
View Dependent Isosurface Extraction

Yarden Livnat Charles Hansen

University of Utah

Abstract

We propose a new approach to polygonal isosurface ex-
traction that is based on extracting only the visible por-
tion of the isosurface. The visibility tests are done in
two phases. First, coarse visibility tests are performed
in software to determine thevisible cells. These tests
are based on hierarchical tiles and shear-warp factor-
ization. The second phase resolves the visible portions
of the extracted triangles and is accomplished by the
graphics hardware.

While the latest isosurface extraction methods have
effectively eliminated the search phase bottleneck, the
cost of constructing and rendering the isosurface re-
mains high. Many of today’s large datasets contain
very large and complex isosurfaces that can easily over-
whelm even state-of-the-art graphics hardware. The
proposed approach is output sensitive and is thus well
suited for remote visualization applications where the
extraction and rendering phases are done on a separate
machines.

1 Introduction

Themarching cubes[11, 23] method demonstrated that
isosurface extraction canbe reduced to solving a lo-
cal triangulation problem through a table lookup. To
achieve this, the marching cubes method visits each and
every cell of the data. Recently, we showed [10] that
the extraction problem can be viewed as a search prob-
lem over thespan spaceand proposed thenear optimal
isosurface extraction(NOISE) method. Both NOISE
and the lateroptimal isosurface extractionmethod by
Cignoniet. al [1], reduce the search to visit practically
only the cells thatcontainthe isosurface.

While in the past, the bottleneck in isosurface ex-
traction was locating the cellsthat contain the isosur-
face, today’s large datasets pose new challenges. Large
datasets of 0.5-4GB can be found in medicine as well
as geo-sciences applications. The size of isosurfaces

extracted from these datasets can reach several million
polygons, many of which are less than one pixel in size.
Two problems emerge due to the vast number of poly-
gons. First, due to the shear number of cells contain-
ing an isosurface, the computation of all the local tri-
angulations can be very time consuming. Second, the
huge number of polygons can easily overwhelm even
the most powerful state-of-the-art graphics accelera-
tors, leading to poor interactive rates. This problem is
further compounded when a desktop machine is used to
render the isosurface while a remote server, with poten-
tially more memory, is used to extract the isosurface.
This can occur over either a LAN or a WAN.

One current approach to the large number of
polygons problem is to apply mesh reduction tech-
niques [18, 14] to the isosurface either as a post process
to the extraction phase or during the extracting phase it-
self [17]. However, mesh reduction is expensive and re-
quires extracting the entire isosurface for examination.
Furthermore, a change in the isovalue requires thefull
extraction of a new isosurface and the reapplication of
the mesh reduction step.

A different approach is to employ ray-tracing tech-
niques that do not need to create an intermediate polyg-
onal representation. Ray-tracing, nevertheless, does
not take advantage of graphics hardware and requires
a large number of CPUs for interactivity [16].

In this paper we present a novel view dependent iso-
surface extraction approach, as illustrated in Figure 1,
which further reduces the search, construction and dis-
play by only visiting the cells that contain thevisible
portion of the isosurface from a given view point. Our
approach is based on a hierarchical front-to-back traver-
sal of the dataset with dynamic pruning of sections that
are hidden from the view point by previously extracted
sections of the isosurface. Figure 2 shows the potential
saving of such an approach. Note the large section of
the isosurface, which represents the internal organs in
the head, yet is not part of the view-dependent isosur-
face.

This work explores the middle ground between



Figure 1: Left: The user view, Right: The same isosur-
face from a 90 degree angle to the user view, illustrating
the incomplete reconstruction.

