
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 2, NO. 1, MARCH 1996 73

A Near Optimal Isosurface Extraction
Algorithm Using the Span Space

Yarden Livnat, Han-Wei Shen, and Christopher R. Johnson

Abstract- We present the “Near Optimal IsoSurface Extraction” (NOISE) algorithm for rapidly extracting isosurfaces from struc-
tured and unstructured grids. Using the span space, a new representation of the underlying domain, we develop an isosurface ex-
traction algorithm with a worst case complexity of o(& + c) for the search phase, where n is the size of the data set and k is the
number of cells intersected by the isosurface. The memory requirement is kept at O(n) while the preprocessing step is O(n log n).
We utilize the span space representation as a tool for comparing isosurface extraction methods on structured and unstructured
grids. We also present a fast triangulation scheme for generating and displaying unstructured tetrahedral grids.

Index Terms- lsosurface extraction, unstructured grids, span space, kd-trees.

1 INTRODUCTION

SOSURFACE extraction is a powerful tool for investigating I scalar fields within volumetric data sets. The position of an
isosurface, as well as its relation to other neighboring isosur-
faces, can provide clues to the underlying structure of the
scalar field. In medical imaging applications, isosurfaces
permit the extraction of particular anatomical structures and
tissues. These isosurfaces are static in nature. A more dy-
namic use of isosurfaces is called for in many computational
science applications, such as computational fluid dynamics
and atmospheric simulations. In such applications, scientists
would ideally like to dynamically investigate the scalar field
in order to gain better insight into simulation results.

As scientific computation demands higher accuracy and
state-of-the-art medical scanners increase in resolution, the
resulting data sets for visualization expand rapidly. The
sheer size of these data sets, as well as their structure, pose
major obstacles for interactive investigation. While medical
imaging data are usually structured in nature, other scien-
tific and engineering data sets frequently consist of geome-
try represented by unstructured finite element grids.

Originally, isosurface extraction methods were restricted
to structured grid geometry, as such, early efforts focused on
extracting a single isosurface [l] from the volumetric data set.
Recently, in an effort to speed up isosurface extraction, sev-
eral methods were developed that could be adapted to ex-
traction of multiple isosurfaces from structured [2], [3] as well
as from unstructured geometry [4], [5]. Nevertheless, for
large data sets, existing methods do not allow for interactive
investigation of the data set, especially for unstructured
grids. Defining n as the number of data cells and k as the
number of cells intersecting a given isosurface, most of the
existing algorithms have time complexity of O(n). While [2]

The authors are with the Department of Computer Science, University of
Utah, Salt Lake City, UT 84112
E-Mail: (ylivnat, hwshen,crj}@cs.utah.edu
Web: http://www.cs.utah.edu/-sci/

For information on obtaining reprints of this article, please send e-mail to:
transactionsQcornputer.org, and reference IEEECS Log Number V96008.

has an improved time complexity of O(klog(f)), the algo-

rithm is only suitable for structured hexahedral grids.
In this paper we introduce a new view of the underlying

domain. We call this new representation the span space.
Based on this new perspective, we propose a fast and effi-
cient, O (f i + k), isosurface extraction algorithm for both
structured and unstructured grids.

Section 2 investigates the underlying domain for structured
and unstructured problems and the new decomposition of this
domain is then proposed. The proposed Span Space is then
used in Section 3 as a common backdrop for comparing previ-
ous methods of isosurface extraction. Section 4 shows how the
Span Space paradigm leads to an efficient representation and
fast isosurface extraction methods. In Section5, we present
several optimizations with respect to both memory and time
requirements. A fast triangulation method for unstructured
tetrahedral grid is presented in Section6. We conclude by
analyzing the results of testing the new algorithm on several
science and engineering applications.

2 THE SPAN SPACE
Let p : G + V be a given field and let D be a sample set over
rp, such that,

D = (d,} d,e D = G x V

where 6 c_ Rp is a geometric space and V E d is the associ-
ated value space, for some p , 9 E Z+. Also, let d = I D I be the
size of the data set.
DEFINITION 1 ISOSURFACE EXTRACTION. Given a set of samples ;I)

over a field p: G + V, and given a single value v E a/, find,

S = k,} gzE G such that, cp(g,) = 71 (1)

Note. that S , the isosurface, need not be topologically simple.
Approximating an isosurface, S, as a global solution to

(1) can be a difficult task because of the sheer size, d, of a
typical science or engineering data set.

1077-2626/96$05.00 01996 IEEE

mailto:hwshen,crj}@cs.utah.edu
http://www.cs.utah.edu/-sci
http://transactionsQcornputer.org

74 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 2, NO. 1, MARCH 1996

Data is often generated from 3D images or as solutions to
numerical approximation techniques, such as from finite dif-
ference or finite element methods. These methods naturdy
decompose the geometric space, G, into a set of polyhedral
cells, C, where the data points define the vertices. Rather than
finding a global solution one can seek a local approximation
within each cell. Hence, isosurface extraction becomes a two-
stage process: Locating the cells that intersect the isosurface
and then, locally, approximating the isosurface inside each
such cell. We focus our attention on the problem of hd ing
those cells that intersect an isosurface of a specified isovalue.

On structured grids, the position of a cell can be repre-
sented in the geometric space G. Because this representa-
tion does not require explicit adjacency information be-
tween cells, isosurface extraction methods on structured
grids conduct searches over the geometric space, G. The
problem as stated by these methods is defined as follows:
APPROACH 1 GEOMETRIC SEARCH. Given a point ZI E V and

given a set C of cells in G space where each cell is associ-
ated with a set of values [v,) E V, find the subset of C
which an isosurface, of value v, intersects.
Efficient isosurface extraction for unstructured grids is more

difficult, as no explicit order, i.e., position and shape, is im-
posed on the cells, only an implicit one that is difficult to util-
ize. Methods designed to work in this domain have to use ad-
ditional explicit information or revert to a search over the value
space, V. The advantage of the latter approach is that one needs
only to examine the minimum and maximum values of a cell
to determine if an isosurface intersects that cell. Hence, the di-
mensionality of the problem reduces to two for scalar fields.

