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A Near Optimal Isosurface Extraction 
Algorithm Using the Span Space 

Yarden Livnat, Han-Wei Shen, and Christopher R. Johnson 

Abstract- We present the “Near Optimal IsoSurface Extraction” (NOISE) algorithm for rapidly extracting isosurfaces from struc- 
tured and unstructured grids. Using the span space, a new representation of the underlying domain, we develop an isosurface ex- 
traction algorithm with a worst case complexity of o(& + c) for the search phase, where n is the size of the data set and k is the 
number of cells intersected by the isosurface. The memory requirement is kept at O(n) while the preprocessing step is O(n log n). 
We utilize the span space representation as a tool for comparing isosurface extraction methods on structured and unstructured 
grids. We also present a fast triangulation scheme for generating and displaying unstructured tetrahedral grids. 

Index Terms- lsosurface extraction, unstructured grids, span space, kd-trees. 

1 INTRODUCTION 

SOSURFACE extraction is a powerful tool for investigating I scalar fields within volumetric data sets. The position of an 
isosurface, as well as its relation to other neighboring isosur- 
faces, can provide clues to the underlying structure of the 
scalar field. In medical imaging applications, isosurfaces 
permit the extraction of particular anatomical structures and 
tissues. These isosurfaces are static in nature. A more dy- 
namic use of isosurfaces is called for in many computational 
science applications, such as computational fluid dynamics 
and atmospheric simulations. In such applications, scientists 
would ideally like to dynamically investigate the scalar field 
in order to gain better insight into simulation results. 

As scientific computation demands higher accuracy and 
state-of-the-art medical scanners increase in resolution, the 
resulting data sets for visualization expand rapidly. The 
sheer size of these data sets, as well as their structure, pose 
major obstacles for interactive investigation. While medical 
imaging data are usually structured in nature, other scien- 
tific and engineering data sets frequently consist of geome- 
try represented by unstructured finite element grids. 

Originally, isosurface extraction methods were restricted 
to structured grid geometry, as such, early efforts focused on 
extracting a single isosurface [l] from the volumetric data set. 
Recently, in an effort to speed up isosurface extraction, sev- 
eral methods were developed that could be adapted to ex- 
traction of multiple isosurfaces from structured [2], [3] as well 
as from unstructured geometry [4], [5]. Nevertheless, for 
large data sets, existing methods do not allow for interactive 
investigation of the data set, especially for unstructured 
grids. Defining n as the number of data cells and k as the 
number of cells intersecting a given isosurface, most of the 
existing algorithms have time complexity of O(n). While [2] 
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has an improved time complexity of O(klog(f)), the algo- 

rithm is only suitable for structured hexahedral grids. 
In this paper we introduce a new view of the underlying 

domain. We call this new representation the span space. 
Based on this new perspective, we propose a fast and effi- 
cient, O ( f i  + k), isosurface extraction algorithm for both 
structured and unstructured grids. 

Section 2 investigates the underlying domain for structured 
and unstructured problems and the new decomposition of this 
domain is then proposed. The proposed Span Space is then 
used in Section 3 as a common backdrop for comparing previ- 
ous methods of isosurface extraction. Section 4 shows how the 
Span Space paradigm leads to an efficient representation and 
fast isosurface extraction methods. In Section5, we present 
several optimizations with respect to both memory and time 
requirements. A fast triangulation method for unstructured 
tetrahedral grid is presented in Section6. We conclude by 
analyzing the results of testing the new algorithm on several 
science and engineering applications. 

2 THE SPAN SPACE 
Let p : G + V be a given field and let D be a sample set over 
rp, such that, 

D = (d,} d,e D = G x V  

where 6 c_ Rp is a geometric space and V E d is the associ- 
ated value space, for some p ,  9 E Z+. Also, let d = I D I be the 
size of the data set. 
DEFINITION 1 ISOSURFACE EXTRACTION. Given a set of samples ;I) 

over a field p: G + V, and given a single value v E a/, find, 

S = k,} gzE G such that, cp(g,) = 71 (1) 

Note. that S ,  the isosurface, need not be topologically simple. 
Approximating an isosurface, S, as a global solution to 

(1) can be a difficult task because of the sheer size, d, of a 
typical science or engineering data set. 
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Data is often generated from 3D images or as solutions to 
numerical approximation techniques, such as from finite dif- 
ference or finite element methods. These methods naturdy 
decompose the geometric space, G, into a set of polyhedral 
cells, C, where the data points define the vertices. Rather than 
finding a global solution one can seek a local approximation 
within each cell. Hence, isosurface extraction becomes a two- 
stage process: Locating the cells that intersect the isosurface 
and then, locally, approximating the isosurface inside each 
such cell. We focus our attention on the problem of hd ing  
those cells that intersect an isosurface of a specified isovalue. 

On structured grids, the position of a cell can be repre- 
sented in the geometric space G. Because this representa- 
tion does not require explicit adjacency information be- 
tween cells, isosurface extraction methods on structured 
grids conduct searches over the geometric space, G. The 
problem as stated by these methods is defined as follows: 
APPROACH 1 GEOMETRIC SEARCH. Given a point ZI E V and 

given a set C of cells in G space where each cell is associ- 
ated with a set of values [v,) E V, find the subset of C 
which an isosurface, of value v, intersects. 
Efficient isosurface extraction for unstructured grids is more 

difficult, as no explicit order, i.e., position and shape, is im- 
posed on the cells, only an implicit one that is difficult to util- 
ize. Methods designed to work in this domain have to use ad- 
ditional explicit information or revert to a search over the value 
space, V. The advantage of the latter approach is that one needs 
only to examine the minimum and maximum values of a cell 
to determine if an isosurface intersects that cell. Hence, the di- 
mensionality of the problem reduces to two for scalar fields. 