Figure 2: Extracted isosurface. A cut plane through the
full and view-dependent isosurfaces extracted from the
same view point as in Figure 1. Note the large internal
structures that are part of the full isosurface but are not
part of the view-dependent isosurface

mostly hardware based (e.g. marching cubes + Z-
buffer) and purely software (e.g. ray-tracing) algorithm
for isosurface extraction. Our goal is to reduce the load
on the network and/or graphics hardware by performing
someof the visibility tests in software. This approach
leads to an output sensitive method that can reduce the
load of other components in the visualization pipeline
such as transmission of the isosurface geometry over a
network.

In the next section we review previous approaches to
isosurface extraction. In Section 3 we present our algo-
rithm, drawing on recent innovations in the area of vis-
ibility algorithms. Sections 4–5detail these algorithms
as well as our modifications. Results are presented in
Section 6. We conclude and discuss future directions in
Section 7.

2 Related Work

Marching cubes[11, 23] is perhaps the most widely
known 3D isosurface extraction algorithm. The nov-
elty of this approach was the reduction of the global
extraction problem to a large set of local triangulation
(one per data cell) based on a lookup table. Since
the introduction of the marching cubes method, much
work [12, 13] was dedicated to the ambiguities intro-
duced by the lookup table and other methods of repre-
senting the isosurface inside a single cell.

Another issue that has received attention was the lo-
calization of the cells that actually contained the isosur-
face. Wilhelms and Van Gelder [21, 22] were the first
to point out the large amount of time that was spent an-
alyzing empty cells. To alleviate this problem, they in-
troduced an octree based hierarchy over the dataset and
tagged each node (ameta-cell) in the tree with the min-
imum and maximum values of the data in their subtree.
Given an isovalue, one can then descend the hierarchy,
pruning empty subtrees based on this minmax scheme.
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Figure 3: Complexity Comparison.

In recent years, many other methods for accelerating
the search phase were proposed [3, 4, 6, 7, 15, 20, 19]
all of which have a complexity ofO�n�, wheren is
the size of the dataset. In 1996, we introduced thespan
space[10] as a mean for mapping the search onto a two-
dimension space. Using the span space, we proposed a
near optimal isosurface extraction(NOISE) algorithm
that has a time complexity ofO�

p
n � k�, wherek

is the size of theisosurface. Cignoniet. al [1] em-



ployed another decomposition of the span space leading
to an optimal search method with a time complexity of
O�logn� k�. Figure 3 depicts a relative (not to scale)
comparison between these methods with respect to the
search, construction and display phases.

3 The Algorithm

The proposed method is based on the observation that
isosurfaces extracted from very large datasets tend to
exhibit high depth complexity for to two reasons. First,
since the datasets are very large, the projection of in-
dividual cells tend to be sub-pixel. This leads to a
large number of polygons, possibly non-overlapping,
projecting onto individual pixels. Secondly, for some
datasets, large sections of an isosurface are internal and
thus, are occluded by other sections of the isosurface, as
illustrated in Figure 2. Theseinternal sections, common
in medical datasets, can not be seen from any direction
unless the external isosurface is peeled away or cut off.
Therefore, if one can extract just the visible portions of
the isosurface, the number of rendered polygons will be
reduced resulting in a faster algorithm. Figure 4 depicts
a two dimensional scenario. In a view dependent meth-
ods only the solid lines are extracted whereas in non
view dependent isocontouring both solid and dotted are
extracted.

Visible Isoline

Non−Visible Isoline

Screen

Figure 4: A two dimensional scenario.

The proposed algorithm, which is based on a hier-
archical traversal of the data and a marching cubes tri-
angulation, exploit coherency in the object, value, and
image spaces, as well as balancing the work between
the hardware and the software. We employ a three step
approach depicted in Figure 5. First, we augment Wil-
helms and Van Gelder’s algorithm by traversing down
the octree in a front-to-back order in addition to pruning
empty sub-trees based on the min-max values stored at

the octree nodes. The second step employs coarse soft-
ware visibility tests for each [meta-] cell which inter-
sect the isosurface. The aim of these tests is to deter-
mine whether the [meta-] cell is hidden from the view
point by previously extracted sections of the isosurface
(thus the requirement for a front-to-back traversal). Fi-
nally, the triangulation of the visible cells are forwarded
to the graphics accelerator for rendering by the hard-
ware. It is at this stage that the final and exact [partial-]
visibility of the triangles is resolved. A dataflow dia-
gram is depicted in Figure 6.

