sample images and summaries of estimation er-
rors for left and right ventricularly paced maps separately. To

Fig. 3. Schematic descriptions of three different training set refinement
schemes. Stars show the earliest site of activation of the first guess maps.
Rectangles are the pacing sites for the maps selected with the refinement
schemes called the high-CC, spatial activation, and temporal activation, from
left to right. Refer to the text for the descriptions of each scheme.

most clearly reveal the earliest site of activation and the details
of the activation sequence, we used local scaling for each of the
activation maps, i.e., the mapping of value to color is specific to
each case. In all maps, blue and red indicate early and late activa-
tion, respectively, and the spacing between isocontours was ap-
proximately 10 ms throughout. We included the earliest and the
latest activation time values to the right bottom of each map as
Min and Max values, respectively. Red tubes in the figures rep-
resent the coronary veins we used to select the surrogate catheter
leads.

III. RESULTS

A. Effect of Training Set Selection

Table I contains the results of comparing estimated maps
created from the all-maps-estimate to those from the matched
training sets using the LMap testing paradigm for left ventric-
ular (LV) and right ventricular (RV) pacing separately. The
table shows the trend of consistent improvement in estimation
accuracy with the degree of matching between the test beat
pacing site and those of the members of the training set. The
improvement is more prominent for the maps with RV-pacing
sites than LV-pacing sites. In only 6% of cases did the more
closely matched training sets fail to bring about an improvement
in localizing the earliest site of activation. In almost 74% of the
maps, the first order neighbors set performed as well or better
than training sets based on and . These results
imply that some best-case accuracy was lost going to F from

but that overall accuracy was improved in the tradeoff.
Differences between the results based on different training sets
were statistically significant for all error metrics. We also note
that there was no difference in estimation performance between
the maps coming from isolated hearts and those from the in situ
preparation.

Fig. 4 contains examples of original and estimated activation
maps for two specific cases—one from pacing the LV and one
from the RV—using matched training sets. In both cases, the to-
pographies of the maps support the statistical summary results.
Estimates obtained from the first order neighbors most faithfully
replicated the original high-resolution map. We note that the ac-
tivation times were between 0 and 120 ms both in the originals
and the estimates. We also note that all estimates perform cred-
ibly, both in terms of identifying the earliest site of activation
and the entire structure of the activation sequence, especially
given that they came from only 42 measurement sites distributed
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TABLE I
SUMMARY OF ESTIMATION ERROR STATISTICS FOR DIFFERENT ORDERS OF NEIGHBORS IN THE TRAINING SETS FOR LEFT AND RIGHT VENTRICULARLY PACED

MAPS USING THE LMAP TESTING PARADIGM. LDIST IS THE EUCLIDEAN DISTANCE BETWEEN THE EARLIEST ACTIVATION SITE OF THE ESTIMATED AND ORIGINAL

MAPS. �T IS THE ABSOLUTE DIFFERENCE OF THE EARLIEST ACTIVATION VALUES BETWEEN THE ORIGINAL AND THE ESTIMATED MAPS. VALUES ARE

EXPRESSED AS MEANS � STANDARD DEVIATIONS FOR LDIST AND �T . ALSO INCLUDED ARE THE PERCENTAGES OF CASES WITH AN ERROR THAT WAS

SMALLER THAN THE AVAILABLE RESOLUTION, I.E., THE DISTANCE BETWEEN ELECTRODES, (<MINRES), LDIST LESS THAN 5 mm (<5 mm), AND LDIST LESS

THAN 10 mm (<10 mm). “ALL MAPS” INDICATES THAT ALL THE MAPS IN THE DATABASE EXCEPT FOR THE MAP TO BE RECONSTRUCTED (A TOTAL OF 469
ACTIVATION MAPS) WERE INCLUDED IN THE TRAINING SET. THE DIFFERENT ORDERS OF NEIGHBORS ARE DESCRIBED IN THE TEXT AND IN FIG. 2

Fig. 4. Two examples of estimated activation maps using training sets composed of different orders of neighbors. This figure shows the original (left most column)
and estimated activation maps for a map paced from the left ventricle (upper row) and right ventricle (lower row). The results from different training sets are included
as marked in the figure. In order to highlight the activation pattern and the earliest site of activation, we used a different (local) scaling for each map. Blue and red
indicate early and late activation, respectively. Activation values were between 0 and 120 ms both in originals and the estimates. There were offsets (�T ) in
the earliest activation times but not significant differences in the latest activation values.

along the coronary veins. In both cases shown, the measurement
sites were well separated ( 20 mm) from the activation site.