Current methods for isosurface extraction over unstruc- 
tured grids, as well as some for structured grids, view the 
isosurface extraction problem in the following way: 
APPROACH 2 INTERVAL SEARCH. Given a point v E V and 

given a set of cells represented as intervals, 

I = {[ai, bi]} such that, ai, bi E V 
find the subset I ,  such that, 

I, c I and, a, 5 v 5 b, tf [a?, 41 E I,, 
where a norm should be used when the dimensionality 
of V is greater than one. 
Posing the search problem over intervals introduces some 

difficulties. If the intervals are of the same length or are mutu- 
ally exclusive they can be organized in an efficient way suitable 
for quick queries. However, it is much less obvious how to 
organize an arbitrary set of intervals. Indeed, what distin- 
guishes these methods from one another is the way they or- 
ganize the intervals rather than how they perform searches. 

A key point is that the minimum and maximum values are 
given over the same dimension. More formally, the minimum 
and maximum values are represented over a basis that in- 
cludes only one unit vector. This degenerated basis is the cause 
for the above difficulties. We should be able to obtain a simples 
representation if we use a basis that includes two unit vectors, 
one for the min value and one for the max value. Better still, the 
maximum separation between the representation of the min 
and max values will occur when these two unit vectors are 
perpendicular to each other. We are, therefore, led to a new 
representation, a point in a plane, using the natural coordinate 

system to represent the minimum and maximum values. 
The method proposed in this paper addresses the prob- 

lem of isosurface generation over unstructured grids and 
searches over the value space. Our approach, nevertheless, 
is not to view the problem as a search over intervals in V 
but rather as a search over points in V2. We start with an 
augmented definition of the search space. 
DEEMTION 2 THE SPAN SPACE. Let C be a given set of cells, define a 

set of points P = jpJ  over 4 such tht, 

tfc, E C associate, p ,  = (aI, b,) 

wheve, 

U, = min(v,} and b, = max 
I I I 

and-ivl), are the values of the vertices of cell i. 
Though conceptually not much different than the inter- 

val space, the span space will, nevertheless, lead to a simple 
and near optimal search algorithm. In addition, the span 
space will enable us to clarify the differences and common- 
alities between previous interval approaches. 

The benefit of using the the span space is that points in 
2D exhibit no explicit relations between themselves, while 
intervals tend to be viewed as stacked on top of each other, 
so that overlapping intervals exhibit merely coincidental 
links. Points, do not exhibit such arbitrary ties and in this 
respect lend themselves to many different organizations. 
However, as we shall show later, previous methods 
grouped these points in very similar ways, because they 
looked at them from an interval perspective. 

Using our augmented definition, the isosurface extrac- 
tion problem can be stated as, 
APPROACH 3 THE SPAN SEARCH. Given a set of cells, C, and its 

associated set of points, P, in the span space, and given a 
value z1 E V, find the subset P, c P, such that 

b'(xi,y,) E P, x, < v and y, > y. 
x, < y, and thus the associ- 

ated points will lie above the line yz = x, . A geometric per- 
spective of the span search is given in Fig. 1. 

We note that V(x, y,) E P,, 

Fig. 1. Search over the span space. A data cell IS represented by a 
point based upon the minimum and maximum values at the vertices of 
the cell. The points in the shaded area represent the cells that inter- 
sect the isovalue I/. 
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3 PREVIOUS WORK 
We now examine previous approaches to the problem of 
isosurface generation. 

3.1 Geometric Space Decompositon 
Originally, only structured grids were available as an un- 
derlying geometry. Structured grids impose order on the 
given cell set. This fact helps to keep the geometric com- 
plexity of the entire cell set in G. By utilizing this order, 
methods based on the geometry of the data set could take 
advantage of the coherence between adjacent cells. 

3. 1. 1 Marching Cubes 
Perhaps the most well known isosurface extraction method to 
achieve high resolution results is the Marching Cubes method 
introduced by Lorensen and Cline [l]. The marching cubes 
method concentrated on the approximation of the isosurface 
inside the cells rather than on efficient locations of the involved 
cells. To this end, the marching cube method scans the entire 
cell set, one cell at a time. The novelty of the method is the way 
in which it decides for each cell whether the isosurface intersects 
that cell and if so, how to approximate it. 

3.1.2 Octrees 
The marching cubes method did not attempt to optimize the 
time needed to search for the cells that actually intersect the iso- 
surface. This issue was later addressed by Wilhelms and Gelder 
[Z], who employed an octree, effectively creating a 3D hierarchi- 
cal decomposition of the cell set, c. Each node in the tree was 
tagged with the minimum and maximum values of the cells it 
represents. These tags, and the hierarchical nature of the octree, 
enable one to trim off sections of the tree during the search and 
thus restrict the search to only a portion of the original geometric 
space. Wilhelms and Gelder did not analyze the time complexity 
of the search phase of their algorithm. However, octree decom- 
positions are known to be sensitive to the underlying data. If the 
underlying data contains some fluctuations or noise, most of the 
octree will have to be traversed. Fig. 13 is an example for such a 
data set, which ultimately undermines any geometric decompc- 
sition scheme. In Appendix A, we present an analysis of the oc- 
tree algorithm and show that the algorithm has a worst case 
complexity of O(k + k log n/k). Finally, octrees have primarily 
been applied to structured grids and are not easily adapted to 
deal with unstructured grids. 

3.1.3 Extrema Graphs 
Recently, Itoh and Koyamada [3] presented a new method 
for generating isosurfaces over unstructured grids using 
extrema graphs. 

The search starts at a seed cell known to intersect the iso- 
surface, and propagates recursively to its neighbor cells. 
Knowing how the isosurface intersects the current cell en- 
ables the algorithm to move only to those neighbor cells 
that are guaranteed to intersect the isosurface. 

In order to find such a seed cell, Itoh and Koyamada 
employed extrema graphs. The nodes of these graphs are 
those cells that include local extrema vertices. Each arc in the 
graphs has a list of the cells connecting its two end nodes. 

Given an isovalue, the extrema graph is first scanned to 
located arcs that span across the isovalue. The cells in each 

such arc’s list are then scanned sequentially until a seed cell 
is found. Boundary cells must also be traversed; hence the 
complexity of the algorithm is at best the size of the bound- 
ary list, which Itoh and Koyamada estimate as O(R”~). 

