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Introduction 
 
The goal of the inverse problem of electrocardiography 
(ECG) is to reconstruct cardiac electrical sources using 
body surface potential measurements, and an appropriate 
mathematical model representing the thorax [1,2]. 
However, due to attenuation and smoothing that occurs in 
the thorax, the problem is ill-posed and reliable solutions 
require regularization. The application of suitable 
regularization constraints to the calculation of cardiac 
sources remains a persistent challenge.  
 
Recent studies have described Bayesian approaches to 
the inverse ECG problem [3,4,5]. In addition to providing 
a more general way to formulate physiological 
constraints, these approaches also offer statistical 
performance evaluation tools that are not generally 
available with deterministic approaches. However, the 
Bayesian methods rely on the choice of prior probability 
density function (pdf); the better the prior model fits the 
epicardial potentials, the greater the reliability of the 
Bayesian estimates [3,4,5].  
 
In our previous work, we estimated prior model 
parameters from a training dataset of previously recorded 
epicardial potentials [5,6]. In the earlier work [6] <why 
not put the earlier work first?>, we used a training dataset 
that pooled epicardial beats paced from various locations 
on the heart surface to capture the variability in the 
epicardial potentials. In a follow-up study [5], we 
compared Bayesian inverse solutions using two different 
training datasets to determine which performed better. 
These comparisons provided us with valuable insight into 
the nature of the training data selection problem, but did 
not provide a metric that would enable us to select the 
best training dataset among many candidates. 
  
In this paper, we study a prior model selection criterion 
based on the evidence, a Bayesian metric defined as the 
marginal pdf of the measurements. The underlying 
hypothesis is that the prior model that best explains the 
available measurements (i.e. that yields maximum value 
of the evidence) is the best prior model among a set 
ofcandidates. This study extends the method reported in 
[7], in which there were only two, statistically 
independent, parameters, to include a more complicated 

model with many parameters and a full covariance 
matrix. The long-term goal is to automatically select the 
training data that would allow the most accurate 
reconstruction of epicardial potentials from a given set of 
training data and measurements. 
 
Methods 
 
Problem Definition: We can define the inverse 
electrocardiography problem at a particular time instant 
as: y = Ax + n, where y is an Mx1 vector of torso 
measurements, x is an  Nx1 vector of epicardial 
potentials, A is an MxN matrix representing the forward 
solution, and n is the noise in the torso measurements. 
The goal is to estimate x given y and A, by applying 
appropriate statistical constraints (i.e., by choosing an 
appropriate prior model). 
 
Bayesian MAP Estimation: We used a Bayesian 
Maximum a Posteriori (MAP) approach to compute the 
inverse solution. This approach maximizes the posterior 
distribution of the epicardial potentials, which is based on 
the conditional probability distribution function (pdf) of 
the torso potentials conditioned upon the epicardial 
potentials along with the prior pdf of the epicardial 
potentials. This prior pdf represents our statistical 
knowledge about the epicardial potentials and can be 
fully represented by their mean vector, xo, and covariance 
matrix, Cx, if we assume that the epicardial potentials 
have a multivariate Gaussian distribution, i.e. x ~ N(xo, 
Cx). The MAP solution is: 
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where Cn is the covariance matrix of the noise vector, n.  
 
Bayesian Prior Selection based on Evidence: We 
assumed we have various candidate prior models 
corresponding to different training datasets of previously 
recorded epicardial potentials. From these training 
datasets, we first computed candidate model parameters, 
Hi <note the superscript here is very crowded up to the 
H> = {xo

i, Cx
i}. Then, for each of these candidate 

models, we calculated the Bayesian evidence:  
 

p(y\Hi ) ~ N(Axo
i, A Cx
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Finally, we compared the evidence values and the 
resulting inverse solutions corresponding to each model 
in order to test the validity of our hypothesis. 
Results 
 
We recorded canine epicardial potentials recorded 
according to the protocol presented in [5]. We used a 
leave-one-experiment-out protocol to test the methods, 
i.e., we selected a test beat from one experiment to 

simulate the measurements, and we pooled data from 
other experiments (using the other animals) to create the 
training dataset. We simulated the torso measurements 
from the test beat by multiplying the epicardial potentials 
by the forward matrix, and adding zero mean and i.i.d. 
noise at 30 dB SNR. 
  
