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�
, Dana H. Brooks

�
and Robert S. MacLeod

�
�
CDSP Center, Department of Electrical and Computer Eng.,

Northeastern University, Boston, MA,�
Nora Eccles Harrison Cardiovascular Research and TrainingInstitute,

University of Utah, Salt Lake City, Utah
yesim@ece.neu.edu, brooks@ece.neu.edu macleod@cvrti.utah.edu

ABSTRACT

Due to attenuation and spatial smoothing that occurs in the con-
ducting media, the bioelectric inverse problem of estimating sources
from remote measurements is ill-posed and solution requires regu-
larization. Recent studies showed that employing Bayesianmeth-
ods could help increase accuracy. The basic limitations arethe
availability of gooda priori information about the solution, and the
lack of a “good” error metric. In this paper, we employ Bayesian
methods, and present the mathematical framework for incorporat-
ing additional information in the form of prior statistics,and extra
measurements. We also use Bayesian error metrics to evaluate the
reconstructions, and select prior models. We apply the methods
to inverse electrocardiography problem. The results show that we
can improve the reconstructions by including extra information,
and Bayesian error metrics are useful in evaluating the results.

1. INTRODUCTION

The primary goal in bioelectric inverse problems is to re-
trieve a bioelectric source distribution in space given a set of
remote measurements and a mathematical model that relates
the desired spatial source distribution to the measurement
data distribution. Examples include inverse electrocardiog-
raphy (ECG) or magnetocardiography (MCG) problems in
which the measurements are the potential distributions or
magnetic field distributions on the body surface, and the so-
lution is in terms of the cardiac electrical source distribu-
tions, and inverse electroencephalography (EEG) or mag-
netoencephalography (MEG) problems in which one seeks
to reconstruct the distribution of sources in the brain given
electrical or magnetic measurements outside the head. Tra-
ditional reconstruction methods such as least squares esti-
mation fail due to the ill-posed nature of this problem; small
disturbances in the measured data may yield large variations
in the reconstructed source distribution. The most com-
mon approach to this problem is deterministic “regulariza-
tion” (also known as Tikhonov regularization), where the
solution is a trade-off between the estimate that best rep-
resents the data and fidelity to ana priori regularization

constraint imposed on the solution [1]. Recent studies have
described Bayesian inverse approaches to inverse bioelec-
tric problems [2, 3]. In addition to providing a more gen-
eral way to look for regularization constraints, the Bayesian
models offer additional statistical performance evaluation
tools. These tools have been applied to certain aspects of
some problems (eg., inverse EEG/MEG [3]), but not at all
to others (eg., inverse ECG/MCG problem). Specific in-
terpretation of measures such as error covariance and “ev-
idence” (marginal probability density function of the mea-
surements) can differ in various applications, therefore it is
worth the effort to study Bayesian framework applied to dif-
ferent types of problems.

The basic limitation on performance of the reconstruc-
tion methods for ill-posed problems is the availability of
gooda priori information about the solution, and available
independent measurements. One possible way to achieve
improved performance would be to acquire bettera priori
information about the desired source distribution and try to
incorporate this information into the reconstruction scheme.
For example, using training datasets of previously recorded
bioelectric source distributions, one can estimate the prior
statistics. The “evidence”, which is one of the tools for
Bayesian estimation, could be used as a criterion to select
among many candidate models. Another approach to in-
crease the reliability of the reconstructions is incorporating
one or more types of measurements. For example, in the
reconstruction of cardiac source distribution problem, one
can combine ECG and MCG recordings or ECG record-
ings and catheter measurements through coronary veins [4].
In the reconstruction of brain sources problem, EEG and
MEG data could be used together [5]. There are also other
applications that have the possibility of combining differ-
ent measurements. For example, one can measure potential
distribution remotely from the inner chambers of the heart
and through contact electrodes from the inner walls of the
heart [6] and combine them to reconstruct the potential dis-
tribution on the inner surfaces of the heart. Huiskamp mea-



sured potential distribution on the cortex (outer surface of
the brain) on a small region in addition to EEG and MEG
measurements [7]. Extra measurements in these studies were
used for validation purposes, but it is possible to combine
them in the reconstruction. The questions in includinga pri-
ori information and, if available, different types of measure-
ments, include how to include this information, and how to
decide before-hand what improvement can be expected by
including such additional information.

We report here a study that looked at using Bayesian
techniques both to include one or both types of additional
information – a priori and independent measurements – and
to quantify expected performance improvements when us-
ing them. Although we have framed the work in terms of
inverse bioelectric source problems, we believe the ideas
can be applicable to a wider range of medical imaging prob-
lems where, for instance, sparse but highly reliable mea-
surements could be obtained to include along with more
complete but much more blurred and attenuated data.