3.1 Visibility

Quickly determining whether a meta-cell is hidden and
thus can be pruned, is fundamental to this algorithm.
This is implemented by creating a virtual screen with
one bit per pixel. We then project the triangles, as they
are extracted, on to this screen and set those bits which
are covered, providing an occlusion mask.

Additional pruning of the octree nodes is accom-
plished by projecting the meta-cell on to the virtual
screen and checking if any part of it is visible, i.e. if any
of the pixels it covers are not set. If the entire projection
of the meta-cell is not visible, none of its children can
be visible.

We note that it is important to quickly and efficiently
classify a cell as visible. A hidden cell, and all of its
children, will not be traversed further and thus can jus-
tify the time and effort invested in the classification. A
visible cell, on the other hand, does not gain any benefit
from this test and the cost of the visibility test is added
to the total cost of extracting the isosurface. As such,
the cell visibility test should not depend heavily on the
projected screen area otherwise the cost would prohibit
the use of the test for meta-cells at high levels of the oc-

1 bpp 
screen mask1) Traverse

2) Project

3) forward
to graphics
accelerator

Figure 5: The three step algorithm.
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tree - exactly those meta-cells that can potentially save
the most.

Two components influence the visibility cost, namely
the cost of projecting a point, triangle, or a meta-cell
on to the screen and the cost of either scan-converting
triangles or determining if a meta-cell projected area
contains any unset pixels.

In the next sections, we address these costs in two
ways. First, we employ a hierarchical tiling for the vir-
tual screen. Secondly, to reduce the cost of the projec-
tion we use a variation of the shear-warp factorization.

4 Image Space Culling

We employ hierarchical tiles [5] as a mean for fast clas-
sification of meta-cells and determining the coverage of
extracted triangles. The hierarchical nature of the algo-
rithm ensures that the cost of either of these two opera-
tions will not depend highly on their projected area.

4.1 Hierarchical Tiles

Hierarchical tiles provide a mechanism for accelerating
software based rendering. The idea is to project one
polygon at a time in a front-to-back order and render
only those pixels that contribute to the final image. The
front-to-back order ensures that each pixel is rendered
only once.

InOut Covered

Partially covered

Not covered

Edge

Figure 7: An Edge Tile.

A coverage map (a tile) is a rectangle bitmap (we use
8x8) in which each bit represents a pixel in the final
image. The algorithms is based on the premise that all
the possible coverage of a single edge crossing a tile
can be precomputed and tabulated based on the points
where the edge intersect the tile boarder, Figure 7. The
coverage pattern of a convex polygon for a particular
tile of the image is computed by combining the cover-
age maps of the polygon edges. The coverage map of a
triangle can thus be computed from three precomputed
tiles with no dependency on the number of pixels the
triangle actually cover, Figure 8. We refer the reader
to the work by Greene [5] for a detailed explanation
on how the three states (Covered, Partially-covered and
Not-covered) can be represented by two tile masks and
the rules for combining coverage maps.

=+ +

Figure 8: A triangle tile coverage map.

Rendering a polygon amounts to computing the cov-
erage map of the polygon for each tile in the image and
isolating only those pixels that are covered by the poly-
gon and where already covered, Figure 9. In order to
accelerate the rendering, the tiles are organized in a hi-
erarchical structure in which each meta-tile represents
a block of [meta-] tiles. Under this structure, a polygon
is projected onto the top meta-tile and only those sub-
tiles in which the polygon might be visible are checked
recursively, leading to a logarithmic search.
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4.2 Hierarchical Visibility Mask

Our implementation differs from the one proposed by
Greene in that we do not actually render the visible por-
tion of a projected triangle. Rather, we mark the trian-
gle as visible and forward it to the graphics hardware.
It is then left to the graphics accelerator to determine
which pieces of the triangle are actually visible and cor-
rectly render them.