Current methods for isosurface extraction over unstruc-
tured grids, as well as some for structured grids, view the
isosurface extraction problem in the following way:
APPROACH 2 INTERVAL SEARCH. Given a point v E V and

given a set of cells represented as intervals,

I = {[ai, bi]} such that, ai, bi E V
find the subset I , such that,

I, c I and, a, 5 v 5 b, tf [a?, 41 E I,,
where a norm should be used when the dimensionality
of V is greater than one.
Posing the search problem over intervals introduces some

difficulties. If the intervals are of the same length or are mutu-
ally exclusive they can be organized in an efficient way suitable
for quick queries. However, it is much less obvious how to
organize an arbitrary set of intervals. Indeed, what distin-
guishes these methods from one another is the way they or-
ganize the intervals rather than how they perform searches.

A key point is that the minimum and maximum values are
given over the same dimension. More formally, the minimum
and maximum values are represented over a basis that in-
cludes only one unit vector. This degenerated basis is the cause
for the above difficulties. We should be able to obtain a simples
representation if we use a basis that includes two unit vectors,
one for the min value and one for the max value. Better still, the
maximum separation between the representation of the min
and max values will occur when these two unit vectors are
perpendicular to each other. We are, therefore, led to a new
representation, a point in a plane, using the natural coordinate

system to represent the minimum and maximum values.
The method proposed in this paper addresses the prob-

lem of isosurface generation over unstructured grids and
searches over the value space. Our approach, nevertheless,
is not to view the problem as a search over intervals in V
but rather as a search over points in V2. We start with an
augmented definition of the search space.
DEEMTION 2 THE SPAN SPACE. Let C be a given set of cells, define a

set of points P = jpJ over 4 such tht,

tfc, E C associate, p , = (aI, b,)

wheve,

U, = min(v,} and b, = max
I I I

and-ivl), are the values of the vertices of cell i.
Though conceptually not much different than the inter-

val space, the span space will, nevertheless, lead to a simple
and near optimal search algorithm. In addition, the span
space will enable us to clarify the differences and common-
alities between previous interval approaches.

The benefit of using the the span space is that points in
2D exhibit no explicit relations between themselves, while
intervals tend to be viewed as stacked on top of each other,
so that overlapping intervals exhibit merely coincidental
links. Points, do not exhibit such arbitrary ties and in this
respect lend themselves to many different organizations.
However, as we shall show later, previous methods
grouped these points in very similar ways, because they
looked at them from an interval perspective.

Using our augmented definition, the isosurface extrac-
tion problem can be stated as,
APPROACH 3 THE SPAN SEARCH. Given a set of cells, C, and its

associated set of points, P, in the span space, and given a
value z1 E V, find the subset P, c P, such that

b'(xi,y,) E P, x, < v and y, > y.
x, < y, and thus the associ-

ated points will lie above the line yz = x, . A geometric per-
spective of the span search is given in Fig. 1.

We note that V(x, y,) E P,,

Fig. 1. Search over the span space. A data cell IS represented by a
point based upon the minimum and maximum values at the vertices of
the cell. The points in the shaded area represent the cells that inter-
sect the isovalue I/.

LIVNAT, HAN-WEI, JOHNSON: A NEAR OPTIMAL ISOSURFACE EXTRACTION ALGORITHM USING THE SPAN SPACE

~

75

3 PREVIOUS WORK
We now examine previous approaches to the problem of
isosurface generation.

3.1 Geometric Space Decompositon
Originally, only structured grids were available as an un-
derlying geometry. Structured grids impose order on the
given cell set. This fact helps to keep the geometric com-
plexity of the entire cell set in G. By utilizing this order,
methods based on the geometry of the data set could take
advantage of the coherence between adjacent cells.

3. 1. 1 Marching Cubes
Perhaps the most well known isosurface extraction method to
achieve high resolution results is the Marching Cubes method
introduced by Lorensen and Cline [l]. The marching cubes
method concentrated on the approximation of the isosurface
inside the cells rather than on efficient locations of the involved
cells. To this end, the marching cube method scans the entire
cell set, one cell at a time. The novelty of the method is the way
in which it decides for each cell whether the isosurface intersects
that cell and if so, how to approximate it.

3.1.2 Octrees
The marching cubes method did not attempt to optimize the
time needed to search for the cells that actually intersect the iso-
surface. This issue was later addressed by Wilhelms and Gelder
[Z], who employed an octree, effectively creating a 3D hierarchi-
cal decomposition of the cell set, c. Each node in the tree was
tagged with the minimum and maximum values of the cells it
represents. These tags, and the hierarchical nature of the octree,
enable one to trim off sections of the tree during the search and
thus restrict the search to only a portion of the original geometric
space. Wilhelms and Gelder did not analyze the time complexity
of the search phase of their algorithm. However, octree decom-
positions are known to be sensitive to the underlying data. If the
underlying data contains some fluctuations or noise, most of the
octree will have to be traversed. Fig. 13 is an example for such a
data set, which ultimately undermines any geometric decompc-
sition scheme. In Appendix A, we present an analysis of the oc-
tree algorithm and show that the algorithm has a worst case
complexity of O(k + k log n/k). Finally, octrees have primarily
been applied to structured grids and are not easily adapted to
deal with unstructured grids.

3.1.3 Extrema Graphs
Recently, Itoh and Koyamada [3] presented a new method
for generating isosurfaces over unstructured grids using
extrema graphs.

The search starts at a seed cell known to intersect the iso-
surface, and propagates recursively to its neighbor cells.
Knowing how the isosurface intersects the current cell en-
ables the algorithm to move only to those neighbor cells
that are guaranteed to intersect the isosurface.

In order to find such a seed cell, Itoh and Koyamada
employed extrema graphs. The nodes of these graphs are
those cells that include local extrema vertices. Each arc in the
graphs has a list of the cells connecting its two end nodes.

Given an isovalue, the extrema graph is first scanned to
located arcs that span across the isovalue. The cells in each

such arc’s list are then scanned sequentially until a seed cell
is found. Boundary cells must also be traversed; hence the
complexity of the algorithm is at best the size of the bound-
ary list, which Itoh and Koyamada estimate as O(R”~).

Our analysis shows that the number of arcs can be of
O(n) in the worst case. Such a case occurs when the data
exhibits small perturbations such that each node is a local
extrema. In such a case, the numbers of arcs in the extrema
graph can be equal to the number of cells, though each arc
will contain only a single cell.

Storage requirements for the extrema graph method can
be high, since the propagation search requires four links
from each cell to its neighbors in addition to the maximum
and minimum values of its vertices. In addition, the algo-
rithm uses a queue during the propagating search, yet the
maximum required size of the queue is unknown in advance.