2. PROBLEM DEFINITION

The standard linear inverse bioelectric source distribution
problem is to estimate the original spatial source distribu-
tion, � , of length

�
, obtained by stacking the values at each

pixel into a column vector, given the remote measurements,� , also a column vector similarly obtained, of length� , and
the forward matrix representing the mathematical model,� ,
of size� � �

in the equation:� � � � 	 
 (1)

where
 is measurement noise.
In addition to� , we have available a second set of mea-

surements, denoted as�, of length� , and are related to the
desired source distribution via equation:

� �  � 	 � (2)

where� is the measurement noise vector of appropriate size,
and is the mathematical model that relates� to �. We will
call this second set of measurements “extra measurements”
and� as the “primary measurements”.

2.1. The Augmented Problem

If only the primary measurements are available, one solves
the problem defined by Eq. 1 for� . We will refer to this
approach as “classical reconstruction”.

To incorporate both types of measurements, we will need
to redefine the problem by combining equations 1 and 2 into
an augmented form: � � � � 	 �
 (3)

where � � � �� � , �
 � � 
� � and� � � � � (4)

and solve this for�. We will refer to this approach as “aug-
mented reconstruction”.

Note that there is a third possibility, in which only the
extra measurements are available, but not the primary mea-
surements. In this case, one solves Eq. 2. This is equivalent
to the classical reconstruction with extra data replacing the
primary measurements.

All of the equations that use one or both types of mea-
surements have a simple linear relation to the source distri-
bution, and the solution to one equation could be estimated
by changing the variables in the others. Therefore, we will
present the following mathematical framework for only the
classical reconstruction, for space limitations.

3. BAYESIAN ESTIMATION

We use Bayesian maximuma posteriori(MAP) estimation
to reconstruct the source distribution [8]. We assume that
the source distribution,� , is normal with mean�� and co-
variance�� , the noise in the primary measurements,
 �
N�� � �� �, with �� � � �� �, and the noise in the extra mea-
surements,� � N�� � � �. �, with � � � � �. Both noise
terms are uncorrelated with�, and with each other. Then,
the solution for the classical reconstruction problem is:!� � �� " � #$� � 	 � #$� �#$ �� " � #$� � 	 � #$� �� �% (5)

3.1. Estimation Error

The Bayesian MAP reconstruction,
!�, is unbiased under the

Gaussianity assumptions. Therefore, the estimation error
has zero mean and covariance matrix equal to:�& � ��" � #$� � 	 � #$� �#$ % (6)

for the classical reconstruction.
A well-known property of error covariance matrix is that

its diagonal elements give the error variance for the estimate
in pixel Using this variance and the Bayesian MAP solution,
one can obtain confidence intervals for an estimate. For ex-
ample, with 95% probability, the true solution in lead num-
ber' lies within the range:!� ( ) *+�& �, � ,� - � ( - !� ( 	 *+�& �, � ,� (7)

where.( and /.( are the
,01

elements of� and
!� respectively,

and 2� &3(( is the
,01

diagonal element of�&.
The error covariance matrix could be used as a perfor-

mance analysis tool in Bayesian estimation. Its advantage
over traditional error measures, such as relative error or qual-
itative comparison, is that it only depends on mathematical



model, and the probability distributions used for Bayesian
estimation: the data pdf and the prior density. It does not
depend on the specific experiment from which the measured
image is obtained nor knowledge of true value of the solu-
tion. Since we do not need to compare the results to original
values, it is an attractive candidate as an evaluation tool even
in a realistic setting where one does not have access to the
true solution. In addition, using the inequality in Eq. 7, one
can put more trust in the estimate at a pixel if the error vari-
ance of the estimate at that pixel has smaller values than the
others. This kind of use of error statistics have been applied
to inverse EEG/MEG problem [3], but under simplistic as-
sumptions that assumes� to bei.i.d., and is novel to inverse
ECG problem.

3.2. Using Evidence for Prior Selection

Another Bayesian metric, the “evidence” (i.e., the marginal
probability distribution function of the measurement vec-
tor), could be used to select the prior model for the source
distribution. An algorithm was proposed in [3] to select
the noise and source distribution variances in inverse EEG
problem by maximizing evidence when the source distribu-
tion is alsoi.i.d. and the number of unknowns is only two.
When the source distribution has a full covariance matrix,
one can compare various prior models, and choose the one
that maximizes evidence. Our preliminary studies with a
limited number of candidate priors suggested that this is a
valid criterion for model selection [9].

4. RESULTS

To demonstrate the use of methods studied in this paper, as
an example, we used inverse electrocardiography problem,
in which one seeks to reconstruct the source distribution
of the heart, given the potential measurements on the body
surface and an appropriate model relating the sources and
the measurements. We obtained reconstructions for classi-
cal and augmented reconstruction schemes, using Bayesian
MAP estimation and Tikhonov regularization with the en-
ergy constraint. We can summarize these approaches as:4 TIKH: Tikhonov regularization with energy constraint,

using only the primary measurements.4 TIKH-ED: Tikhonov regularization with energy con-
straint, using both the primary and the extra measure-
ments.4 MAP: Bayesian MAP estimate, using the primary
measurements, and the prior statistics.4 MAP-ED: Bayesian MAP estimate, using both the
primary and the extra measurements, as well as the
prior statistics.4 EPI-EST: Bayesian MAP estimate, using the extra
measurements and the prior statistics, but without us-
ing primary measurements or solving an inverse prob-
lem.

original tikh tikh−ed

epi−est map map−ed

Fig. 1. All methods compared. Original and estimated epi-
cardial potentials.

epi−est map map−ed

Fig. 2. Two times the error standard deviation maps in mil-
livolts for solutions in Fig. 1.