Our analysis shows that the number of arcs can be of 
O(n) in the worst case. Such a case occurs when the data 
exhibits small perturbations such that each node is a local 
extrema. In such a case, the numbers of arcs in the extrema 
graph can be equal to the number of cells, though each arc 
will contain only a single cell. 

Storage requirements for the extrema graph method can 
be high, since the propagation search requires four links 
from each cell to its neighbors in addition to the maximum 
and minimum values of its vertices. In addition, the algo- 
rithm uses a queue during the propagating search, yet the 
maximum required size of the queue is unknown in advance. 

3.2 Value Space Decomposition 
Decomposing the value space, rather than the geometric space, 
has two advantages. First, the underlying geometric structure 
is of no importance, so this decomposition works well with 
unstructured grids. Second, for a scalar field in 3D, the dimen- 
sionality of the search is reduced from three to only two. 

3.2.1 The Span Filter 
A key issue in isosurface extraction is the size of the data set. 
Gallagher [5] addressed this issue by scanning the data set 
and generating a compressed representation suitable for iso- 
surface extraction. The range of data values is divided into 
sub-ranges, termed buckets. Each cell is then classified based 
on the bucket its minimum value resides in and on how 
many buckets the cell’s range spans, i.e., the spun of the cell. 
Cells are then grouped according to their span, and within 
each such group the cells are further grouped according to 
their starting bucket. In each such internal group, the repre- 
sentation is compressed according to a unique id assigned to 
each cell. Rather than requiring a span list for every possible 
span length, the method uses one span list to catch all the 
cells that span more than a predefined number of buckets. 

bucket w 

I V rnin 

1 
1 ’ 2 ‘ 3  ‘ 4 ’  5 ’ 6 ’ 7 bucket 

Fig. 2. Span Filter. Shown is the ad hoc division of a fields range into 
subranges called buckets. Each point, which represents a data cell, is then 
assigned a min and max bucket, based upon the point‘s min and max co- 
ordinate. The points are then grouped into spans based upon the difference 
between their assigned buckets’ numbers. Span n represents all the spans 
with index larger than some predefined index, i.e., three in this example. 
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Fig. 2 depicts the span filter organization over the span 
space. Note that the compression over the cell’s id is not 
shown. For a given isovalue, ZI, the cells that intersect the 
isosurface are those that lie above and to the left of the 
dashed line. 

The use of this perspective stresses the importance of the 
first division into buckets. The entire organization of the 
domain is controlled by only one set of parameters, the po- 
sition of the original buckets. While this may help to ensure 
even distribution in the first span, it does not provide con- 
trol over the distribution of the cells in the other spans. Fur- 
thermore, this division is not automated and has to be 
crafted by trial and error for each new data set. Finally, the 
search algorithm has a complexity of O(n) in time. 

3.2.2 The Active List 

A different approach was taken by Giles and Haimes [4]: to 
find the cells that intersect an isosurface incrementally. 
Once an isosurface is found, then a neighbor isosurface, 
with an isovalue close to the first one, can be found with 
minimal effort. 

The algorithm is based on two cell lists ordered by the 
cell’s minimum and maximum values and on A, the global 
maximum range of any of the cells. When an isovalue is 
first given, or if the change from the previous value is 
greater than A, then an active cell list is formed. The active 
list is first initialized with all the cells with a minimum 
value between the given isovalue, v, and v - A, by consult- 
ing the minimum list. The active list is then purged of the 
cells with a maximum value less then U .  If the isovalue is 
changed by less then A, then the active list is augmented 
with the cells that lie between the previous isovalue, 71 and 
the new one, nv. The new cells are found by using one of 
the two ordered lists, based upon whether the change was 
positive or negative. The active list is then purged again for 
the cells that do not intersect the isosurface. 

Fig. 3 depicts Giles and Haimes’ algorithm over the span 
space. Though the algorithm does not explicitly partition 
the space in advance, the use of the global maximum cell 
span, A, does the same thing implicitly, as the width of the 
area that needs to be scanned is constant. When the change 
in the isovalue is greater than A, the algorithm must line- 
arly scan a22 the cells in the range (nv - A, n ~ ) .  Since A de- 
pends on the data set, the algorithm has no control over the 
size of the scanned list. In two of our test cases, Heart and 
Bruin, there are few cells on the boundary that have a very 
large span. This causes A to be so large that the algorithm 
must linearly scan approximately half of the data set. On 
the other hand A might be too small such that the neigh- 
borhood search may not be used at all. Using the span per- 
spective, Fig. 3, we can see that when the isovalue is 
changed from v to nu the algorithm will scan all the cells in 
the striped band but will then discard those cells that are in 
the lower triangle of that band. This triangle is usually the 
most dense part of the band, so that a large number of cells 
must be scanned and then discarded. If one scans across the 
entire range of the data set, a typical change in the isovalue will 
be larger than 0.5%, while, for a large data set, A will be much 
smaller, again not taking advantage of neighboring isosurfaces. 
Finally, the algorithm’s complexity is still O(n) in time. 

/ 4 

pl, 1 d, rnin 

Fig 3. Active List. The doted area represents the points that are initially 
put into the active list. The points in the doted area below the horizon- 
tal line, v are then removed from the active list. When the new 
isovalue, nv is close to the current isovalue, v, only the points in the 
striped area are added to the active list. The points below the hori- 
zontal nv line, within both the striped and the dotted areas, are then 
removed from the active list. 

3.2.3 Sweeping Simplices 

Recently, two of the authors, Shen and Johnson [6] ,  devel- 
oped the sweeping simplices method for extracting isosur- 
faces from unstructured three-dimensional meshes. Their 
algorithm utilizes both coherence between adjacent isosur- 
faces and explicit space decomposition. 