B. Uninformed Selection of Training Sets

The first step in finding the best training set in the case of a test
beat of unknown pacing site was to perform correlation analysis
between test and candidate training beats based on the measured
values from the 42 venous sites. This analysis revealed that in
67% of the test cases, the training map with the highest corre-
lation was paced from a point within the first order neighbor-
hood of the test map’s pacing site. An additional 21% of cases
came from the second order neighborhood and 7% came from
the third order neighbors so that, in total, 95% of the test maps
could be located within the first, second, or third order neigh-
borhoods based only on a comparison of the 42 leads selected as
surrogate venous catheter leads. The other approach for finding
a good first estimate was the all-maps-estimate which showed
that in 99% of the cases, the original site of the earliest activa-
tion was within the 25% early-activated region of the estimated
map.

These findings from the first estimates set the stage for se-
lecting the training data sets based on the three algorithms de-
scribed above. Table II summarizes the results of estimating all
the test maps with pacing sites on the LV and RV using the LMap
testing paradigm. All refinement methods performed similarly
and better than the all-maps-estimate; they also achieved results
approximately as good as, and in some cases even better than,
those from the second order neighbors training sets, a method
that requires knowledge of the actual pacing site. The average
correlation coefficient between the original and the estimated
maps was very high (0.97) for all methods, indicating that these
methods captured well the general pattern of epicardial activa-
tion. There was an average delay of approximately 10 ms be-
tween the earliest activation value in the estimated maps and
the original test maps. Overall, estimation was more accurate
for maps with LV pacing sites than RV pacing sites.

Fig. 5 shows two typical estimation results in which pacing
sites were on the midanterior LV (upper row) and posterior RV
(lower row). This figure demonstrates that all selection methods
were more successful in determining an early-activated region
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TABLE II
SUMMARY OF ESTIMATION ERROR STATISTICS FOR DIFFERENT METHODS OF REFINEMENT OF TRAINING SETS IN THE CASE OF LEFT AND RIGHT VENTRICULARLY

PACED MAPS USING THE LMAP TESTING PARADIGM. IN THE HIGH-CC METHOD, THE 12 MOST HIGHLY CORRELATED MAPS WERE INCLUDED IN THE TRAINING

SET. MHC-SPATIAL ACTIVATION METHOD STARTED WITH THE MOST HIGHLY CORRELATED MAP (MHC) AND REFINED THE TRAINING SET ACCORDING TO

SPATIAL ACTIVATION REFINEMENT. AME-TEMPORAL ACTIVATION METHOD USED THE ALL-MAPS-ESTIMATE (AME) AND REFINED THE TRAINING SET WITH THE

TEMPORAL ACTIVATION REFINEMENT SCHEME. THE FIRST LINE FOR BOTH LV AND RV CASES IS THE SAME AS PREVIOUS TABLE

Fig. 5. Comparison between the original and the estimates using LMap testing paradigm from three methods for the maps with pacing sites on the LV (top row)
and RV (bottom row). The leftmost column contains the original activation sequence. The second and third columns contain the all-maps-estimate first guess and
the most highly correlated map, respectively. The fourth, fifth, and sixth columns contain results from training the covariance matrix with maps selected using the
high-CC, MHC-Spatial, and AME-Temporal activation methods, respectively.

and the earliest site of activation than the all-maps estimate. The
refinement methods produced similar results which all showed
slightly broader early activated regions than the originals due to
the smoothing effect of the estimation approach.

For the test maps that did not have pacing sites close to the
surrogate measurement leads, the all-maps estimate tended to
produce overly broad regions of early activation, leading to er-
rors in localizing the site of activation, and therefore, errors in
the training data set selection for the AME-Temporal activation
method, which depends sensitively on the accuracy of the esti-
mate of early activation. The all-maps estimate produced results
comparable to those based on refined training sets only in cases
in which the pacing site of the test map lay close to the surrogate
catheter leads; even then, the error was a shift toward the closest
catheter lead. Training sets based on the most highly correlated
maps also incurred errors. When the training maps selected on
the basis of neighborhood had activation sites that were rela-
tively dispersed rather than tightly grouped, the resulting esti-
mation sometimes showed dual sites of earliest activation.

