
Interactive Point-Based Isosurface Extraction

Yarden Livnat∗ Xavier Tricoche†

Scientific Computing and Imaging Institute,
University of Utah

Figure 1: Left: A section of the visible female skeleton. Middle: A closeup view of the extracted points. Right: The final visibility mask. The
color represent different levels of the mask hierarchy

ABSTRACT

We propose a novel point-based approach to view dependent iso-
surface extraction. We introduce a fast visibility query system for
the view dependent traversal, which exhibits moderate memory re-
quirements. This technique allows for an interactive interrogation
of the full visible woman dataset (1GB) at four to fifteen frames per
second on a desktop computer. The point-based approach is built
on an extraction scheme that classifies different sections of the iso-
surface into four categories, depending on the size of the geometry
when projected onto the screen. In particular, we use points to rep-
resent small and sub-pixel triangles, as well as larger sections of
the isosurface whose projection has sub-pixel size. To assign con-
sistent and robust normals to individual points representing such
regions, we propose to compute them during post processing of the
extracted isosurface and provide the corresponding hardware im-
plementation.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Visible line/surface Algorithms;

Keywords: Isosurface, point-based, view-dependent, large
datasets, interactive

1 INTRODUCTION

Isosurface extraction is an important technique for visualizing
three-dimensional scalar fields. By exposing contours of constant
value, isosurfaces provide a mechanism for understanding the struc-
ture of scalar data. These contours isolate surfaces of interest, fo-

∗e-mail: yarden@sci.utah.edu
†e-mail: tricoche@sci.utah.edu

cusing the analysis on important features in the data, such as mate-
rial boundaries, while suppressing extraneous information.

Isosurface extraction poses a unique challenge in that no geom-
etry exists before the user provides an isovalue. Furthermore, the
user may change the isovalue often, and any geometry extracted
based on the previous isovalue should be discarded. Consequently,
only a limited amount of meta data can be generated and stored for
use during an interactive session. In the case of large datasets this
problem is emphasized because the size of the scalar information
leaves little memory for additional data structures. In fact, the size
of very large datasets can overwhelm the extraction and the ren-
dering systems. For example, the isosurface corresponding to the
skeleton in the Visible Woman dataset (1GB) contains over eleven
million triangles, which clearly over strains what todays graphics
cards can handle interactively.

To address this issue, Livnat and Hansen [21] proposed an out-
put sensitive approach based on view-dependent extraction of the
isosurface. Others have since proposed various acceleration tech-
niques using massive parallel machines or the graphics hardware.
Yet, none of these approaches address the need for an interactive
extraction of large datasets using a single desktop computer. This
paper presents a view-dependent point-based isosurface extraction
algorithm (PISA) that permits to extract and render the isosurfaces
of data sets, fitting in the memory of a desktop computer, at inter-
active frame rates.

This paper is structured as follows. Section 2 reviews earlier
work on isosurface extraction, including view-dependent and point-
based techniques. In section 3, we discuss issues that arise due to
the size of the data and the way it is viewed, and we outline our
general approach. Section 4 describes the point-based technique in
detail, and section 5 presents the algorithms. Results and perfor-
mances are shown in section 6 followed by conclusion and future
work.

2 PREVIOUS WORK

Early work [23, 11, 27, 8, 28, 14, 26, 15] on isosurface extrac-
tion focused on a complete isosurface computation and exhibits a
worst case time complexity of O(n), where n is the size of the data.
Cignoni et al. [5] presented an optimal isosurface extraction method
based on the span space introduced by Livnat et al. [22]. As the size
of the datasets grows, however, new challenges arise. First, the size
of the datasets may be larger than the available memory. Second,
the size of the extracted isosurfaces can overwhelm even the most
advanced graphics system. The problems induced by the size of
the data are addressed by out of core isosurface extraction meth-
ods [3, 4, 2], which aim at maintaining the data on disk, and load-
ing only relevant sections. Another research effort, view dependent
isosurface extraction, targets the size of the extracted isosurface by
extracting only the visible portion of the isosurface.