3.2 Value Space Decomposition
Decomposing the value space, rather than the geometric space,
has two advantages. First, the underlying geometric structure
is of no importance, so this decomposition works well with
unstructured grids. Second, for a scalar field in 3D, the dimen-
sionality of the search is reduced from three to only two.

3.2.1 The Span Filter
A key issue in isosurface extraction is the size of the data set.
Gallagher [5] addressed this issue by scanning the data set
and generating a compressed representation suitable for iso-
surface extraction. The range of data values is divided into
sub-ranges, termed buckets. Each cell is then classified based
on the bucket its minimum value resides in and on how
many buckets the cell’s range spans, i.e., the spun of the cell.
Cells are then grouped according to their span, and within
each such group the cells are further grouped according to
their starting bucket. In each such internal group, the repre-
sentation is compressed according to a unique id assigned to
each cell. Rather than requiring a span list for every possible
span length, the method uses one span list to catch all the
cells that span more than a predefined number of buckets.

bucket w

I V rnin

1
1 ’ 2 ‘ 3 ‘ 4 ’ 5 ’ 6 ’ 7 bucket

Fig. 2. Span Filter. Shown is the ad hoc division of a fields range into
subranges called buckets. Each point, which represents a data cell, is then
assigned a min and max bucket, based upon the point‘s min and max co-
ordinate. The points are then grouped into spans based upon the difference
between their assigned buckets’ numbers. Span n represents all the spans
with index larger than some predefined index, i.e., three in this example.

76 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 2, NO. 1, MARCH 1996

/
/

Fig. 2 depicts the span filter organization over the span
space. Note that the compression over the cell’s id is not
shown. For a given isovalue, ZI, the cells that intersect the
isosurface are those that lie above and to the left of the
dashed line.

The use of this perspective stresses the importance of the
first division into buckets. The entire organization of the
domain is controlled by only one set of parameters, the po-
sition of the original buckets. While this may help to ensure
even distribution in the first span, it does not provide con-
trol over the distribution of the cells in the other spans. Fur-
thermore, this division is not automated and has to be
crafted by trial and error for each new data set. Finally, the
search algorithm has a complexity of O(n) in time.

3.2.2 The Active List

A different approach was taken by Giles and Haimes [4]: to
find the cells that intersect an isosurface incrementally.
Once an isosurface is found, then a neighbor isosurface,
with an isovalue close to the first one, can be found with
minimal effort.

The algorithm is based on two cell lists ordered by the
cell’s minimum and maximum values and on A, the global
maximum range of any of the cells. When an isovalue is
first given, or if the change from the previous value is
greater than A, then an active cell list is formed. The active
list is first initialized with all the cells with a minimum
value between the given isovalue, v, and v - A, by consult-
ing the minimum list. The active list is then purged of the
cells with a maximum value less then U . If the isovalue is
changed by less then A, then the active list is augmented
with the cells that lie between the previous isovalue, 71 and
the new one, nv. The new cells are found by using one of
the two ordered lists, based upon whether the change was
positive or negative. The active list is then purged again for
the cells that do not intersect the isosurface.

Fig. 3 depicts Giles and Haimes’ algorithm over the span
space. Though the algorithm does not explicitly partition
the space in advance, the use of the global maximum cell
span, A, does the same thing implicitly, as the width of the
area that needs to be scanned is constant. When the change
in the isovalue is greater than A, the algorithm must line-
arly scan a22 the cells in the range (nv - A, n ~) . Since A de-
pends on the data set, the algorithm has no control over the
size of the scanned list. In two of our test cases, Heart and
Bruin, there are few cells on the boundary that have a very
large span. This causes A to be so large that the algorithm
must linearly scan approximately half of the data set. On
the other hand A might be too small such that the neigh-
borhood search may not be used at all. Using the span per-
spective, Fig. 3, we can see that when the isovalue is
changed from v to nu the algorithm will scan all the cells in
the striped band but will then discard those cells that are in
the lower triangle of that band. This triangle is usually the
most dense part of the band, so that a large number of cells
must be scanned and then discarded. If one scans across the
entire range of the data set, a typical change in the isovalue will
be larger than 0.5%, while, for a large data set, A will be much
smaller, again not taking advantage of neighboring isosurfaces.
Finally, the algorithm’s complexity is still O(n) in time.

/ 4

pl, 1 d, rnin

Fig 3. Active List. The doted area represents the points that are initially
put into the active list. The points in the doted area below the horizon-
tal line, v are then removed from the active list. When the new
isovalue, nv is close to the current isovalue, v, only the points in the
striped area are added to the active list. The points below the hori-
zontal nv line, within both the striped and the dotted areas, are then
removed from the active list.

3.2.3 Sweeping Simplices

Recently, two of the authors, Shen and Johnson [6] , devel-
oped the sweeping simplices method for extracting isosur-
faces from unstructured three-dimensional meshes. Their
algorithm utilizes both coherence between adjacent isosur-
faces and explicit space decomposition.

Sweeping simplices uses two ordered cell lists, a sweep
list and a min list. Each element in the sweep list contains a
pointer to a cell, the cell’s maximum value, and a flag. The
sweep list is then sorted according the cell’s maximum
value. The min list contains the minimum value for each
cell as well as a pointer to the corresponding element in the
sweep list and is ordered by the minimum values. The ini-
tialization step requires a time of O(n log n).

Given an isovalue, the sweeping simplices algorithm
marks all the cells that have a minimum value less than the
given isovalue using the min list by setting the corresponding
flag in the sweep list. If an isovalue was previously given,
then the min list is traversed between the previous isovalue
and the new one. The corresponding flags in the sweep list
are then set or reset based on whether the new isovalue is
greater or smaller than the previous isovalue.

Once the flags are changed, the sweep list is traversed
starting at the first cell with a maximum value greater than
the new isovalue. The cells that intersect the isosurface are
those cells for which their corresponding flag is set. The
complexity of the algorithm is O(n) in both time and space.