In this work, we study the feasibility of using the 
evidence to compare different models. Since this is only a 
feasibility study, we test our results in a very simple 
scenario, in which we have only three prior models, each 
using a different training set: 
 
1. use a training set composed of only left ventricularly 

paced beats (LV-paced) 
2. use a training set composed of only right 

ventricularly paced beats (RV-paced) 
3. use a training set composed of both LV and RV 

paced beats (LVRV-paced)  
 
The number of beats in each training set is the same 
<true??>>. The test beat is paced from the LV surface.  
 
In Fig. 1, we plot evidence values found using Eq. (2) at 
all time instances in the QRS interval, for the three 
training sets. The evidence stays approximately the same 
for all three priors until around 25 ms. After that time, the 
evidence value corresponding to the RV-paced prior 
becomes smaller than the other two. This gap widens 
even more between time instances 70 and 100 ms. The 
evidence values corresponding to LV-paced prior are 
indistinguishable from that of LVRV-paced prior until 
around 75 ms; after that they are smaller.  

Fig. 1 Evidence values for LV-paced, RV-
paced and mixed LVRV-paced priors 

Panel A: 
t=42 ms.  

In Fig. 2, we show reconstructed epicardial potential 
maps in the QRS interval for all three priors. The two 
panels in Fig. 2 show isopotential maps of the 
reconstructions as well as the original at 42 (top) and 80 
(bottom) ms. In each panel, we plot the original 
isopotential map at the top, and the three reconstructions 
below. To the right of the original maps, we plot a single 
time series from one lead with that panel’s time instant 
marked for reference. In each panel, the range is fixed for 
all isopotential maps. In all of these isopotential maps, 
darker regions represent negative potentials, lighter 
regions represent positive potentials, and the wavefront 
lies at the transition from darker to lighter regions. 
According to Fig. 1, at 42 ms, the evidence value for the 
RV-paced prior was smaller than the other two, so we 
would expect the reconstruction with the RV-paced prior 
to be worse than the others. At 80 ms, the evidence 
values from largest to smallest corresponded to the 
LVRV-paced prior, the LV-paced prior and the RV-
paced prior. Again, according to our hypothesis, we 
expect to obtain the best reconstruction among the three 

Panel B: 
t=80 ms. 

Fig. 2 Isopotential maps at two different time
instances, using three different prior densities. 



priors using the LVRV-paced prior, and the worst using 
the RV-paced prior.  
 
Examining the maps, we see that at 42 ms, the 
reconstruction using the RV-paced prior is the worst of 
the three reconstructions. It is noisy, and the shape of the 
wavefront is not accurate. On the other hand, 
reconstructions using the other two priors have better 
fidelity to the original potential distribution. Among 
thesetwo, the LV-paced prior performs slightly better. 
 
At 80 ms, the reconstruction using the RV-paced prior 
produces many noisy contours, and it is hard to 
differentiate one single dominant wavefront. The best 
reconstruction is with the LVRV-paced prior; the 
wavefront that lies along the 2 o'clock - 8 o'clock line in 
the original isopotential map is better reconstructed than 
the other two. This is also consistent with the evidence 
values: at this time instant, the LVRV-paced prior 
produced the highest evidence value, and the RV-paced 
prior produced the lowest evidence value. 
 
Discussion 
 
Previous studies on Bayesian MAP estimation applied to 
the inverse ECG problem have shown that it was 
important to use a “good” prior model in order to 
increase the reliability of the Bayesian reconstructions. In 
this paper, we studied Bayesian evidence, and examined 
a very simple prior selection scenario, with only three 
prior models. Even by using this simple simulation, we 
obtained results that support the hypothesis that the prior 
model that maximizes the evidence is a good choice of 
prior, at least among the proposed candidates. This idea 
can easily be extended to choose from a larger number of 
candidate priors. Alternatively, it is possible to use the 
evidence to design an adaptive algorithm in which one 
can determine whether to accept a training beat into a 
training dataset depending on the increase or the decrease 
in the evidence value due to including that training beat. 
The results of this study show that it is feasible to use the 
Bayesian evidence in both types of prior model selection 
scheme. However, more research is necessary to evaluate 
the evidence as a prior selection criterion for inverse 
bioelectric problems. 
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