2.1 View-dependent Isosurface Extraction

View-dependent isosurface extraction was first introduced by Liv-
nat and Hansen [21]. Their approach is based on a front-to-back
traversal of the data, while maintaining a virtual frame-buffer of
all extracted triangles. The virtual frame-buffer is used during the
traversal to cull sections of the dataset, which are hidden from the
given viewpoint by closer parts of the isosurface. The authors
also proposed a particular implementation for the virtual frame-
buffer, and for performing visibility queries against this frame-
buffer. Their method, termed WISE, is based on shear-wrap fac-
torization [17] and Greene’s coverage maps [12]. Gao and Shen [9]
presented a distributed parallel view-dependent approach that uses
multi-pass occlusion culling with an emphasis on load balancing.
Gregorski et al. [13] proposed a recursive tetrahedral mesh refine-
ment scheme based on longest edge bisection. Their method re-
quires a rather long preprocessing step, special data layout on disk,
and a 1 to 4 ratio between the size of the data and the meta-data.

Recently, Gao and Shen proposed [10] a fast hardware-assisted
view-dependent approach that takes advantage of NVidia acceler-
ated occlusion culling queries, and of a new spherical partition
scheme they introduced. Although the paper features fast extraction
examples, the datasets used are fairly small (e.g., a 40MB subsam-
pled version of the Visible Woman’s legs section) and the provided
information refers only to a single view distance. In addition, the
paper does not discuss the memory requirements of the spherical
tree, or effects of the various tree parameters on the size of the tree
and the overall performance of the algorithm.

A ray casting approach was presented by Parker et al. [25, 24].
The Real Time Ray Tracer (RTRT) approach lends to large shared
memory machines due to the parallel nature of ray casting. An ad-
ditional benefit of the ray casting approach is the ability to generate
global illumination effects such as shadows. Liu et al. [19] also
used ray casting but instead of calculating the intersection of each
ray with the isosurface, their rays are used to identify active cells.
These active cells are then used as seeds in the more traditional
isosurface propagation method.

Zhang et al. [29] presented a parallel out-of-core view dependent
extraction method. In this approach, sections of data are distributed
to several processors. For a given isovalue, each processor uses ray
casting to generate an occlusion map. The maps are then merged
and redistributed to all the processors. Using this global occlusion
map, each processor extracts its visible portion of the isosurface.
These authors noted that updating the occlusion map during the
traversal is expensive, even when using hierarchical occlusion map.
They opted to rely on the first occlusion map approximation, and
not update the occlusion maps.

2.2 Point-Based Methods

Points have received an increasing interest in the computer graphics
community in recent years as an alternative type of display primi-
tive. They prove especially appealing for the rendering of com-
plex geometric models of large size. The point-based approach was
pioneered by Levoy and Whitted [18] who advocated the use of
points as a universal meta-primitive for modeling and rendering.
The first point-based method for isosurface extraction goes back
to an early work, the Dividing Cubes, by Cline et al. [6]. Using a
view-dependent approach, grid cells are subdivided until they reach
a sub-pixel size in screen space and can be rendered as individual
points. More recently Ji et al. [16] proposed to use points to achieve
interactive non-photorealistic rendering of isosurfaces for remote
visualization of large data sets. However this method assumes the
computation of the triangulated isosurface at interactive frame rates
by a server with high computation power before the rendering step.
Closer to our approach is the work presented by Co et al. [7]. Their
method, termed Iso-splatting, combines a sparse volume sampling
(a single point per voxel), a local correction step to project each
point on the isosurface, and a point splatting technique [30] to per-
mit fast isosurface extraction. A somehow similar technique was
used by Baerentzen and Christensen [1] who render the vertices of
the Marching Cubes triangulation. Our algorithm improves on both
methods by embedding a view-dependent approach in the sampling
phase which significantly speeds up the extraction while preserving
moderate memory requirements.

3 OVERVIEW

The aim of this work is to achieve interactive isosurface interroga-
tion of large datasets using a single desktop computer. In the fol-
lowing, we briefly define each of the above terms within the scope
of our work, along with the issues they raise and the choices we
made to address them.