The source distribution in this problem is the potential
distribution map (isopotential map) on the heart surface,
which is obtained by contouring the areas on the 3D surface
that have similar potential values. The primary measure-
ments are the corresponding potential values on the body
surface, and the extra measurements are collected on or near
the heart surface (eg.,via venous catheters inserted into coro-
nary veins). These measurements are spatially sparse, and
only cover a small number of pixels, however, they are di-
rect measurements and do not suffer from attenuation and
spatial smoothing. A more detailed presentation of this study
can be found in [4].

We simulated sparse extra measurements by selecting
sparse leads from a 490-electrode sock applied to an iso-
lated canine heart and added normally distributed zero mean
i.i.d. noise at 30dB SNR. We simulated torso potentials us-
ing a boundary element solution to Laplace’s equation for a
human shaped torso tank in which the heart was suspended.
We then added noise at 25dB SNR to the simulated torso
surface potentials. In this work

� � 567, � � 889 and we
set� � 5*.

We obtaineda priori information from a training set
which consists of heart isopotential maps from previous ex-
periments on different canine hearts.

In Fig. 1, we show isopotential contours for the origi-
nal source distribution and various reconstructions that were



evenly and identically spaced between the maximum and
minimum of the original map. Dark regions correspond to
the more negative potentials and light regions to the more
positive. The edges in the isopotential maps,i.e., the rapid
transitions from the negative–potential areas to the positive–
potential areas, composed of tightly placed contours, are
known as “wavefronts”. Localization of the wavefront may
provide useful information on the functioning of the heart,
hence it is essential to reconstruct the wavefront accurately,
preserving the edge. The coronary arteries were also in-
cluded for reference. The top, left-hand panel contains the
original measured potentials, while labels on the other pan-
els identify the method used to compute them.

With Tikhonov regularization there is slight improve-
ment in the wavefront reconstruction around the measure-
ment sites (near the coronary artery in the maps) when extra
measurements are used, but it is not an impressive improve-
ment. In general, Tikhonov regularization with or without
extra measurements produce spatially smooth results with
poor reproduction of the waveshape.MAP andMAP-ED
recover the potentials more successfully than Tikhonov reg-
ularization. When we compare these two estimates, we ob-
serve a wavefront propagation pattern that looks more like a
circular propagation pattern rather than the elliptical shape
of the original inMAP, whereas theMAP-ED reconstruc-
tion has better fidelity to the original.EPI-EST reconstructs
the tight wavefront with a good fidelity to the original near
the measurement sites (along the coronaries), even better
thanMAP, and comparable toMAP-ED. However, as we
look away from the measurement sites, the wavefront be-
comes spread out and smoothed, even more so thanMAP,
TIKH andTIKH-ED.

To compare the confidence intervals, we plot 2 times
the error standard deviation values in Figure 2. The higher
these values, the wider the confidence intervals, meaning we
have less confidence in the results. The range is fixed for all
of the error maps. In general, the error standard deviation
values decrease with the addition of sparse extra measure-
ments, with very small error values near measurement sites.
The highest error values inMAP reconstruction correspond
to the region of the heart where the wavefront reconstruc-
tion loses its elliptical shape in Fig. 1.EPI-EST has small
error values around the measurement sites, but much higher
values as we move away from these sites, which can help
explain its good performance near measurement sites and
its failing elsewhere.

5. CONCLUSIONS

In this paper, we presented the mathematical framework to
study the effects of incorporating extra measurements and
prior statistics into the ill-posed inverse bioelectric problem,
with the goal of increasing reliability of the reconstructed
bioelectric source distributions. We used Bayesian MAP

estimation for the reconstructions, and proposed to use the
Bayesian error metrics to evaluate the results, and compare
the effects of combining different types of measurements,
and the use of “evidence” for prior model selection.

The results showed that Bayesian MAP estimation with
the appropriate prior statistics finds better reconstructions
than the Tikhonov regularization method. In the Bayesian
estimation, combining both types of measurements, even
though they are not independent, yields better reconstruc-
tions than using any one of the measurements alone. The
simulation studies we carried out in [9] already showed that
the theoretical error maps using a “good” prior matches well
with the ones obtained from the simulations. The results in
this study show that Bayesian error covariance is a promis-
ing tool for the evaluation and comparison of different re-
constructions and designing parameters of experiments such
as the number and location of the measurement electrodes.
Future work will include the study of how to obtain “good”
prior statistics, and determine the number and location of
extra measurements. Also analytical and experimental work
will be carried out to quantify the sensitivity of the recon-
structions and the error metric to the model parameters.
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