The sweeping simplices algorithm uses a hierarchical
data decomposition. At the lowest level, the range of data
values is subdivided into several subgroups. Other levels
are created recursively by grouping consecutive pairs from
the previous level. At the top level there exists a single sub-
group with the range as the entire data set. The cells are
then associated with the smallest subgroup that contains
the cell. Each subgroup is then associated with a min list
and sweep list as described before. Isosurface extraction is
accomplished by selecting for each level the subgroup that
contains the given isovalue and performing the search us-
ing its min and sweep lists. The space decomposition for

LIVNAT, HAN-WEI, JOHNSON: A NEAR OPTIMAL ISOSURFACE EXTRACTION ALGORITHM USING THE SPAN SPACE

~

77

the sweeping simplices algorithm, as well as the marked
cells for an isovalue pv, is shown in Fig 4. The full dots are
the marked cells. When a new isovalue is selected, all the
cells that lie between the vertical lines pv and v are first
marked. The cells that intersect the isosurface are those
marked cells that lie above the horizontal line at v. Though
sweeping simplices is faster than the active list algorithm
and does not depend on a global A, its space decomposition
is not optimal. Each of the groups whose range intersect the
isovalue lines, Fig. 4, must be linearly scanned and each
such group contains an area outside the target isosurface
region. We remark that using the span space perspective,
the second author recently devised a more efficient space
decomposition algorithm that improved the overall per-
formance of the sweeping simplices algorithm.

IMX

Y

. mrkd
0 -rkd

1-11

1-1 a

r Y 1-13
1-14

Fig. 4. Sweeping Simplices. The range of the field is divided into subranges
that are, in tum, organized into levels. See text for further details.

3.2.4 Summary of Existing Methods
Previous value space decomposition algorithms use a wide
range of terminology and approaches. The use of the span
space provides a common ground on which these methods
can be compared. In effect, it was shown that these meth-
ods use very similar approaches both in searching and in
space decomposition. All of these methods have complexity
of O(n) in both time and memory requirements.

4 THE NEW ALGORITHM
A common obstacle for ail the interval methods was that
the intervals were ordered according to either their maxi-
mum or their minimum value. Both the sweep algorithm
and the min-max attempted to tackle this issue by main-
taining two lists of the intervals, ordered by the maximum
and minimum values. What was missing, however, was a
way to combine these two lists into a single list.

In the following, we present a solution to this obstacle.
Using the span space as our underlying domain, we em-
ploy a kd-tree as a means for simultaneously ordering the
cells according to their maximum and minimum values.

4.1 Kd-Trees

Kd-trees were designed by Bentley in 1975 [7] as a data struc-
ture for efficient associative searching. In essence, kd-trees are
a multi-dimensional version of binary search trees. Each node
in the tree holds one of the data values and has two subtrees

as children. The subtrees are constructed so that all the nodes
in one subtree, the l$t one for example, hold values that are
less than the parent node's value, while the values in the right
subtree are greater than the parent node's value.

Binary trees partition data according to only one dimen-
sion. Kd-trees, on the other hand, utilize multidimensional
data and partition the data by alternating between each of
the dimensions of the data at each level of the tree.

4.2 Search over the Span Space Using Kd-Tree
Given a data set, a kd-tree that contains pointers to the data cells
is constructed. Using this kd-tree as an index to the data set, the
algorithm can now rapidly answer isosurface queries. Fig. 5 de-
picts a typical decomposition of a span space by a kd-tree.

min

Fig. 5. Kd-Tree. The lines represent the structure of the kd-tree. The verti-
cal line mot represents the first split of the span space along the min coor-
dinate. The next split, at level 1, is represented by two horizontal lines that
split the two major subregions along the max coordinate. At level 2 of the
tree, the split of the, now four subspaces, is again along the min coordinate.
The processes continues until all of the points are accounted for.

4.2.1 Construction
The construction of the kd-trees can be done recursively in op-
timal time O(n log n). The approach is to find the median of the
data values along one dimension and store it at the root node.
The data is then partitioned according to the median and re-
cursively stored in the two subtrees. The partition at each level
alternates between the min and max coordinates.

An efficient way to achieve O(n log n) time is to recursively
find the median in O(n), using the method described by Blum
et al. [8], and partition the data within the same time bound.

A simpler approach is to sort the data into two lists ac-
cording to the maximum and minimum coordinates, re-
spectively, in order O(n log n). The first partition accesses
the median of the first list, the min coordinate, in constant
time, and marks all the data points with values less than the
median. We then use these marks to construct the two sub
groups, in O(n), and continue recursively.

Though the above methods have complexity of
O(n log n), they do have weaknesses. Finding the median in
optimal time of O(n) is theoretically possible yet difficult to
program. The second algorithm requires sorting two lists
and maintaining a total of four lists of pointers. Although it
is still linear with respect to its memory requirement, it
nevertheless poses a problem for very large data sets.

A simple (and we think elegant) solution is to use a

78 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 2, NO. 1, MARCH 1996

quick sort-based selection 191. While this method has a worst
case of O(n2), the average case is only O(n). Furthermore, this
selection algorithm requires no additional memory and
operates directly on the tree. We note that this algorithm
performed at least four time faster on all of our application
data sets in Section7 than the two sorted lists algorithm.
Pseudocode for the kd-tree construction is given in Fig. 6.

build-kd-tree(array, size)
(

/ / recursive build
build (array, size, min);

I

build (array, size, criterion)
I

/ / criterion is either min or max coordinate

if (size < 2) return;
partition(array, size, criterion);
build(array, size/2, other-criterion);
build(array + 1 + size/2, (size - 1)/2,
other-criterion);

I

partition(array, size, criterion)
(
Use quicksort partition algorithm to re-
arrange the array, based on the given cri-
terion, such that the median element is in
array[size/2] and all the elements less then
the median are in array[O..size/2 - 11

I
Fig. 6. Kd-tree construction.

It is clear that the kd-tree has one node per cell, or span
point, and thus the memory requirement of the kd-tree is O(n).

4.2.2 Query
Given an iso-value, v, we seek to locate all the points in
Fig. 1 that are to the left of the vertical line at v and are above
the horizontal line at v. We note that we do not need to lo-
cate points that are on these horizontal or vertical lines if we
assume non-degenerate cells, for which minimum or
maximum values are not unique. We will remove this re-
striction later.