Interactive interrogation We define interactive interrogation
as the ability to dynamically change the isovalue, and to view the
extracted isosurface from various directions at a rate of several
frames per second. In the context of our view-dependent approach,
we allow for viewing of a partial extraction (which we term In-
complete Reconstruction) from other view points, as seen in Fig-
ure 1(Middle).

Large datasets We strive to work with the largest possible
datasets as long as the data and the required data structure fit into
the memory of the computer. A 2GB memory computer, for ex-
ample, can easily handle a 1GB dataset with a 250MB additional
overhead. Several issues arise when dealing with such datasets: the
memory footprint of the data, the number of triangles of the ex-
tracted isosurface, and the dimension of the individual triangles.

• Size of data: Accelerating the search phase requires additional
meta data, such as a hierarchical minmax tree. However, the
Octree used in previous methods, while suitable for small
datasets, requires too much memory, even for the pointerless
version (BON-Tree), and a lowest level of 2×2×2 cells [27].
The problem with the Octree stems from its low branching
factor (two in each direction). To address this issue, we use
a shallow tree in the form of nested grids. Each node in the
tree represents a sub grid, and all grids at level i have the same
Ni×Mi×Pi cells.

• Number of triangles: Isosurfaces extracted from large datasets
can contain a large number of triangles. The skeleton of the
visible woman, for example, contains about 11 million trian-
gles. These massive isosurfaces pose problems in the extrac-
tion time (interactivity), their memory footprint (bandwidth

to the graphics hardware), and their rendering (graphics hard-
ware capabilities). We employ an output sensitive approach,
namely view-dependent isosurface extraction. In addition to
extracting only the visible portion of the isosurface, we allow
the user to view the partial extraction from other viewpoints
(at ≥100 frames per second). Thus, both extraction and ren-
dering time can be reduced dramatically, since the number of
geometric primitives is decreased by orders of magnitude.

• Size of triangles: Large isosurfaces typically exhibit sub-pixel
triangles. In the case of a full isosurface extraction, sub-
pixel triangles are a waste of time and memory resources. In
the case of incomplete reconstruction, the result can be bad
aliases, and sections of the isosurface disappearing. Our so-
lution consists in using points to represent small triangles and
meta cells (sub volumes). Points have advantages over trian-
gles, such as reduced aliases, and points are visually persis-
tent.

Desktop computers Until recently, the Utah Real Time Ray
Tracer (RTRT) using ray casting [25] on massive parallel super-
computers was the only option for interactive extraction and visual-
ization of large isosurfaces. We want to provide scientists with the
ability to interactively extract and visualize isosurfaces from large
datasets on their desktop computer. Modern desktop machines can
have a large amount of memory (4GB), along with two or more pro-
cessors and state-of-the-art graphics hardware. Furthermore, mod-
ern processors contain vector unit(s) that can be taken advantage of
for visualization applications.
The highly parallel nature of modern graphics hardware and its
somewhat limited programmability, suggest to use it for visibility
queries in a view-dependent approach. Until recently, this approach
was not feasible due to the long latency in receiving replies from the
graphics hardware. Livnat et al. [20] and Gao and Shen [10] pro-
posed methods to overcome the latency issue, but neither method
was shown to work on large datasets.
Vector units provide hardware acceleration for parallel operations
such as matrix vector multiplication used in the screen projection.
Thus, we opted for a highly optimized software-based visibility
query while taking advantage of the two processors and their vec-
tor units. We still leverage the graphics hardware for the rendering
phase and screen-based computation of the normals, described in
section 5.3. The post-processing does not suffer from the latency
issue because the computed normals can be left on the graphics
hardware and reused for shading.

4 POINT-BASED APPROACH TO VIEW DEPENDENT EX-
TRACTION

Traditionally, isosurfaces were represented as a large collection of
triangles. For large isosurfaces, however, the average projection of
the triangles has sub-pixel size. Furthermore, for large datasets, the
same holds true for whole sections of the volume. In the following,
we propose to use point primitives to represent small triangles and
even replace the triangular representation.

4.1 Classification

We consider the following four cases. Note that in all cases we can
delay the normal computation to a post-processing step as described
in section 5.3. However, when considering large triangles (close
views) we can take on the corresponding normals for the rendering
stage.

