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ABSTRACT

Due to attenuation and spatial smoothing that occurs in ¢ime c
ducting media, the bioelectric inverse problem of estingasiources
from remote measurements is ill-posed and solution resju@gu-
larization. Recent studies showed that employing Bayeawsietin-
ods could help increase accuracy. The basic limitationgtee
availability of gooda priori information about the solution, and the
lack of a “good” error metric. In this paper, we employ Bayesi
methods, and present the mathematical framework for imcatp
ing additional information in the form of prior statistiGnd extra
measurements. We also use Bayesian error metrics to evahgat
reconstructions, and select prior models. We apply the oasth
to inverse electrocardiography problem. The results sthawe
can improve the reconstructions by including extra infaiora
and Bayesian error metrics are useful in evaluating thdteesu

1. INTRODUCTION

The primary goal in bioelectric inverse problems is to re-
trieve a bioelectric source distribution in space giventate
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constraint imposed on the solution [1]. Recent studies have
described Bayesian inverse approaches to inverse bioelec-
tric problems [2, 3]. In addition to providing a more gen-
eral way to look for regularization constraints, the Bagasi
models offer additional statistical performance evahrati
tools. These tools have been applied to certain aspects of
some problemseg.,inverse EEG/MEG [3]), but not at all

to others €g., inverse ECG/MCG problem). Specific in-
terpretation of measures such as error covariance and “ev-
idence” (marginal probability density function of the mea-
surements) can differ in various applications, therefbi® i
worth the effort to study Bayesian framework applied to dif-
ferent types of problems.

The basic limitation on performance of the reconstruc-
tion methods for ill-posed problems is the availability of
gooda priori information about the solution, and available
independent measurements. One possible way to achieve
improved performance would be to acquire be#eapriori
information about the desired source distribution anddry t

remote measurements and a mathematical model that relateéscorporate this information into the reconstruction soke
the desired spatial source distribution to the measurementor example, using training datasets of previously reabrde

data distribution. Examples include inverse electrocaydi

bioelectric source distributions, one can estimate therpri

raphy (ECG) or magnetocardiography (MCG) problems in statistics. The “evidence”, which is one of the tools for
which the measurements are the potential distributions orBayesian estimation, could be used as a criterion to select
magnetic field distributions on the body surface, and the so-among many candidate models. Another approach to in-

lution is in terms of the cardiac electrical source distribu

crease the reliability of the reconstructions is incorpioga

tions, and inverse electroencephalography (EEG) or mag-one or more types of measurements. For example, in the
netoencephalography (MEG) problems in which one seeksreconstruction of cardiac source distribution problemg on

to reconstruct the distribution of sources in the brain give

can combine ECG and MCG recordings or ECG record-

electrical or magnetic measurements outside the head. Traings and catheter measurements through coronary veins [4].
ditional reconstruction methods such as least squares estiln the reconstruction of brain sources problem, EEG and

mation fail due to the ill-posed nature of this problem; dmal

MEG data could be used together [5]. There are also other

disturbances in the measured data may yield large vargtion applications that have the possibility of combining differ

in the reconstructed source distribution. The most com-

ent measurements. For example, one can measure potential

mon approach to this problem is deterministic “regulariza- distribution remotely from the inner chambers of the heart

tion” (also known as Tikhonov regularization), where the

and through contact electrodes from the inner walls of the

solution is a trade-off between the estimate that best rep-heart [6] and combine them to reconstruct the potential dis-

resents the data and fidelity to anpriori regularization

tribution on the inner surfaces of the heart. Huiskamp mea-



sured potential distribution on the cortex (outer surfate o where
the brain) on a small region in addition to EEG and MEG

measurements [7]. Extra measurements in these studies were v = [ y ] = [ n ] andD = [ 1]; ] 4)
used for validation purposes, but it is possible to combine z €
them in the reconstruction. The questions in includirggi- and solve this fox. We will refer to this approach as “aug-

ori information and, if available, differenttypes of measure- yented reconstruction”.

ments, include how to include this information, and how to Note that there is a third possibility, in which only the

decide before-hand what improvement can be expected byayra measurements are available, but not the primary mea-

including such additional information. surements. In this case, one solves Eq. 2. This is equivalent
We report here a study that looked at using Bayesiantg the classical reconstruction with extra data repladieg t

techniques both to include one or both types of additional primary measurements.