Sweeping simplices uses two ordered cell lists, a sweep 
list and a min list. Each element in the sweep list contains a 
pointer to a cell, the cell’s maximum value, and a flag. The 
sweep list is then sorted according the cell’s maximum 
value. The min list contains the minimum value for each 
cell as well as a pointer to the corresponding element in the 
sweep list and is ordered by the minimum values. The ini- 
tialization step requires a time of O(n log n). 

Given an isovalue, the sweeping simplices algorithm 
marks all the cells that have a minimum value less than the 
given isovalue using the min list by setting the corresponding 
flag in the sweep list. If an isovalue was previously given, 
then the min list is traversed between the previous isovalue 
and the new one. The corresponding flags in the sweep list 
are then set or reset based on whether the new isovalue is 
greater or smaller than the previous isovalue. 

Once the flags are changed, the sweep list is traversed 
starting at the first cell with a maximum value greater than 
the new isovalue. The cells that intersect the isosurface are 
those cells for which their corresponding flag is set. The 
complexity of the algorithm is O(n) in both time and space. 

The sweeping simplices algorithm uses a hierarchical 
data decomposition. At the lowest level, the range of data 
values is subdivided into several subgroups. Other levels 
are created recursively by grouping consecutive pairs from 
the previous level. At the top level there exists a single sub- 
group with the range as the entire data set. The cells are 
then associated with the smallest subgroup that contains 
the cell. Each subgroup is then associated with a min list 
and sweep list as described before. Isosurface extraction is 
accomplished by selecting for each level the subgroup that 
contains the given isovalue and performing the search us- 
ing its min and sweep lists. The space decomposition for 
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the sweeping simplices algorithm, as well as the marked 
cells for an isovalue pv, is shown in Fig 4. The full dots are 
the marked cells. When a new isovalue is selected, all the 
cells that lie between the vertical lines pv and v are first 
marked. The cells that intersect the isosurface are those 
marked cells that lie above the horizontal line at v. Though 
sweeping simplices is faster than the active list algorithm 
and does not depend on a global A, its space decomposition 
is not optimal. Each of the groups whose range intersect the 
isovalue lines, Fig. 4, must be linearly scanned and each 
such group contains an area outside the target isosurface 
region. We remark that using the span space perspective, 
the second author recently devised a more efficient space 
decomposition algorithm that improved the overall per- 
formance of the sweeping simplices algorithm. 

IMX 

Y 

. mrkd 
0 -rkd 

1-11 

1-1 a 

r Y  1-13 
1-14 

Fig. 4. Sweeping Simplices. The range of the field is divided into subranges 
that are, in tum, organized into levels. See text for further details. 

3.2.4 Summary of Existing Methods 
Previous value space decomposition algorithms use a wide 
range of terminology and approaches. The use of the span 
space provides a common ground on which these methods 
can be compared. In effect, it was shown that these meth- 
ods use very similar approaches both in searching and in 
space decomposition. All of these methods have complexity 
of O(n) in both time and memory requirements. 

4 THE NEW ALGORITHM 
A common obstacle for ail the interval methods was that 
the intervals were ordered according to either their maxi- 
mum or their minimum value. Both the sweep algorithm 
and the min-max attempted to tackle this issue by main- 
taining two lists of the intervals, ordered by the maximum 
and minimum values. What was missing, however, was a 
way to combine these two lists into a single list. 

In the following, we present a solution to this obstacle. 
Using the span space as our underlying domain, we em- 
ploy a kd-tree as a means for simultaneously ordering the 
cells according to their maximum and minimum values. 

4.1 Kd-Trees 

Kd-trees were designed by Bentley in 1975 [7] as a data struc- 
ture for efficient associative searching. In essence, kd-trees are 
a multi-dimensional version of binary search trees. Each node 
in the tree holds one of the data values and has two subtrees 

as children. The subtrees are constructed so that all the nodes 
in one subtree, the l$t one for example, hold values that are 
less than the parent node's value, while the values in the right 
subtree are greater than the parent node's value. 

Binary trees partition data according to only one dimen- 
sion. Kd-trees, on the other hand, utilize multidimensional 
data and partition the data by alternating between each of 
the dimensions of the data at each level of the tree. 

4.2 Search over the Span Space Using Kd-Tree 
Given a data set, a kd-tree that contains pointers to the data cells 
is constructed. Using this kd-tree as an index to the data set, the 
algorithm can now rapidly answer isosurface queries. Fig. 5 de- 
picts a typical decomposition of a span space by a kd-tree. 

min 

Fig. 5. Kd-Tree. The lines represent the structure of the kd-tree. The verti- 
cal line mot represents the first split of the span space along the min coor- 
dinate. The next split, at level 1, is represented by two horizontal lines that 
split the two major subregions along the max coordinate. At level 2 of the 
tree, the split of the, now four subspaces, is again along the min coordinate. 
The processes continues until all of the points are accounted for. 

4.2.1 Construction 
The construction of the kd-trees can be done recursively in op- 
timal time O(n log n). The approach is to find the median of the 
data values along one dimension and store it at the root node. 
The data is then partitioned according to the median and re- 
cursively stored in the two subtrees. The partition at each level 
alternates between the min and max coordinates. 

An efficient way to achieve O(n log n) time is to recursively 
find the median in O(n), using the method described by Blum 
et al. [8], and partition the data within the same time bound. 

A simpler approach is to sort the data into two lists ac- 
cording to the maximum and minimum coordinates, re- 
spectively, in order O(n log n ). The first partition accesses 
the median of the first list, the min coordinate, in constant 
time, and marks all the data points with values less than the 
median. We then use these marks to construct the two sub 
groups, in O(n), and continue recursively. 

Though the above methods have complexity of 
O(n log n), they do have weaknesses. Finding the median in 
optimal time of O(n) is theoretically possible yet difficult to 
program. The second algorithm requires sorting two lists 
and maintaining a total of four lists of pointers. Although it 
is still linear with respect to its memory requirement, it 
nevertheless poses a problem for very large data sets. 