Far view From a far enough viewpoint, a sub-volume of data
projects to a single pixel, see Figure 2(a). If the isosurface passes
through the sub-volume the corresponding section will be seen as a
single pixel and can be represented by a point.

(a) Far

A B

(b) Mid (c) Near (d)
Closeup

Figure 2: View Classification

Mid view Closer to the isosurface, a data cell may project onto
more then one pixel, but the extracted triangles may still have sub-
pixel size as shown in Figure 2(b). From the point of view of mem-
ory utilization and available bandwidth to graphics hardware, it is
clear that a single point is cheaper than a full triangle.
There is in this case another important issue to consider, namely, in-
complete reconstruction. This corresponds to the ability to change
the viewpoint without recomputing the isosurface thus allowing for
fast (≥100 frames per second) manipulation of large and complex
isosurfaces. Recall that in view-dependent isosurface extraction
only the visible portion is extracted. Only those triangles that cover
the center of a pixel are included. Consider the case when the view
point changes slightly but the isosurface is not recomputed. The
sub-pixel triangle A that covered the center of the pixel is now off
center, and is no longer displayed. Meanwhile, triangle B which
should now cover the center of the pixel, was not included in the
original extracted isosurface because it did not previously cover the
center of any pixel. In this case, triangles lead to strong popping ar-
tifacts where portions of the isosurface disappear, and others reap-
pear. We address this issue by replacing sub-pixel triangles that
cover the center of a pixel with a point, using the fact that point
primitives are persistent in OpenGL.

Near view Closer to the isosurface, triangles may cover more
than one pixel. The aliases and artifacts discussed above still per-
sist, though to a lesser degree. Small triangles do not disappear and
reappear as they cover more than one pixel at a time, however, the
area they cover can change significantly as they move since each
single pixel makes up a large portion of their area. In addition, the
local normal associated with such a triangle is sensitive to high fre-
quencies in the surface geometry, and can cause artifacts when seen
in a more global view.

Closeup view From a close viewpoint, surface triangles cover
many pixels and may provide better performance than a large col-
lection of triangles. In such cases, however, it may be more advan-
tageous and accurate to replace the traditional triangle representa-
tion with a trilinear interpolation of the cell vertices, as was done
by Parker et al. [25]. Representing the interpolated surface using
points is the simplest way to achieve this.

5 THE ALGORITHM

The proposed point-based view-dependent isosurface extraction re-
lies on a hierarchical front-to-back traversal of the data using value
and visibility-based pruning, as seen in Listing 1.

5.1 Value-Based Pruning

Value-based pruning is essentially the same as the Octree method
used by Wilhelms and Van Gelder [27], although we use a GridTree
(nested grids). Each of the tree nodes stores the minimum and max-
imum values of its children, which permits us to ignore the corre-
sponding sub-tree if the isovalue is outside this range.

Listing 1: The Algorithm�
view isosurface(iso, extract)
{

if (extract) {
stack.push(root);
while (!stack.empty()) {

node = stack.pop();

// prune based on value
if (iso ≤ node.min ‖ node.max ≤ iso) continue;

if (node.is leaf()) {
// extract
geom = extract(node);
scan geom onto frame−buffer;
isosurface += geom;

}
else {

// prune based on visibility
bbox = node.bounding box();
if (!visible(bbox)) continue;

// push children in reverse order
for (children in back to front order)
stack.push(node.child());

}
}

// see section 5.3
compute normals();

}

render();
}
� �
5.2 Visibility-Based Pruning

Visibility pruning is achieved by traversing the GridTree in a front-
to-back order with respect to the view point and traversing the chil-
dren in a depth first order. When a leaf node is reached, the isosur-
face geometry is extracted and scanned onto a frame-buffer. During
the traversal we perform a visibility query on each node that passes
the value pruning test. The visibility query is done by projecting
the bounding box of the node onto the frame-buffer and checking if
it includes any part of the background. If this is not the case then
the entire node is hidden by previously extracted geometry and thus
can be pruned.