IV. DISCUSSION

The aim of this study was to develop strategies for selecting
training data sets for estimation of epicardial activation-time
maps from venous catheter measurements. The driving hypoth-
esis was that training data sets matched in some way to the

test map would perform better than training sets containing a
broader, more diverse, mix of maps. To test such a hypothesis,
the challenge then became first identifying the criteria by which
to perform the matching and then developing signal processing
strategies by which to select those members of the training set
that match a particular test case, given that the test data are, by
definition, incomplete.

The choice of stimulation—or early activation—site as a
matching criterion is quite natural for several reasons. The
site at which the heart first activates has profound influence
on the spread of excitation despite the role of the specialized
conduction system. This influence is perhaps strongest for
beats initiated from the epicardium because of the 20–50 ms
required for activation to cross the ventricular wall, reach the
conduction system, and then conduct in antegrade fashion to
other parts of the heart [1]. Thus, it was likely that the site of
earliest epicardial activation would provide a robust feature by
which to organize and select members of a training data set.
The first set of results in this report support this intuition by
showing that selecting a training data set that includes beats
with nearby pacing sites does, indeed, improve estimation
accuracy. There was a consistent improvement in estimation
accuracy with increased degree of matching of the training set.
We obtained at least 4 mm improvement in the LDist and 10
ms in the when we trained the transformation matrix

Authorized licensed use limited to: The University of Utah. Downloaded on September 21, 2009 at 13:43 from IEEE Xplore.  Restrictions apply. 



YıLMAZ et al.: VENOUS CATHETER BASED MAPPING OF ECTOPIC EPICARDIAL ACTIVATION 1829

with maps paced from the first order neighbors, compared to
all maps in the database.

With the general validity of the approach confirmed, the
larger challenge then became one of establishing a means of
selecting the appropriate beats for the training data set in the
absence of knowledge of the true earliest site of activation. We
tested two different first-guess approaches and three different
training set refinement methods that used the first-guess results
as their inputs. All approaches performed well on the maps
with both LV and RV pacing sites, as measured using the
LMap testing paradigms. We did note that performance was
worst with pacing sites on the apex and RV freewall for all
the methods we investigated. These and additional results not
included here suggest that reduced performance might arise
because of the low catheter accessibility to these regions and
hence may be improved if more veins in the RV or close to the
apex were accessible with the multi-electrode catheters.

Our study has focused entirely on beats paced from the epi-
cardium, even though the bulk of clinical catheter mapping con-
centrates on the endocardium (see Darbar et al. [9] for a com-
prehensive recent review). The motivation for this choice was
that for a substantial percentage of patients with postmyocar-
dial infarction and nonischemic sustained ventricular tachycar-
dias, critical pathways of reentry exist in the subepicardium so
that ablation strategies directed only at the endocardium do not
provide successful resolution of arrhythmias [34], [38], [39]. In
addition, there now exist the required devices and technical ex-
perience to routinely probe the coronary veins with up to 20
electrodes on a single catheter. Clinicians already make use of
the information from these catheters to reveal local electrical
activity but are unable to identify and localize events that occur
more than a few millimeters from the veins. Once there is ade-
quate evidence to suggest epicardial involvement, there are also
methods by which to bring radio-frequency ablation catheters
to the critical sites and carry out treatment. Therefore, there ex-
ists both a need to develop techniques for mapping epicardial
arrhythmias and an emerging diagnostic technology that could
lead to a treatment paradigm. We note also that the techniques
we have developed would almost certainly work equally well
when applied to the endocardial surface as an activation map-
ping tool, perhaps enabling more rapid mapping of unstable dy-
namic rhythms from fewer catheter measurements. We concen-
trated in this study on epicardial mapping because lack of ac-
cess is so much more severe that alternative mapping methods
are unavailable even with unlimited time.

A critical question to address in a study like this is what
level of the spatial resolution is required for clinical utility. One
source of an answer is the size of lesions from radio frequency
(RF) catheters, which lie in the range of 7–8 mm in diameter
and 8–9 mm in depth from a standard 8-mm RF catheter [10].
Additional factors include the fact that most cases involve a se-
quence of lesions (7 5 [21] and 12 10 [8] according to
the literature), each following slight movement of the catheter
in order to ensure adequate coverage. Finally, other approaches,
for example those using electrocardiographic inverse solutions
[27], [29], have reported maximal accuracy in the range of 8–10
mm. In light of these facts, the target accuracy of our refinement
methods of 10 mm for 85% of the cases seem reasonable.