The kd-tree is traversed recursively by comparing the iso-
value to the value stored at the current root alternating be-
tween the root's minimum and maximum values at odd and
even levels. If the root node is to the right (below) of the iso-
value line, then only the left (right) subtree should be traversed.
Otherwise, both subtrees should be traversed recursively. Fur-
thermore, in this last case the root's other value should also be
compared to the given iso-value to determine if the corre-
sponding cell should be triangulated. For efficiency we define
two search routines, search-mm-max and search-max-min. The
dimension we currently checking is the first named, and the
dimension we still need to search is named second. The impor-
tance of naming the second dimension will be evident in the
next section, when we consider optimizing the algorithm.

Following is a short pseudocode for the min-max routine.
search-min-max(iso-value, root) {

if (root-min < iso-value)
(
if (root.max z iso-value)

search-max-min(iso-value, root.right);
construct polygon(s) from root's cell

}
search-max-min(iso-value, root.left);

1

Estimating the complexity of the query is not straight-
forward. Indeed, the analysis of the worst case was devel-
oped by Lee and Wong [lo] only several years after Bentley
introduced kd-trees. Clearly, the query time is proportional
to the number of nodes visited. Lee and Wong analyzed the
worst case by constructing a situation where all the visited
nodes are not part of the final result. Their analysis showed
that the worst case time complexity is O(& + k). The aver-
age case analysis of a region query is still an open problem,
though observations suggest it is much faster than O(+ k)
[9], [ll]. In almost all typical applications k - rzK > A,
which suggests a complexity of only O(k). On the other hand,
the complexity of the isosurface extraction problem is Q(k),
because it is bound from below by the size of the output.
Hence, the proposed algorithm, NOISE, is optimal, qk) , for
almost all cases and is near optimal in the general case.

4.2.3 De!generate Cells
A degenerate cell is defined as a cell having more then one
vertex with a minimum or maximum value. When a given
iso-value is equal to the extrema value of a cell, the isosurface
will not irttersect the cell. Rather, the isosurface will touch the
cell at a viertex, an edge, or a face, based on how many verti-
ces share that extrema value. In the first two cases, vertex or
edge, the cell can be ignored. The last case is more problem-
atic, as ignoring this case will lead to a hole in the isosurface.
Furthermore, if the face is not ignored, it will be drawn twice.

One siolution is to perturb the isovalue by a small
amount, 80 that the isosurface will intersect the inside of
only one of those cells. Another solution is to check both
sides of the kd-tree when such a case occurs. While the di-
rect cost of such an approach is not too high as this can
happen at most twice, there is a higher cost in performing
an equality test at each level. We note that in all the data sets
we tested there was not a single case of such a degeneracy.

5 ~PTIW~IZATION

The algorithm presented in the previous section is not optimal
with regards to both the memory requirement and search time.
We now present several strategies to optimize the algorithm.

5.1 Pointerless Kd-Tree
A kd-tree node, as presented previously, must maintain
links to its two subtrees. These links introduce a high cost
in terms of memory requirements. To overcome this defi-
ciency, we note that in our case the kd-tree is completely
balanced. At each level, one data point is stored at the node
and the rest are equally divided between the two subtrees.
We can, therefore, represent a pointerless kd-tree as a one-
dimensional array of the nodes. The root node is placed at
the middle of the array, while the first n/2 nodes represent
the left subtree and the last (n - 1)/2 nodes the right sub-
tree, as shown in Fig. 7.

The memory requirement, per node, for a pointerless kd-
tree reduces to two real numbers, for minimum and maxi-
mum values, and one pointer back to the original cell for
Bater usage. Considering that each cell, for a 3D application

LIVNAT, HAN-WEI, JOHNSON: A NEAR OPTIMAL ISOSURFACE EXTRACTION ALGORITHM USING THE SPAN SPACE 79

with tetrahedral cells has pointers to four vertices, the kd-tree
memory overhead is even less than the size of the set of cells.

Tree

Fig. 7.
their nodes.

Two representations of a kd-tree and the relative position of

The use of a pointerless kd-tree enables one to compute
the tree as an off line preprocess and load the tree using a
single read in time complexity of only O(n). Data acquisi-
tion via CT/MRI scans or scientific simulations is generally
very time consuming. The ability to build the kd-tree as a
separate preprocess allows one to shift the cost of comput-
ing the tree to the data acquisition stage. Hence, reducing
the impact of the initialization stage on the extraction of
isosurfaces for large data sets.

5.2 Optimized Search
The search algorithm can be further enhanced. Let us
consider, again, the min-max (max-min) routine. In the
original algorithm, if the iso-value is less then the mini-
mum value of the node, then we know we can trim the
right subtree. Consider the case where the iso-value is
greater then the node’s minimum coordinate. In this
case, we need to traverse both subtrees. We have no new
information with respect to the search in the right sub-
tree, but, for the search in the left subtree we know that
the minimum condition is satisfied. We can take advan-
tage of this fact by skipping over the odd levels from
that point on. To achieve this, we define two new rou-
tines, search-min and search-max. Adhering to our previ-
ous notation, the name search-min states that we are
only looking for a minimum value.

Examining the search-min routine, we note that the
maximum requirement is already satisfied. We do not gain
new information if the iso-value is less than the current
node’s minimum and again only trim off the right subtree.
If the iso-value is greater than the node’s minimum, we
recursively traverse the right subtree, but with regard to the
left subtree, we now know that all of its points are in the
query‘s domain. We therefore need only to collecf them.
Using the notion of pointerless kd-tree as proposed in Sec-
tion 5.1 any subtree is represented as a contiguous block of
the tree’s nodes. Collecting all the nodes of a subtree re-
quires only sequentially traversing this contiguous block.

Pseudocode of the optimized search for the odd levels of
the tree, i.e., searching for minima is presented in Fig. 8.
The code for even levels, searching for maxima, is essen-

tially the same and uses the same collect routine.

search-min-max(isoyalue, root)
(
if (root.min < isovalue)
I
if (root.max > isovalue)
construct polygon(s) from root’s cell;
search-max-min(isovalue, root.right);
search-max(iso-value, root.left) ;

1
else
search-max-min(iso-value, root.left);

}

search-min(iso-value, root)
{
if (root.min < isovalue)
I
construct polygon(s) from root’s cell;
search-skip-min(iso-value, root.right) ;
collect(root.1eft);

1
else

search-skip-min(isoyalue, root.left) ;
1

search-skip-min(isoyalue, skip-node)
I
if (skip-node.min < iss-value)

search-min(iso-value, skip-node.right) :
search-min(iso-value, skip-node.left);

construct polygon(s) from skip-node‘s cell;

}

collect(sub-tree)
I
for (each leaf node)

/ / construct polygon(s) for leaf’s cell.
/ / Note: the leaf nodes are organized
/ / sequentially and thus there is no need
/ / to descend this subtree.

