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Abstract—Imposition of a priori constraints is needed to com-
bat the ill-posedness of the inverse problem of electrocar-
diography. Solutions to this problem have not yet achieved
clinical utility. Extra measurements from catheters inserted
into cardiac veins, even though quite sparse, may help in-
crease accuracy and robustness. In this paper, we study
various Bayesian methods to incorporate sparse epicardial
measurements in solutions to the inverse problem.
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I. INTRODUCTION

Due to attenuation and spatial smoothing that occurs
in the thorax, inverse electrocardiography—estimating car-
diac electrical activity based on measured torso surface po-
tentials and a geometric model of the torso—is an ill-posed
inverse problem [1], [2] and the forward model matrix is
badly conditioned. Thus small disturbances in the mea-
surements lead to amplified errors in inverse solutions. The
most common approach to this problem is deterministic
“regularization”, where the solution is a trade-off between
the estimate that best represents the data and fidelity to an
a priori regularization constraint imposed on the solution.

Recent reports have described statistical inverse ap-
proaches. In [3], the authors applied a statistical model
and a priori knowledge of the epicardial potential correla-
tion matrix in a Bayesian Maximum-A-Posteriori (MAP)
framework. Another approach [4] used estimated temporal
correlations of the epicardial potentials to optimally esti-
mate the epicardial potentials jointly at all time instants.
These methods often produce better results than deter-
ministic methods. However, there is still need for improve-
ment, especially in determining appropriate parameters of
the statistical models.

Recent progress in the fabrication of multielectrode ve-
nous catheters permits simultaneous measurement of epi-
cardial potentials from several catheters located in cardiac
veins [5]. The coverage of these catheters on the epicardium
is very sparse, but these extra measurements near the heart
surface may be useful to improve the accuracy and the ro-
bustness of the inverse solution. Since these measurements
are themselves noisy, we incorporate them in a statistical
setting. We assume we can use a priori knowledge of epi-
cardial potential correlations along with actual noisy mea-
surements of sparsely-located leads.

II. METHODS

The electrocardiographic inverse problem at a particular
time instant can be defined as:

y=Ax+n (1)

where y is an M x 1 vector of torso potentials, x is the
N x 1 vector of epicardial potentials, A is the M x N
matrix representing the forward solution, and n is the
noise in the torso measurements. We also assume that we
have noisy epicardial measurements Xy, at some subset of
Np, (Ny < N) epicardial sites. The goal is to estimate
X = [Xm? Xul]? i.e., the union of the potentials at the
measured and unmeasured sites, using both the torso mea-
surements y and the partial epicardial measurements X,.
We model X, as xm plus an additive noise term en,, and
partition A = [AmAy].

We consider the following methods: 1. (SUBT-M) Let
Xm = Xm, subtract this part from the overall relationship,
and solve the reduced inverse problem (y — Ap Xm) =
A, x,+n for x,, using Tikhonov regularization. Note that
this is essentially a deterministic approach. 2. (MAP-
hybrid) A hybrid approach that first uses statistical es-
timation based on a priori training data to estimate all
epicardial potentials from the sparse measurements, then
in a second step uses these estimates along with the torso
measurements to solve the inverse problem. Step 1:
(LLS-epi) We modify the method suggested in [5] to es-
timate missing epicardial potentials rather than activa-
tion times. The unmeasured potentials (X,) are estimated
from the measured ones X,, and training datasets that
include values for both measured and unmeasured sites:
Xu = %u + Cum C;!. (Xm — Xm) Where %, and %, are
the mean values of x,, and %, respectively, C,,,, is the
covariance of X, and C,,, is the cross-covariance between
Xm and X,. Step 2: (MAP-hybrid) We use the re-
sults of Step 1 in a Bayesian MAP estimation setting with
n ~ N(0, 02I), em ~ N(0, 02 I), and x ~ N(X, Cgs)