A simple (and we think elegant) solution is to use a 
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quick sort-based selection 191. While this method has a worst 
case of O(n2), the average case is only O(n). Furthermore, this 
selection algorithm requires no additional memory and 
operates directly on the tree. We note that this algorithm 
performed at least four time faster on all of our application 
data sets in Section7 than the two sorted lists algorithm. 
Pseudocode for the kd-tree construction is given in Fig. 6. 

build-kd-tree(array, size) 
( 

/ /  recursive build 
build (array, size, min); 

I 

build (array, size, criterion) 
I 

/ /  criterion is either min or max coordinate 

if (size < 2) return; 
partition(array, size, criterion); 
build(array, size/2, other-criterion); 
build(array + 1 + size/2, (size - 1)/2, 
other-criterion); 

I 

partition(array, size, criterion) 
( 
Use quicksort partition algorithm to re- 
arrange the array, based on the given cri- 
terion, such that the median element is in 
array[size/2] and all the elements less then 
the median are in array[O..size/2 - 11 

I 
Fig. 6. Kd-tree construction. 

It is clear that the kd-tree has one node per cell, or span 
point, and thus the memory requirement of the kd-tree is O(n). 

4.2.2 Query 
Given an iso-value, v, we seek to locate all the points in 
Fig. 1 that are to the left of the vertical line at v and are above 
the horizontal line at v. We note that we do not need to lo- 
cate points that are on these horizontal or vertical lines if we 
assume non-degenerate cells, for which minimum or 
maximum values are not unique. We will remove this re- 
striction later. 

The kd-tree is traversed recursively by comparing the iso- 
value to the value stored at the current root alternating be- 
tween the root's minimum and maximum values at odd and 
even levels. If the root node is to the right (below) of the iso- 
value line, then only the left (right) subtree should be traversed. 
Otherwise, both subtrees should be traversed recursively. Fur- 
thermore, in this last case the root's other value should also be 
compared to the given iso-value to determine if the corre- 
sponding cell should be triangulated. For efficiency we define 
two search routines, search-mm-max and search-max-min. The 
dimension we currently checking is the first named, and the 
dimension we still need to search is named second. The impor- 
tance of naming the second dimension will be evident in the 
next section, when we consider optimizing the algorithm. 

Following is a short pseudocode for the min-max routine. 
search-min-max(iso-value, root) { 

if (root-min < iso-value) 
( 
if (root.max z iso-value) 

search-max-min(iso-value, root.right); 
construct polygon(s) from root's cell 

} 
search-max-min(iso-value, root.left); 

1 

Estimating the complexity of the query is not straight- 
forward. Indeed, the analysis of the worst case was devel- 
oped by Lee and Wong [lo] only several years after Bentley 
introduced kd-trees. Clearly, the query time is proportional 
to the number of nodes visited. Lee and Wong analyzed the 
worst case by constructing a situation where all the visited 
nodes are not part of the final result. Their analysis showed 
that the worst case time complexity is O(& + k). The aver- 
age case analysis of a region query is still an open problem, 
though observations suggest it is much faster than O( + k )  
[9], [ll]. In almost all typical applications k - rzK > A, 
which suggests a complexity of only O(k). On the other hand, 
the complexity of the isosurface extraction problem is Q(k), 
because it is bound from below by the size of the output. 
Hence, the proposed algorithm, NOISE, is optimal, qk) ,  for 
almost all cases and is near optimal in the general case. 

4.2.3 De!generate Cells 
A degenerate cell is defined as a cell having more then one 
vertex with a minimum or maximum value. When a given 
iso-value is equal to the extrema value of a cell, the isosurface 
will not irttersect the cell. Rather, the isosurface will touch the 
cell at a viertex, an edge, or a face, based on how many verti- 
ces share that extrema value. In the first two cases, vertex or 
edge, the cell can be ignored. The last case is more problem- 
atic, as ignoring this case will lead to a hole in the isosurface. 
Furthermore, if the face is not ignored, it will be drawn twice. 

One siolution is to perturb the isovalue by a small 
amount, 80 that the isosurface will intersect the inside of 
only one of those cells. Another solution is to check both 
sides of the kd-tree when such a case occurs. While the di- 
rect cost of such an approach is not too high as this can 
happen at most twice, there is a higher cost in performing 
an equality test at each level. We note that in all the data sets 
we tested there was not a single case of such a degeneracy. 

5 ~PTIW~IZATION 

The algorithm presented in the previous section is not optimal 
with regards to both the memory requirement and search time. 
We now present several strategies to optimize the algorithm. 

5.1 Pointerless Kd-Tree 
A kd-tree node, as presented previously, must maintain 
links to its two subtrees. These links introduce a high cost 
in terms of memory requirements. To overcome this defi- 
ciency, we note that in our case the kd-tree is completely 
balanced. At each level, one data point is stored at the node 
and the rest are equally divided between the two subtrees. 
We can, therefore, represent a pointerless kd-tree as a one- 
dimensional array of the nodes. The root node is placed at 
the middle of the array, while the first n/2 nodes represent 
the left subtree and the last (n - 1)/2 nodes the right sub- 
tree, as shown in Fig. 7. 

The memory requirement, per node, for a pointerless kd- 
tree reduces to two real numbers, for minimum and maxi- 
mum values, and one pointer back to the original cell for 
Bater usage. Considering that each cell, for a 3D application 
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with tetrahedral cells has pointers to four vertices, the kd-tree 
memory overhead is even less than the size of the set of cells. 

Tree 

Fig. 7. 
their nodes. 

Two representations of a kd-tree and the relative position of 

The use of a pointerless kd-tree enables one to compute 
the tree as an off line preprocess and load the tree using a 
single read in time complexity of only O(n). Data acquisi- 
tion via CT/MRI scans or scientific simulations is generally 
very time consuming. The ability to build the kd-tree as a 
separate preprocess allows one to shift the cost of comput- 
ing the tree to the data acquisition stage. Hence, reducing 
the impact of the initialization stage on the extraction of 
isosurfaces for large data sets. 