1
Fig. 8. Optimized search.

5.3 Count Mode
Extracting isosurfaces is an important goal, yet in a par-
ticular application one may wish only to know how many
cells intersect a particular isosurface. Knowing the number
of cells that intersect the isosurface can help one give a
rough estimate of the surface area of the isosurface on a
structured grid and on a ”well behaved” unstructured grid.
The volume encompassed by the isosurface can also be es-
timated if one knows the number of cells that lie inside the
isosurface as well as the number of cells that intersect it.

The above algorithm can accommodate the need for such
particular knowledge in a simple way. The number of cells
intersecting the isosurface can be found by incrementing a
counter rather than constructing polygons from a node and
by replacing collection with a single increment of the
counter with the size of the subtree, which is known with-
out the need to traverse the tree. To count the number of
cells that lie inside the isosurface, one need only look for
the cells that have a maximum value below the iso-value.

The worst case complexity of the count mode is only
O(&). A complete analysis is presented in Appendix 8. It is
important to note that the count mode does not depend on the
size of the isosurface. We shall show in Section 7 that such a
count is extremely fast and introduces no meaningful cost in
time. The count mode thus enables an application to quickly

80 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 2, NO. 1, MARCH 1996

count the cells that intersect the isosurface and allocate and
prepare the appropriate resources bqore a full search begins.

5.4 Neighborhood Search
The Sweeping Simplices and the Active List algorithms
were designed to take advantage of coherence between
isosurfaces with close isovalues. We now present a vari-
ant of the proposed algorithm that also takes advantage of
such coherence.

By examining Fig. 10 we see that if an isovalue pv is
changed to U , then the set of cells that intersect the new iso-
surface can be generated by adjusting the current set of cells.
In essence, if u > pv, then we need to remove the cells that lie
in the bottom rectangle and add those that lie in the right
rectangle. If U < pu the add and remove roles of these rectan-
gles are flipped. As opposed to the previous methods, which
decompose the space specifically for small changes in the
isovalue, we can use the kd-tree decomposition as is. This, in
turn, means that at any time either the regular or the neigh-
borhood search can be performed over the same data stmc-
ture and thus we can choose which one will likely be the best
one based on the current estimation. The new set of cells is
achieved by performing two searches. First the kd-tree is
searched for cells that need to be removed. A second search is
then performed to find new cells to add to the list. Fig. 9 de-
picts a pseudocode for a part of the second search.

near-search-min-max(pv, v, node)
{
if (node.min i pv)

else
if (node.min > v)

else
{

near-search-max-min(pv, v, node.right);

near-search-max-min(pv, v, node-left);

if (node-max > v)

near-search-max-min(pv, v, node.right);
near-search-max-min(pv, v, node.left);

add node;

}
1

Fig. 9. Neighborhood search-pseudocode.

The neighborhood search can benefit when the
change in the isovalue is small and only a small number
of cells needs to be added or removed, especially in the
count mode. However, there are several disadvantages
in using this type of search, as was the case in previous
methods. First, an active cell list must be maintained
that adds more overhead both in time and memory. Sec-
ond, each node in the kd-tree must maintain yet another
pointer to the cell entry in the active list so that it can be
removed quickly without traversing the active list. Fi-
nally, if the number of cells that belong to both the cur-
rent and the new cell list is small, the effort to find the
new isosurface is doubled.

We remark that with the current performance of the al-
gorithm and current available hardware, the bottle neck is
no longer in finding the isosurface or even computing it,
but rather in the actual time it takes to display it.

max

Fig. 10. Neighborhood search. The points in the dotted area represent
cells that are intersected by both the current isosurface and the new
isosurface. The points (cells) in the right striped area should be added
to the isosurface while the points (cells) in the lower striped area
should be removed from the isosurface.

6 TRIANGULATION
Once a cell is identified as intersecting the isosurface, we
need to approximate the isosurface inside that cell. Toward
this goal, the marching cubes algorithm checks each of the
cell's vertices and marks them as either above or below the
isosurface. Using this information and a lookup table, the
algorithm identifies the particular way the isosurface inter-
sects the cell. The marching cubes, and its many variants,
are designed for structured grids though they can be ap-
pIied to unstructured grids as well.

We propose a new algorithm for unstructured grids of
tetrahedral cells. We first note that if an isosurface intersects
inside a cell, then the vertex with the maximum value must
be above the isosurface and the vertex with the minimum
value must be below it.

To take advantage of this fact, we reorder the vertices of
a cell according to their ascending values, say v l to v4, a
priori, in the initialization stage. When the cell is deter-
mined to intersect the isosurface, we need only to compare
the iso-value against at most the two middle vertices. There
are only three possible cases: only v l is below the isosurface,
only v4 is above the isosurface, or {vl, v2} are below and (v3,
v4} are above. See Fig. 11. Moreover, the order of the verti-
ces of the approximating triangle(s), such that the trian-
gle(s) will be oriented correctly with respect to the isosur-
face, is known in advance at no cost. We can further take
advantage of the fact that there are only four possible trian-
gles for each cell and compute their normals a priori. This
option can improve the triangulation time dramatically yet
it comes with a high memory price tag.

vl Vl Vl

Fig. 11. Triangulation. The vertices are numbered according to as-
cending values.

LIVNAT, HAN-WEI, JOHNSON: A NEAR OPTIMAL ISOSURFACE EXTRACTION ALGORITHM USING THE SPAN SPACE

~

81

7 RESULTS

To evaluate the proposed algorithms, we have done extensive
tests on various data sets. The tests were carried on !XI (R4400,
150MHz) workstations with 256Mb and 64OMb of memory.

7.1 The data sets
We have used several data sets from a variety of sources.
Table 1. shows the characteristics of these models. The first
three data sets consists of bioelectric field problems solved
using the finite element method on unstructured tetrahe-
dral grids, Fig. 14, 15, 16. Head is a 1283 MRI scan of a hu-
man head, Fig. 12. The FD, Fluid Dynamics, data set is
computed from a 2563 spectral CFD simulation, Fig. 13. We
also used sub-sampled sets of this large data set of sizes
643 and 12S3.

TABLE 1
DATA SETS

Fig. 12 Head: Iso-surface from a 1283 MRI scan.