One should note that it is not possible to determinea-
priori the front-to-back relations between the triangles
inside a single cell. It is therefore mandatory to accept
all or none of the triangles, even though they need to be
projected on the hierarchical tiles one triangle at a time.
Figure 10 shows the classification of the cells as well as
the portions of the isolines which are extracted. Note
that the entire isoline section in a visible cell (shown in
light gray) is extracted. The non-visible portions will
be later removed by the graphics accelerator.

An additional feature we employ limits recursion
down the octree once the size of a meta-cell is approx-
imately the size of a single pixel. Instead, we forward
a single point with an associated normal to the graph-
ics hardware, similar to the dividing cubes method [2].
The normal is estimated by the gradient of the field.

Empty
cell(skipped)

Visible
cell

Non−visible
cell (skipped)

Extracted Visible Isoline

Extracted Non−Visible Isoline

Non−Visible Isoline (skipped)

Figure 10: Cells and isolines visibility.

The advantage of this method is that the single point
potentially represents a large number of polygons since
the meta-cell that projects to a pixel may still be high in
the octree.

5 Warped IsoSurface Extraction
(WISE)

A key component in the visibility test is the projection
of a point, a triangle or a meta-cell onto the screen. In
general, the perspective projection of a point is a 4x4
transformation followed by two divide operations, for
a total of 16 multiplications12 additions and 2 divi-
sion per vertex. Clearly, the cost of performing such
transformation for each and every vertex of the pro-
jected meta-cells and triangles is too high. In addition,
the non-linearity of the perspective transformation pro-
hibits the use of pre-computed transformation table. To
accelerate this critical step, we take advantage of the
shear-warp factorization of the viewing transformation.

5.1 Shear-Warp Factorization

In 1994, Lacroute [8, 9] presented a volume rendering
method that was based on the shear-warp factorization
of the viewing transformation. The underlyng idea is
to factor the viewing transformation into a shear fol-
lowed by a warp transformation. The data is first pro-
jected into a sheared object space that is used to create
an intermediate, albeit warped, image. Once this im-
age is complete a warping transformation is applied to
create the correct final image. Figure 11 illustrates the



shear-warp transformation for an orthographic projec-
tion. For a perspective projection the slices need also to
be scaled as seen in Figure 12.

The advantage of this method is that the intermedi-
ate image is aligned with one of the dataset faces. This
alignment enables the use ofa parallel projection of the
3D dataset. The warp stageis then applied to a 2D im-
age rather than to each data point.

Object

Screen

Object

Shear

Project

Warp

Figure 11: Shear-warp in orthographic projection.
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Figure 12: Shear-warp in perspective projection.

5.2 Shear But No Warp

We now note that the visibility on the image plane and
on the warped projection plane are the same, see Fig-
ure 13. In other words, any point in the dataset that is
visible on the image plane is also visible on the warped
projection plane and similarly, points which would be
occluded on the image plane are also occluded on the
warped plane. It is therefore sufficient to perform the
visibility tests on the warpedprojection plane. The ad-
vantage of this approach is two fold. First, the perspec-
tive projection is removed. Second, since the shear and
scale factors are, with respect to the current view point,
constant for each slice we can pre-compute them once
for each new view point.