information —a priori and independent measurements —and Al of the equations that use one or both types of mea-

to quantify expected performance improvements when us-syrements have a simple linear relation to the source-distri

ing them. Although we have framed the work in terms of pytion, and the solution to one equation could be estimated

inverse bioelectric source problems, we believe the ideasby changing the variables in the others. Therefore, we will

can be applicable to a wider range of medical imaging prob- present the following mathematical framework for only the
lems where, for instance, sparse but highly reliable mea-c|assical reconstruction, for space limitations.

surements could be obtained to include along with more
complete but much more blurred and attenuated data. 3. BAYESIAN ESTIMATION

2 PROBLEM DEFINITION We use Bayesian maximuenposteriori(MAP) estimation
to reconstruct the source distribution [8]. We assume that

The standard linear inverse bioelectric source distriputi  the source distributiony, is normal with mearx and co-
problem is to estimate the original spatial source distribu VarianceCy, the noise in the primary measurementss
tion, x, of lengthV, obtained by stacking the values at each N(0, Cr), with C,, = o7, 1, and the noise in the extra mea-
pixel into a column vector, given the remote measurements,Surementse ~ N(0, C.). e, with C, = o7 1. Both noise
y, also a column vector similarly obtained, of length and ~ {€rms are uncorrelated with, and with each other. Then,
the forward matrix representing the mathematical modlel, the solution for the classical reconstruction problem is:

of sizeM x N in the equation: 4= (ATC;IA n C;l)_l(ATC;ly " C;li). )

y=Ax+n (1)
3.1. Estimation Error
wheren is measurement noise.
In addition toy, we have available a second set of mea-
surements, denoted asof lengthK’, and are related to the
desired source distribution via equation:

The Bayesian MAP reconstructia, is unbiased under the
Gaussianity assumptions. Therefore, the estimation error
has zero mean and covariance matrix equal to:
T~—1 —1\—1
s=Bxte @ C.=(A"C,"A+C, ). (6)
for the classical reconstruction.
wheree is the measurement noise vector of appropriate size, A well-known property of error covariance matrix is that

andB is the mathematical model that relateto z. We will its diagonal elements give the error variance for the eséma

call this second set of measurements “extra measurementsin, pixel Using this variance and the Bayesian MAP solution,

andy as the “primary measurements”. one can obtain confidence intervals for an estimate. For ex-
ample, with 95% probability, the true solution in lead num-

2.1. The Augmented Problem ber lies within the range:

If only the primary measurements are available, one solves %; — 2¢/Cc(i,1) < x; < %; + 2/C.(i, 1) )

the problem defined by Eq. 1 for. We will refer to this

approach as “classical reconstruction”. wherez; and#; are theit” elements ok ands respectively,

To incorporate both types of measurements, we will needand[C],; is theit" diagonal element of..
to redefine the problem by combining equations 1 and 2into ~ The error covariance matrix could be used as a perfor-
an augmented form: mance analysis tool in Bayesian estimation. Its advantage
over traditional error measures, such as relative erronak-q
v=Dx+n 3) itative comparison, is that it only depends on mathematical



model, and the probability distributions used for Bayesia original
estimation: the data pdf and the prior density. It does nc
depend on the specific experiment from which the measur: '
image is obtained nor knowledge of true value of the solt (&
tion. Since we do not need to compare the results to origin
values, itis an attractive candidate as an evaluation teoi e

in a realistic setting where one does not have access to |
true solution. In addition, using the inequality in Eq. 7gon /2
can put more trust in the estimate at a pixel if the error var
ance of the estimate at that pixel has smaller values than t
others. This kind of use of error statistics have been agplic

to inverse EEG/MEG problem [3], but under simplistic as- o _ _
sumptions that assumeso bei.i.d., and is novel to inverse ~ F19- 1. All methods compared. Original and estimated epi-
ECG problem. cardial potentials.
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3.2. Using Evidence for Prior Selection

Another Bayesian metric, the “evidence’®(, the marginal
probability distribution function of the measurement vec-
tor), could be used to select the prior model for the source
distribution. An algorithm was proposed in [3] to select epiest

the noise and source distribution variances in inverse EEG [ I I
problem by maximizing evidence when the source distribu-
tion is alsoi.i.d. and the number of unknowns is only two.