Fig. 13. Turbulent flow in a fluid dynamic simulation representing the
magnitude of fluid velocity and showing the onset of turbulence. The
elongated structures are vortex tubes.

Fig. 15. Brain: An isosurface of constant voltage from a finite element simula-
tion of temporal lobe epilepsy in a model of the human skull and brain.

Fig. 16. Torso: An isosurface of constant voltage from a finite element
simulation of the voltage distribution due to the electrical activity of the
heart within a multichambered model of the human thorax.

7.2 Benchmarks
The algorithm was tested both with respect to CPU run
time and its complexity relative to a given data set. Each
test included 1,000 random value isosurface extractions.
Table 2 shows the distribution of the number of cells in the
isosurfaces for the different models. The bruin model is an
example of a non-uniform cell size and position distribu-
tion. Some of the cells had very large span that would have
caused worst-case performance in previous isosurface ex-
traction algorithms. We performed two tests on this model
first using iso-values from the entire model domain and a
second checking only a small dense area.

In this paper, we concentrated on finding the cells that
intersect an isosurface and performing fast triangulation on
tetrahedral cells. We therefore did not measure the trian-
gulation of the structured grid model. For these data sets
we issued a call to an empty stub function for each cell that
intersects the iso-surface, therefore introducing some cost
per intersected cell.

7.3 Analysis
Table3 shows the performance of the algorithm with re-
spect to the size of an average isosurface. The first column
was taken verbatim from Table 2.

TABLE 2
ISOSURFACE STATISTICS

I I Cells in lsosurfaces 1

Fig. 14. Heart: lsosurfaces of constant voltage from a finite element simu-
lation of cardiac defibrillation within the ventricles of the human heart.

82 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 2, NO. 1 , MARCH 1996

TABLE 3
PERFORMANCE STATISTICS

dominated by the size of the isosurface, as each intersected
cell must be examined and triangulated. In the case of the
unstructured grid datasets, the entire process of search and
triangulation was about 50ms. However, for the large struc-
tured grid datasets, the average size of the isosurfaces was
much larger and caused the total time to increase to ap-
proximately 0.8 seconds.

ber of tree nodes that were actually examined by the algo-
rithm of which Overhead were not part of the final isosur-
face. For example, the average isosurface in the FD-228 case
intersected 172,247 cells, yet the algorithm had to examine
only 4,489 tree nodes in order to locate these cells. Out of
the 4,489 nodes that were checked 3,405 nodes did not in-
tersect the isosurface and there for represent an overhead in
some sense. A key point in the algorithm is its ability to
locate large groups of intersected cells, i.e., large subtrees in
which all of their nodes represent cells that are intersected
by the isosurface. Once such a subtree is located, there is no
need to traverse this subtree as its leaf nodes forrn a con-
tinuous block. The largest such subtree that was found in a
a particular data set is depicted under the Collected column
of the table. In the case of our previous example, Fd-128, the
largest such subtree contained 512,095 nodes.

The algorithm consistently examined many fewer nodes
than the size of the extracted isosurface. The only exception
was the full Brain data set where the average isosurface
was more or less empty. Even in this pathological case, the
number of cells that were examined was small, only 0.43%.
This is a case where the algorithm is not optimal as k < &,

amining extra nodes was kept at a minimum and the collec-
tion scheme achieved excellent results.

The complexity of the search phase was kept at 31/t;,

a search times include triangulation for w~fructured P d s only.

8 CO~\~CLUS~ONS

We presented the “Near Optimal IsoSurface Extraction”
(NOISE) algorithm, which has a worst-case performance of
(o,& + k) . The algorithm is near optimal in the sense that for

the typical case, where k > A, NOISE is optimal, while for
the rest of the cases the overhead is negligible. The memory
requirement for NOISE is O(n), while the preprocess step
has a complexity of O(n log n) and can be performed
offline. If the preprocessing is done offline, its results can be
loaded in *(.)-

The algorithm performs well for large and small data

intersect an isosurface can also be found in O(&) time,
which enables fast rough estimates of the surface area and

yet the Overhead is Overall/ the Overhead Of ex- se& and for any size of isosurface. The number of cells that

which does not depend on the size of the resulting isosur- the corresponding encompassed by the isosurface.

face as predicted by the count mode analysis. CPU run h e
is shown in Table 4, The initialization step is measured in

We were to create the algoritl’m by project-
k g the data onto a new space, termed the span space, which,

seconds while the count and search are in milliseconds, All
numbers represent the average run time per query. The
search includes triangulation for the unstructured grid data
sets only, using the proposed fast triangulation algorithm.
The time requirements for the count mode was kept to a

spondingly large numbers of isosurfaces. The search opti-
mization has clearly benefited from the collect routine, as is
evident by the large collected blocks.

The performance of the algorithm should be viewed
with respect to its main goal, that is, locating the cells that
intersect the isosurface. In this respect, i.e., the count mode,
the cpu tirne requirements were as low as a few

for large data sets and exhibit complexity of
only (O f i) , i.e., no dependency on the size of the isosur-
face was noticed. The search mode CPU time is clearly

in turn, lends itself to a simple decomposition utilizing kd-
tree. the ’pan ’pace can Serve as a common
ground On which Other methods can be ‘Ompared and

We also presented a fast triangulation scheme based on a

few milliseconds, even for very large data sets with corre- One time Preprocess reorganization Of the vertices.

APPENDICES
A. Worst Case Analysis for Octree

Isosurface Extraction
Wilhelms and Gelder did not
of their octree-based isosurface extraction algorithm, Sec-
tion3.1.2. We now present a worst-case analysis of their
method.

We first note that the octree used by Wilhelms and
Gelder is derived from the geometry of the data set and is

the time

LIVNAT, HAN-WEI, JOHNSON: A NEAR OPTIMAL ISOSURFACE EXTRACTION ALGORITHM USING THE SPAN SPACE

~

83

only augmented by the minimum and maximum values of
the cells in the tree. As such, the octree relies solely on ge-
ometry to group cells with close field values. On the other
hand, the octree is guaranteed to be balanced. Also note
that the data cells occur only on the leaves of the tree.