Let �X�Y�Z� be the coordinate system of the dataset
and let �sx� sy� sz� be the scaling vector of the data

Figure 13: Warped space.

with respect to this coordinate system. Let us assume,
without loss of generality, that the current warped pro-
jection plane isZ � �. We first transform the cur-
rent eye location onto the�X�Y�Z� coordinate system
and then pre-compute the shear and scale coefficients,
foreach Z
s � Z � sz��Z � sz � eyez�

scalex�Z� � ��� s� � sx
scaley�Z� � ��� s� � sy
shearx�Z� � s � eyex
sheary�Z� � s � eyey
The projection of any grid pointp�x� y� z� can now

be computed as,
Project�p� �
x � px � scalex�pz� � shearx�pz�

y � py � scaley�pz� � sheary�pz�
for a total of two multiplications and two additions

per vertex.

While the Z coordinate of every grid point is known
in advance and thus the shear and scale factor can be
pre-computed for each new view point, the same does
not hold true for the vertices of the isosurface triangles.
However, since the projection onto the warped projec-
tion plane is orthographic it can be shown that a vertex
projection is,

Project�p� �
s � pz��z � eyez�

x � px � s � �eyex � px�
y � py � s � �eyey � py�

for a total of two multiplication, five additions and
one division.

6 Results

We tested our method with two datasets. The first is a
small dataset (	
�) of a CT scanned head where most



of the internal structure, e.g. the brain, was removed by
hand segmentation. This results in lower depth com-
plexity. The other larger dataset (��	�) has a large
number of internal structures that normally would be
extracted as isosurfaces when one extracts the skin. We
ran experiments in two scenarios. In one scenario, the
isosurfaces were extracted and rendered on the same
high end machine, an SGI Reality Monster (using a sin-
gle CPU). In the second scenario, we use a lower-end
machine (SGI Indigo2 Extreme connected with a 100-
BaseT switched Ethernet) for the rendering phase and
the Reality Monster for the isosurface extraction.

The results for the first scenario, Table 1, shows
that for larger and more complex isosurfaces the new
method still outperforms extraction of the full isosur-
face, though the performance falls short when only a
change of the view point is considered.

The results for the second scenario, Table 2, demon-
strate the advantage of this method. Even when the
time for the extraction is added to each new view po-
sition, the new method out performs a regular full oc-
tree traversal and extraction due to the LAN bandwidth
limitations.

It is important to note the large reduction in the size,
up to a factor of 15, of the extracted isosurface.

Table 1: Scenario I: Local Visualization
method view extr. polygons points rend.

time time
Small dataset
Octree any 0.48 46,222 0.16
VD normal 0.79 9036 0.06
VD closeup 0.59 7995 0.02
VD zoom out 0.60 5938 1,112 0.02
Large dataset
Octree any 3.86 353,868 1.28
VD normal 2.56 22,405 0.04
VD closeup 0.85 5,588 0.03
VD zoom out 0.99 1,080 7,888 0.02

7 Conclusions

We have developed a new approach to isosurface ex-
traction which relies on extracting only the visible por-
tion of the isosurface. It was demonstrated that the re-
duction in the isosurface size can be substantial (up to
93%) which makes it attractive for remote visualiza-
tion.

Table 2: Scenario II: Remote Visualization
method view extr. polygons points rend.

time time
Small dataset
Octree any 0.42 46,222 1.35
VD normal 0.79 9184 0.27
VD closeup 0.31 2735 0.05
VD zoomout 0.40 2154 2319 0.11
Large dataset
Octree any 3.57 342,640 10.58
VD normal 2.31 20,330 0.60
VD closeup 1.14 6,078 5,374 0.30
VD zoomout 0.38 7,364 0.12

We note that in some cases the algorithm did not per-
form as well. These are cases in which the depth com-
plexity is not high and the size of the full isosurface is
within the capability ofthe graphics adaptor.

In the future, we plan on optimizing and parallelizing
our code as well as applying it to much larger datasets
such as the visible human project and geological seis-
mic survey. We are currently looking at other projection
methods to accelerate the sofware visibility tests. For
fater view changes, we intend to employ image based
rendering techniques on the user side to enable warp-
ing between several distinct view dependent isosurfaces
with the same isovalue.
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