When the source distribution has a full covariance matrix, Fig. 2. Two times the error standard deviation maps in mil-
one can compare various prior models, and choose the ongyolts for solutions in Fig. 1.

that maximizes evidence. Our preliminary studies with a

limited number of candidate priors suggested that this is a

valid criterion for model selection [9]. The source distribution in this problem is the potential
distribution map (isopotential map) on the heart surface,
which is obtained by contouring the areas on the 3D surface

To demonstrate the use of methods studied in this paper, aéhat have similar potential values. The primary measure-

: . ments are the corresponding potential values on the body
an example, we used inverse electrocardiography problem
) ) ) .. surface, and the extra measurements are collected on or near
in which one seeks to reconstruct the source distribution

of the heart, given the potential measurements on the bodythe heart surfacef.,via venous catheters inserted into coro-

) . nary veins). These measurements are spatially sparse, and
surface and an appropriate model relating the sources and . .
. : .only cover a small number of pixels, however, they are di-
the measurements. We obtained reconstructions for classi-

. : ._rect measurements and do not suffer from attenuation and
cal and augmented reconstruction schemes, using Bayesian

MAP estimation and Tikhonov regularization with the en- spatial smoothing. A more detailed presentation of thidystu

. . . can be found in [4].
ergy constraint. We can summarize these approaches as: i i
- o . . We simulated sparse extra measurements by selecting
e TIKH: Tikhonov regularization with energy constraint, . :
: . sparse leads from a 490-electrode sock applied to an iso-
using only the primary measurements.

o TIKH-ED: Tikhonov reaularization with ener _ lated canine heart and added normally distributed zero mean
i ; ot 9y Ceon- 5 4. noise at 30dB SNR. We simulated torso potentials us-
straint, using both the primary and the extra measure-ing a boundary element solution to Laplace’s equation for a

ments. . . . _ human shaped torso tank in which the heart was suspended.
* MAP: Bayesian MAP estimate, using the primary \ye then added noise at 25dB SNR to the simulated torso

measurements, and the prior statistics. surface potentials. In this wolk = 490, M = 771 and we
e MAP-ED: Bayesian MAP estimate, using both the oz — 49

primary and the extra measurements, as well as the
prior statistics.

e EPI-EST: Bayesian MAP estimate, using the extra
measurements and the prior statistics, but without us-
ing primary measurements or solving an inverse prob-
lem.

4. RESULTS

We obtaineda priori information from a training set
which consists of heart isopotential maps from previous ex-
periments on different canine hearts.

In Fig. 1, we show isopotential contours for the origi-
nal source distribution and various reconstructions theaew



evenly and identically spaced between the maximum andestimation for the reconstructions, and proposed to use the
minimum of the original map. Dark regions correspond to Bayesian error metrics to evaluate the results, and compare
the more negative potentials and light regions to the morethe effects of combining different types of measurements,
positive. The edges in the isopotential maips, the rapid and the use of “evidence” for prior model selection.
transitions from the negative—potential areas to the pesit The results showed that Bayesian MAP estimation with
potential areas, composed of tightly placed contours, arethe appropriate prior statistics finds better reconstousti
known as “wavefronts”. Localization of the wavefront may than the Tikhonov regularization method. In the Bayesian
provide useful information on the functioning of the heart, estimation, combining both types of measurements, even
hence it is essential to reconstruct the wavefront acdyrate though they are not independent, yields better reconstruc-
preserving the edge. The coronary arteries were also in-tions than using any one of the measurements alone. The
cluded for reference. The top, left-hand panel contains thesimulation studies we carried out in [9] already showed that
original measured potentials, while labels on the other pan the theoretical error maps using a “good” prior matches well
els identify the method used to compute them. with the ones obtained from the simulations. The results in
With Tikhonov regularization there is slight improve- this study show that Bayesian error covariance is a promis-
ment in the wavefront reconstruction around the measure-ing tool for the evaluation and comparison of different re-
ment sites (near the coronary artery in the maps) when extraconstructions and designing parameters of experimenits suc
measurements are used, but it is not an impressive improveas the number and location of the measurement electrodes.
ment. In general, Tikhonov regularization with or without Future work will include the study of how to obtain “good”
extra measurements produce spatially smooth results withprior statistics, and determine the number and location of
poor reproduction of the waveshap@. AP andMAP-ED extra measurements. Also analytical and experimental work
recover the potentials more successfully than Tikhonov reg will be carried out to quantify the sensitivity of the recon-
ularization. When we compare these two estimates, we ob-structions and the error metric to the model parameters.

serve a wavefront propagation pattern that looks more like a Ao edgments: This work was supported by the NIH Na-
circular propagation pattern rather than the elliptical®  tional Center for Research Resources (NCRR) and the Whitake
of the original inMAP, whereas thé1 AP-ED reconstruc-  Foundation. Y.S. thanks the Turkish Higher Education Catoc
tion has better fidelity to the origindEPI-EST reconstructs  their support of her graduate studies.

the tight wavefront with a good fidelity to the original near
the measurement sites (along the coronaries), even better
thanMAP, and comparable tMAP-ED. However, aswe  [1] A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-posed
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