5.2 Optimized Search 
The search algorithm can be further enhanced. Let us 
consider, again, the min-max (max-min) routine. In the 
original algorithm, if the iso-value is less then the mini- 
mum value of the node, then we know we can trim the 
right subtree. Consider the case where the iso-value is 
greater then the node’s minimum coordinate. In this 
case, we need to traverse both subtrees. We have no new 
information with respect to the search in the right sub- 
tree, but, for the search in the left subtree we know that 
the minimum condition is satisfied. We can take advan- 
tage of this fact by skipping over the odd levels from 
that point on. To achieve this, we define two new rou- 
tines, search-min and search-max. Adhering to our previ- 
ous notation, the name search-min states that we are 
only looking for a minimum value. 

Examining the search-min routine, we note that the 
maximum requirement is already satisfied. We do not gain 
new information if the iso-value is less than the current 
node’s minimum and again only trim off the right subtree. 
If the iso-value is greater than the node’s minimum, we 
recursively traverse the right subtree, but with regard to the 
left subtree, we now know that all of its points are in the 
query‘s domain. We therefore need only to collecf them. 
Using the notion of pointerless kd-tree as proposed in Sec- 
tion 5.1 any subtree is represented as a contiguous block of 
the tree’s nodes. Collecting all the nodes of a subtree re- 
quires only sequentially traversing this contiguous block. 

Pseudocode of the optimized search for the odd levels of 
the tree, i.e., searching for minima is presented in Fig. 8. 
The code for even levels, searching for maxima, is essen- 

tially the same and uses the same collect routine. 

search-min-max(isoyalue, root) 
( 
if (root.min < isovalue) 
I 
if (root.max > isovalue) 
construct polygon(s) from root’s cell; 
search-max-min(isovalue, root.right); 
search-max(iso-value, root.left) ; 

1 
else 
search-max-min(iso-value, root.left); 

} 

search-min(iso-value, root) 
{ 
if (root.min < isovalue) 
I 
construct polygon(s) from root’s cell; 
search-skip-min(iso-value, root.right) ; 
collect(root.1eft); 

1 
else 

search-skip-min(isoyalue, root.left) ; 
1 

search-skip-min(isoyalue, skip-node) 
I 
if (skip-node.min < iss-value) 

search-min(iso-value, skip-node.right) : 
search-min(iso-value, skip-node.left); 

construct polygon(s) from skip-node‘s cell; 

} 

collect(sub-tree) 
I 
for (each leaf node) 

/ /  construct polygon(s) for leaf’s cell. 
/ /  Note: the leaf nodes are organized 
/ /  sequentially and thus there is no need 
/ /  to descend this subtree. 

1 
Fig. 8. Optimized search. 

5.3 Count Mode 
Extracting isosurfaces is an important goal, yet in a par- 
ticular application one may wish only to know how many 
cells intersect a particular isosurface. Knowing the number 
of cells that intersect the isosurface can help one give a 
rough estimate of the surface area of the isosurface on a 
structured grid and on a ”well behaved” unstructured grid. 
The volume encompassed by the isosurface can also be es- 
timated if one knows the number of cells that lie inside the 
isosurface as well as the number of cells that intersect it. 

The above algorithm can accommodate the need for such 
particular knowledge in a simple way. The number of cells 
intersecting the isosurface can be found by incrementing a 
counter rather than constructing polygons from a node and 
by replacing collection with a single increment of the 
counter with the size of the subtree, which is known with- 
out the need to traverse the tree. To count the number of 
cells that lie inside the isosurface, one need only look for 
the cells that have a maximum value below the iso-value. 

The worst case complexity of the count mode is only 
O(&). A complete analysis is presented in Appendix 8. It is 
important to note that the count mode does not depend on the 
size of the isosurface. We shall show in Section 7 that such a 
count is extremely fast and introduces no meaningful cost in 
time. The count mode thus enables an application to quickly 
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count the cells that intersect the isosurface and allocate and 
prepare the appropriate resources bqore a full search begins. 

5.4 Neighborhood Search 
The Sweeping Simplices and the Active List algorithms 
were designed to take advantage of coherence between 
isosurfaces with close isovalues. We now present a vari- 
ant of the proposed algorithm that also takes advantage of 
such coherence. 

By examining Fig. 10 we see that if an isovalue pv is 
changed to U ,  then the set of cells that intersect the new iso- 
surface can be generated by adjusting the current set of cells. 
In essence, if u > pv, then we need to remove the cells that lie 
in the bottom rectangle and add those that lie in the right 
rectangle. If U < pu the add and remove roles of these rectan- 
gles are flipped. As opposed to the previous methods, which 
decompose the space specifically for small changes in the 
isovalue, we can use the kd-tree decomposition as is. This, in 
turn, means that at any time either the regular or the neigh- 
borhood search can be performed over the same data stmc- 
ture and thus we can choose which one will likely be the best 
one based on the current estimation. The new set of cells is 
achieved by performing two searches. First the kd-tree is 
searched for cells that need to be removed. A second search is 
then performed to find new cells to add to the list. Fig. 9 de- 
picts a pseudocode for a part of the second search. 

near-search-min-max(pv, v, node) 
{ 
if (node.min i pv) 

else 
if (node.min > v) 

else 
{ 

near-search-max-min(pv, v, node.right); 

near-search-max-min(pv, v, node-left); 

if (node-max > v) 

near-search-max-min(pv, v, node.right); 
near-search-max-min(pv, v, node.left); 

add node; 

} 
1 

Fig. 9. Neighborhood search-pseudocode. 

The neighborhood search can benefit when the 
change in the isovalue is small and only a small number 
of cells needs to be added or removed, especially in the 
count mode. However, there are several disadvantages 
in using this type of search, as was the case in previous 
methods. First, an active cell list must be maintained 
that adds more overhead both in time and memory. Sec- 
ond, each node in the kd-tree must maintain yet another 
pointer to the cell entry in the active list so that it can be 
removed quickly without traversing the active list. Fi- 
nally, if the number of cells that belong to both the cur- 
rent and the new cell list is small, the effort to find the 
new isosurface is doubled. 