For simplicity, consider first the 1D case of a binary tree
with n leaves. For a given k, we seek one of the groups of k
leaves with the highest cost to locate. For k = 1, the cost is
log n; this suggests an estimate of O(k log n) for the worst
case. This is clearly an overestimate as many segments of
the paths to these k cells are shared. When k = 2, the two
paths from the root must share several intermediate nodes.
The maximum cost will occur when only the root node is
shared. Therefore,

T(n, 1) = 1 + log (n)
T(n, k) = 1 + 2T(n/2, k /2) ,

which, for k = 2,, leads to

T(n ,k)=2k- l+k log - . C)
As an example, T(n, n) = 2n - 1 , since the a binary tree with
n leaves has n - 1 internal nodes.

The general case for a &dimensional tree follows imme-
diately from the binary case. Let p = 2 , d

Td(n, 1) = 1 + logpn

Td(% k) = 1 + pT(n/p, k/p)
Let 9 = logp k. The solution to the recursive formula is

k - 1 k
p - 1 d

-- - +-log(;).

For the special case of octree, d = 3, we have

T,(n,k) = -+-log 8ki1 0
and a complexity of0 k + k log - . ((41
B. PERFORMANCE ANALYSIS FOR THE COUNT MODE

A node in a kd-tree holds information regarding only the
value used to split the current tree. This forces a search al-
gorithm always to traverse at least one subtree. The best
case performance for the count mode is thus O(1og n) .

We now examine the worst case complexity of the count
mode. Referring to the optimized version, Section 5.1, we
find two cases. When the isovalue is less than the value at
the root of the tree we need to traversed only one subtree.
Otherwise, both subtrees are traverse, yet for one of them
we now know that the min or max condition is satisfied.
Clearly the worst case involves the second case,

T(1) = 1 .c (2)

T(n) = 1 + T(n/2) + T,(n/2). (3)

For the case where the min or max condition is satisfied
there are again two cases. These cases, however, are differ-
ent from each other only with respect to whether one of the
subtree is completely empty or full. In both these cases,
only one subtree is descended. Moreover, the next level of
this subtree can be skipped and the algorithm descends
directly to both sub-subtrees. Note that the root of the sub-
tree still need to be checked. Therefore,

T,(1) = 1

T, (n) = 1 + 2T, (n/4)

i=O

- - 2'og,(n)+l - 1

I 2 & .

Substituting (4) in (3) and using (2), we get,

T(n) 5 1 + 2& + T(n/2)
log(n)- 1

= logn + 2& C2-X
i=O

S logn + 6&.

Hence a complexity of O(&) .

ACKNOWLEDGMENTS

(4)

This work was supported in part by the National Science
Foundation and the National Institutes of Health. The
authors would like to thanks K. Coles and J. Painter for
their helpful comments and suggestions. We wish to thank
the Los Alamos National Laboratory for the the use of their
facilities and the Head data set. The FD data set is courtesy
of Shi-Yi Chen of LANL. Furthermore, we appreciate access
to facilities that are part of the NSF STC for Computer
Graphics and Scientific Visualization.

REFERENCES
W.E. Lorensen and H.E. Cline, "Marching Cubes: A High Resolution
3D Surface Construction Algorithm," Computer Graphics, vol. 21, no. 4,
pp. 163-169, July 1987.
J. Wilhelms and A. Van Gelder, "Octrees for Faster Isosurface Genera-
tion," ACM Trans. Graphics, vol. 11, no. 3, pp. 201-227, July 1992.
T. Itoh and K. Koyyamada, "Isosurface Generation by Using Extrema
Graphs," Proc. Visualization '94. Los Alamitos, Calif.: IEEE Press,. 1994,

M. Giles and R Haimes, "Advanced Interactive Visualization For
CFD," Computing Systems in Enginewing, vol. 1, no. 1, pp. 51-62,1990.
R.S. Gallagher, "Span Filter. An Optimization scheme for Volume Visu-
alization of Large Finite Element Models," Proc. Visualizntiun '91. ROC.
Visualization '94. Los Alamitos, Calif.: IEEE Press,. 1994, pp. 6S75.
H. Shen and C.R. Johnson, "Sweeping Simplicies: A Fast Iso-Surface
Extraction Algorithm for Unstructured Grids," Proc. Visualization
'95,1995.
J.L. Bentley, "Multidimensional Binary Search Trees Used for Associa-
tive Search," Cmm. ACM, vol. 18, no. 9, pp. 509-516,1975.
M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, and R.E. Tarjan, "Time
Bounds for Selection," 1. Computer and System Science, vol. 7, pp. 448-
461,1973.

pp. 7-83.

84 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL 2, NO). 1, MARCH 1996

[9] R. Sedgewick, Algorithms in C++. Addison-Wesley, 1992.
[lo] D.T. Lee and C.K. Wong, "Worst-Case Analysis for Region and Partial

Region Searches in Multidimensional Binary Search Trees and Bal-
anced Quad Trees," Acta Infomtiuz, vol. 9, no. 23, pp. 2%29,1977.

[U] J.L. Bentley and D.F. Stanat, "Analysis of Range Searches in Quad
Trees," Info. Roc. Lett., vol. 3, no. 6, pp. 17&173,1975.

Yarden Livnat received a BSc in computer science in 1982 from Ben
Gurion University in the Negev, Israel and an MSc cum laude in com-
puter science from the Hebrew University, Israel in 1991. He is cur-
rently a PhD candidate at the University of Utah working with the Sci-
entific Computing and Imaging Research Group. His research inter-
ests include computational geometry, geometric modeling, scientific
visualization and computer generated holograms.

Han-Wei Shen is currently a PhD candidate at
the University of Utah working with the Scientific
Computing and imaging Research Group. He
received his BS in 1988 from the National Tai-
wan University in Taipei, Taiwan, and his MS in
1992 from State University of New York at Stony
Brook. His research interests include scientific
visualization, computer graphics, and parallel
rendering.

Christopher Johnson received his PhD from
the University of Utah in 1989. He is currently a
member of the faculty in the Department of
Computer Science at the University of Utah. His
research interests are in the area of scientific
computing. Particular interests include inverse
and imaging problems, adaptive methods for
partial differential equations, numerical analysis,
large scale computational problems in medicine,
and scientific visualization. In 1992, Professor
Johnson was awarded a FIRST Award from the

National Institute of Health, a National Young Investigator Award from
the National Science Foundation in 1994, and the Presidential Faculty
Fellow Award in 1995. He heads the Scientific Computing and Imaging
research group at the University of Utah.