Limitation of this study include that the database did not in-
clude data from hearts with large regions of conduction block or

in which we observed reentry. Preliminary (unpublished) results
from a small number of test beats with large areas of previous
myocardial infarction suggest that while localizing the earliest
site of activation may be feasible, there will be difficulties in
predicting the entire activation sequence when the infarcted re-
gions lie far from the venous catheters. Ongoing experiments
will provide the data to develop training sets that include such
profoundly altered hearts.

Moreover, in this study some of the beats in the database
came from the same animal as the test beat. The practical reason
for this is clear but nonetheless this might cause results to be
overly optimistic, and in addition might cause some other bi-
ases. Ongoing experiments will provide a separate test set from
the training set which will include different animals, different
pacing sites, and different disease conditions.

One possible weakness in the study is that the high-resolution
mapping data for the database needs to be acquired during open
chest procedures, and our catheter-based estimation method re-
quires a closed chest approach. Green et al. [16] have described
the effect of conductivity of the volume conductor on activation
time and potentials. In that study, they showed clearly that acti-
vation sequence does not depend on the volume conductor, even
to the point that taking the heart completely out of the volume
conductor. We also note that one reason for our choice of acti-
vation time as the parameter to be estimated is its robustness.

Although we have shown that an estimation-based approach
to epicardial mapping is quite feasible and accurate, its applica-
tion to clinical practice will require overcoming additional tech-
nical hurdles. Perhaps the first is the need to acquire high-reso-
lution epicardial maps with which to build the necessary data-
base. Obtaining such data does require direct access to the heart.
However, open-chest surgery is still a relatively frequent occur-
rence for such procedures as valve repair and replacement and
coronary artery bypass grafts. The time required during such
procedures to obtain epicardial maps is just minutes, so that it
should not present substantial additional burden to the patient.

An additional challenge to applying this technique in a clin-
ical setting will be determining the relationship between venous
catheter locations and the corresponding sites in the high-den-
sity epicardial sock array. For this, we anticipate using fluoro-
scopic images obtained during the catheterization procedure. A
study into the impact of estimation error in localizing electrode
locations is currently underway in our laboratory.

Catheter leadset selection is another important aspect of the
estimation technique that ongoing studies are designed to ad-
dress. The topics of these studies will include the effects of the
number of leads to be selected and their relative locations on the
coronary veins on reconstruction accuracy, and the sensitivity of
the estimation approach to different types of simulated errors on
the catheter leads.

Although the approach we present does not solve a formal in-
verse problem, it does provide results that are essentially iden-
tical to those of electrocardiographic inverse solutions, i.e., an
activation map on the epicardial surfaces. In some recent ex-
amples, Oster et al. [29] and Modre et al. [27] have both re-
ported reconstruction of single pacing sites to within 8–10 mm,
comparable with at least some of our results. However, the cost
of creating an inverse solution is substantially larger than our
approach. An inverse solution requires the creation of a pa-
tient-specific geometric model, typically based on results from

Authorized licensed use limited to: The University of Utah. Downloaded on September 21, 2009 at 13:43 from IEEE Xplore.  Restrictions apply. 



1830 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 52, NO. 11, NOVEMBER 2005

a tomographic imaging study using CT or MRI, followed by a
computationally costly procedure. Our approach, by contrast,
requires no geometric information other than the location of the
catheters relative to a normalized epicardial potential electrode
array. Computation of the estimation of the activation sequence
is also quite straightforward. The most relevant observation may
be that these two approaches are complementary rather than
competing. An estimate of activation may well serve as a con-
straint of an otherwise standard inverse solution, an approach
we are currently pursuing [35].

The results of this study encourage further investigation
and provide adequate evidence that an epicardial mapping ap-
proach based on intravenous catheter measurements is feasible
and can provide adequate accuracy for clinical applications.
Furthermore, the approaches we propose for training data set
selection can be easily automated so that consistent optimiza-
tion is possible. With the advances in transthoracic access to the
pericardial space in order to apply catheter ablation of cardiac
arrhythmias [7], [34], [36], [39], [41], such an estimation ap-
proach will complement this type of treatment as a minimally
invasive diagnosis technique.
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