We remark that with the current performance of the al- 
gorithm and current available hardware, the bottle neck is 
no longer in finding the isosurface or even computing it, 
but rather in the actual time it takes to display it. 

max 

Fig. 10. Neighborhood search. The points in the dotted area represent 
cells that are intersected by both the current isosurface and the new 
isosurface. The points (cells) in the right striped area should be added 
to the isosurface while the points (cells) in the lower striped area 
should be removed from the isosurface. 

6 TRIANGULATION 
Once a cell is identified as intersecting the isosurface, we 
need to approximate the isosurface inside that cell. Toward 
this goal, the marching cubes algorithm checks each of the 
cell's vertices and marks them as either above or below the 
isosurface. Using this information and a lookup table, the 
algorithm identifies the particular way the isosurface inter- 
sects the cell. The marching cubes, and its many variants, 
are designed for structured grids though they can be ap- 
pIied to unstructured grids as well. 

We propose a new algorithm for unstructured grids of 
tetrahedral cells. We first note that if an isosurface intersects 
inside a cell, then the vertex with the maximum value must 
be above the isosurface and the vertex with the minimum 
value must be below it. 

To take advantage of this fact, we reorder the vertices of 
a cell according to their ascending values, say v l  to v4, a 
priori, in the initialization stage. When the cell is deter- 
mined to intersect the isosurface, we need only to compare 
the iso-value against at most the two middle vertices. There 
are only three possible cases: only v l  is below the isosurface, 
only v4 is above the isosurface, or {vl, v2} are below and (v3, 
v4} are above. See Fig. 11. Moreover, the order of the verti- 
ces of the approximating triangle(s), such that the trian- 
gle(s) will be oriented correctly with respect to the isosur- 
face, is known in advance at no cost. We can further take 
advantage of the fact that there are only four possible trian- 
gles for each cell and compute their normals a priori. This 
option can improve the triangulation time dramatically yet 
it comes with a high memory price tag. 

vl Vl Vl 

Fig. 11. Triangulation. The vertices are numbered according to as- 
cending values. 
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7 RESULTS 

To evaluate the proposed algorithms, we have done extensive 
tests on various data sets. The tests were carried on !XI (R4400, 
150MHz) workstations with 256Mb and 64OMb of memory. 

7.1 The data sets 
We have used several data sets from a variety of sources. 
Table 1. shows the characteristics of these models. The first 
three data sets consists of bioelectric field problems solved 
using the finite element method on unstructured tetrahe- 
dral grids, Fig. 14, 15, 16. Head is a 1283 MRI scan of a hu- 
man head, Fig. 12. The FD, Fluid Dynamics, data set is 
computed from a 2563 spectral CFD simulation, Fig. 13. We 
also used sub-sampled sets of this large data set of sizes 
643 and 12S3. 

TABLE 1 
DATA SETS 

Fig. 12 Head: Iso-surface from a 1283 MRI scan. 

Fig. 13. Turbulent flow in a fluid dynamic simulation representing the 
magnitude of fluid velocity and showing the onset of turbulence. The 
elongated structures are vortex tubes. 

Fig. 15. Brain: An isosurface of constant voltage from a finite element simula- 
tion of temporal lobe epilepsy in a model of the human skull and brain. 

Fig. 16. Torso: An isosurface of constant voltage from a finite element 
simulation of the voltage distribution due to the electrical activity of the 
heart within a multichambered model of the human thorax. 

7.2 Benchmarks 
The algorithm was tested both with respect to CPU run 
time and its complexity relative to a given data set. Each 
test included 1,000 random value isosurface extractions. 
Table 2 shows the distribution of the number of cells in the 
isosurfaces for the different models. The bruin model is an 
example of a non-uniform cell size and position distribu- 
tion. Some of the cells had very large span that would have 
caused worst-case performance in previous isosurface ex- 
traction algorithms. We performed two tests on this model 
first using iso-values from the entire model domain and a 
second checking only a small dense area. 

In this paper, we concentrated on finding the cells that 
intersect an isosurface and performing fast triangulation on 
tetrahedral cells. We therefore did not measure the trian- 
gulation of the structured grid model. For these data sets 
we issued a call to an empty stub function for each cell that 
intersects the iso-surface, therefore introducing some cost 
per intersected cell. 

7.3 Analysis 
Table3 shows the performance of the algorithm with re- 
spect to the size of an average isosurface. The first column 
was taken verbatim from Table 2. 

TABLE 2 
ISOSURFACE STATISTICS 

I I Cells in lsosurfaces 1 

Fig. 14. Heart: lsosurfaces of constant voltage from a finite element simu- 
lation of cardiac defibrillation within the ventricles of the human heart. 
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TABLE 3 
PERFORMANCE STATISTICS 

dominated by the size of the isosurface, as each intersected 
cell must be examined and triangulated. In the case of the 
unstructured grid datasets, the entire process of search and 
triangulation was about 50ms. However, for the large struc- 
tured grid datasets, the average size of the isosurfaces was 
much larger and caused the total time to increase to ap- 
proximately 0.8 seconds. 

ber of tree nodes that were actually examined by the algo- 
rithm of which Overhead were not part of the final isosur- 
face. For example, the average isosurface in the FD-228 case 
intersected 172,247 cells, yet the algorithm had to examine 
only 4,489 tree nodes in order to locate these cells. Out of 
the 4,489 nodes that were checked 3,405 nodes did not in- 
tersect the isosurface and there for represent an overhead in 
some sense. A key point in the algorithm is its ability to 
locate large groups of intersected cells, i.e., large subtrees in 
which all of their nodes represent cells that are intersected 
by the isosurface. Once such a subtree is located, there is no 
need to traverse this subtree as its leaf nodes forrn a con- 
tinuous block. The largest such subtree that was found in a 
a particular data set is depicted under the Collected column 
of the table. In the case of our previous example, Fd-128, the 
largest such subtree contained 512,095 nodes. 