AT
where % =[x, x,]7 and
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Cuww = Cuuy — Cum C,,l. CT is the covariance of es-

timation error in X, (i.e., Xu —):cu) where C,, is the
covariance of X,. Then the MAP estimate of x is
%2 = (ATA+02C;1) 7 (ATy +02 C71%). 3. (LLS-
extraD) Here we simply treat the sparse epicardial mea-
surements as extra data and define a new measurement
vector v = [yT %L]7. Then we estimate x using linear
least squares estimation: & = X + C,, C,,} (v — ¥) where
¥ and X are the mean values of v and x respectively, C,,
is the covariance of v, and C,, is the cross-covariance be-



TABLE I
AVERAGE OF RE OVER THE QRS INTERVAL (MEAN%STD)

SUBT-M | MAP-CZM LLS-epi MAP-hybrid | LLS-extraD

0.68+0.18 0.71+£0.31 0.87+0.23 0.6540.29 0.65+0.29

tween x and v. 4. (MAP-CZM) We use the Bayesian
MAP estimation method suggested in [3] which assumes
x ~ N(0, R,,) where R, is the correlation matrix of x.
Note that this method does not take advantage of the extra
measurements and is included here for comparison.

III. RESULTS

We simulated venous catheter potentials by selecting
sparse leads from a 490-electrode sock applied to an iso-
lated canine heart and added normally distributed zero
mean 4.4.d. noise at 30dB SNR. We simulated torso poten-
tials using a boundary element solution to Laplace’s equa-
tion for a human shaped torso tank in which the heart was
suspended. We then added noise at 25dB SNR to the simu-
lated torso surface potentials and tried the various inverse
solutions. In this work N = 490, M = 771 and we set
N, = 42.

We obtained the a priori information for the statistical
methods from a database using a “leave-one-beat-out” pro-
tocol, where we excluded the test beat from the training
dataset [5], [6]. The training set consisted of beats from the
same experiment where every beat was paced at a different
location on the ventricles. The same training database was
used for all statistical methods.

Table I shows relative error (RE) averaged over the QRS
interval. On average, MAP-hybrid and LLS-extraD had
the lowest and LLS-epi had the highest RE. Fig. 1 shows
a sample case of isopotential maps of the epicardial po-
tentials. We compare the estimated epicardial potentials
to the original map in the top left panel. The statisti-
cal methods (i.e., MAP-CZM, LLS-epi, MAP-hybrid and
LLS-extraD) performed better than SUBT-M in that these
methods better preserved the wavefront. LLS-extraD and
MAP-hybrid results showed improved fidelity of the wave-
fronts in the 5 o’clock and 11 o’clock positions over those
from the LLS-epi and MAP-CZM methods.

IV. DISCUSSION

There are three types of measurements used here: a pri-
ori database measurements used to estimate parameters of
a statistical model, y, and Xp,. In this study, using only the
prior information (MAP-CZM) or prior information along
with sparse epicardial measurements (LLS-epi) preserved
wavefronts better than using everything but the prior mea-
surements (SUBT-M) but achieved worse RE. Including all
three types of information (MAP-hybrid and LLS-extraD)
produced the most accurate results. The “leave-one-beat-
out” protocol is simple and useful to test the performance of
the statistical algorithms when we have a training dataset
that represents the test data well. But it is unrealistic,
as one rarely has access to beats from the same study in
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Fig. 1. Isopotential maps of epicardial potentials. Top-left: Orig-
inal epicardial maps, Mid-left: SUBT-M, Bottom-Left: MAP-CZM,
Top-Right: LLS-epi, Mid-Right: MAP-hybrid, Bottom-right: LLS-
extraD. Display is an anterior view of the epicardial electrode array.
The position of the anterior cardiac vein is drawn in red.

clinical settings. Future research will include testing of the
methods with different datasets and making fuller use of
the information in the measured subsets of epicardial po-
tentials and the a priori database.
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