The algorithm consistently examined many fewer nodes 
than the size of the extracted isosurface. The only exception 
was the full Brain data set where the average isosurface 
was more or less empty. Even in this pathological case, the 
number of cells that were examined was small, only 0.43%. 
This is a case where the algorithm is not optimal as k < &, 

amining extra nodes was kept at a minimum and the collec- 
tion scheme achieved excellent results. 

The complexity of the search phase was kept at 31/t;, 

a search times include triangulation for w~fructured P d s  only. 

8 CO~\~CLUS~ONS 

We presented the “Near Optimal IsoSurface Extraction” 
(NOISE) algorithm, which has a worst-case performance of 
(o,& + k ) .  The algorithm is near optimal in the sense that for 

the typical case, where k > A, NOISE is optimal, while for 
the rest of the cases the overhead is negligible. The memory 
requirement for NOISE is O(n), while the preprocess step 
has a complexity of O(n log n) and can be performed 
offline. If the preprocessing is done offline, its results can be 
loaded in *(.)- 

The algorithm performs well for large and small data 

intersect an isosurface can also be found in O(&) time, 
which enables fast rough estimates of the surface area and 

yet the Overhead is Overall/ the Overhead Of ex- se& and for any size of isosurface. The number of cells that 

which does not depend on the size of the resulting isosur- the corresponding encompassed by the isosurface. 

face as predicted by the count mode analysis. CPU run h e  
is shown in Table 4, The initialization step is measured in 

We were to create the algoritl’m by project- 
k g  the data onto a new space, termed the span space, which, 

seconds while the count and search are in milliseconds, All 
numbers represent the average run time per query. The 
search includes triangulation for the unstructured grid data 
sets only, using the proposed fast triangulation algorithm. 
The time requirements for the count mode was kept to a 

spondingly large numbers of isosurfaces. The search opti- 
mization has clearly benefited from the collect routine, as is 
evident by the large collected blocks. 

The performance of the algorithm should be viewed 
with respect to its main goal, that is, locating the cells that 
intersect the isosurface. In this respect, i.e., the count mode, 
the cpu tirne requirements were as low as a few 

for large data sets and exhibit complexity of 
only ( O f i ) ,  i.e., no dependency on the size of the isosur- 
face was noticed. The search mode CPU time is clearly 

in turn, lends itself to a simple decomposition utilizing kd- 
tree. the ’pan ’pace can Serve as a common 
ground On which Other methods can be ‘Ompared and 

We also presented a fast triangulation scheme based on a 

few milliseconds, even for very large data sets with corre- One time Preprocess reorganization Of the vertices. 

APPENDICES 
A. Worst Case Analysis for Octree 

Isosurface Extraction 
Wilhelms and Gelder did not 
of their octree-based isosurface extraction algorithm, Sec- 
tion3.1.2. We now present a worst-case analysis of their 
method. 

We first note that the octree used by Wilhelms and 
Gelder is derived from the geometry of the data set and is 

the time 
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only augmented by the minimum and maximum values of 
the cells in the tree. As such, the octree relies solely on ge- 
ometry to group cells with close field values. On the other 
hand, the octree is guaranteed to be balanced. Also note 
that the data cells occur only on the leaves of the tree. 

For simplicity, consider first the 1D case of a binary tree 
with n leaves. For a given k, we seek one of the groups of k 
leaves with the highest cost to locate. For k = 1, the cost is 
log n; this suggests an estimate of O(k log n) for the worst 
case. This is clearly an overestimate as many segments of 
the paths to these k cells are shared. When k = 2, the two 
paths from the root must share several intermediate nodes. 
The maximum cost will occur when only the root node is 
shared. Therefore, 

T(n, 1) = 1 + log (n) 
T(n, k) = 1 + 2T(n/2, k /2 ) ,  

which, for k = 2,, leads to 

T(n ,k)=2k- l+k log  - .  C) 
As an example, T(n, n) = 2n - 1 , since the a binary tree with 
n leaves has n - 1 internal nodes. 

The general case for a &dimensional tree follows imme- 
diately from the binary case. Let p = 2 , d 

Td(n, 1) = 1 + logpn 

Td(% k) = 1 + pT(n/p,  k/p) 
Let 9 = logp k. The solution to the recursive formula is 

k - 1  k 
p - 1  d 

-- - +-log(;). 

For the special case of octree, d = 3, we have 

T,(n,k) = -+-log 8ki1 0 
and a complexity of0 k + k log - . ( (41 
B. PERFORMANCE ANALYSIS FOR THE COUNT MODE 

A node in a kd-tree holds information regarding only the 
value used to split the current tree. This forces a search al- 
gorithm always to traverse at least one subtree. The best 
case performance for the count mode is thus O(1og n) . 

We now examine the worst case complexity of the count 
mode. Referring to the optimized version, Section 5.1, we 
find two cases. When the isovalue is less than the value at 
the root of the tree we need to traversed only one subtree. 
Otherwise, both subtrees are traverse, yet for one of them 
we now know that the min or max condition is satisfied. 
Clearly the worst case involves the second case, 

T(1) = 1 .c (2) 

T(n) = 1 + T(n/2)  + T,(n/2). (3)  

For the case where the min or max condition is satisfied 
there are again two cases. These cases, however, are differ- 
ent from each other only with respect to whether one of the 
subtree is completely empty or full. In both these cases, 
only one subtree is descended. Moreover, the next level of 
this subtree can be skipped and the algorithm descends 
directly to both sub-subtrees. Note that the root of the sub- 
tree still need to be checked. Therefore, 

T,(1) = 1 

T, (n)  = 1 + 2T, (n/4) 

i=O 

- - 2'og,(n)+l - 1 

I 2 & .  

Substituting (4) in (3)  and using (2), we get, 

T(n)  5 1 + 2& + T(n/2) 
log( n)- 1 

= logn + 2& C2-X 
i=O 

S logn + 6&. 

Hence a complexity of O(&) . 
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