The visibility query is a key step in the visibility pruning process.
On one hand, its overhead must be small to justify its use. On the
other hand, it should be able to identify non visible cells efficiently.
Note that if a node is visible then all the time spent in the visibil-
ity query is an overhead since we will need to perform visibility
queries on its children as well. However, if the node is not visible
then pruning the node can potentially save a lot of time and thus
justify a longer query time. Furthermore, if a non-visible node is
erroneously labeled as visible, the algorithm can correct itself later
when checking the children. On the contrary, if a visible node is la-
beled as non-visible then the result of the algorithm will be wrong.
In essence, the emphasis of the query should be on discovering if a
node is potentially visible quickly while possibly overestimating a
node’s visibility.

5.2.1 Visibility frame-buffer

Visibility queries can be done in software or using the graphics
hardware. For reasons described in section 3, we use a software-
based visibility query. To determine if a node is visible, all pixels
covered by its bounding box must be checked, i.e., for each pixel,
we only need to know if it was covered by previously extracted ge-
ometry. To that end, only a one bit per pixel visibility frame-buffer
is needed. Figure 3 shows two examples of isosurfaces with their
visibility masks.

Figure 3: Isosurfaces and their corresponding visibility masks. The
colors show where a single bit or a whole row (8 bits) of that level
are covered.

5.2.2 Top-Down queries

To accelerate the visibility query, a hierarchical frame-buffer is
used. In our implementation, each bit in one level represents a
square of 8× 8 bits in the next level (a single 64 bit word). Us-
ing this approach, a 512× 512 frame-buffer can be represented by
only 3 levels. It is important to note that, although the 8×8 repre-
sentation makes it more difficult to check or update a specific bit, it
reduces query time because each bit enables an acceleration in the
x and y directions.

In general, the projection of a three-dimensional box onto the
frame-buffer plane is not axis-aligned, which makes it harder to
check all the pixels it covers. Rather, we check the visibility of the
axis aligned 2D bounding box of this projection. Clearly, we over-
estimate the coverage of the node. However, based on the analysis
in section 5.2 the overall investment is repaid.

A visibility query needs only to report whether the node is visi-
ble. It is not important to know, at this stage, which part is visible.
As such, we can interrogate the hierarchical frame-buffer from top
to bottom, and stop the search when a single visible bit is discov-
ered. In order to accelerate the search, we first check all bits com-
pletely inside in the bounding box. If any of these bits are marked
visible, the node is visible. If all these bits or marked non-visible,
the bits on the boundary must be checked. For each boundary bit

marked visible, we must descend to the next level because we ig-
nore which part of the 8×8 area in the next level is visible.

The visibility queries rely on continuous updates of the visibil-
ity frame-buffer, with newly extracted geometry. It is important to
reduce the overhead associated with this update phase. Previous
work on view-dependent extraction used a strategy similar to the
query mechanism, i.e., top-bottom traversal, to update the visibility
frame-buffer. This approach is suitable for large triangles, but in
the case where most extracted triangles are few pixels or less, the
overhead of a top-bottom approach is high.

We propose to use a bottom-up approach where the extracted
geometry is scan converted directly into the lowest level of the visi-
bility frame-buffer at screen resolution. After scanning a row whose
index ends in 7 (i.e., mod(row,8) = 7), we examine all 8× 8 tiles
touched. If any tile is completely covered, we update the next level.
Since we assume each scanned geometry covers only a few pixels,
the level above rarely needs to be updated (only when all of the 64
bits are set), dramatically reducing cost.

Small meta cells Nodes in the GridTree with projection the
size of a pixel or less are represented in our framework by a single
point. We must ensure that the projected node covers only a single
point. Considering Figure 4, we note that, while in cases A and B
the pixel center is covered, this is not true for case C. The simplest
solution is to require b(le f t + 0.5) = b(right − 0.5), and similarly
for the top and bottom boundaries. Setting the corresponding bit in

left right
left

left right

left

left right
left

B CA

Figure 4: Small meta cells

the visibility frame-buffer is relatively cheap. We must, however, be
careful when creating the 3D point that will be sent to the graphics
hardware for rendering. We must ensure the point will project on
the same pixel covered in the visibility frame-buffer. To this end,
we back-project the pixel center into world coordinates using the
inverse of the projection matrix.

Triangle scanning When the GridTree traversal reaches a sin-
gle data cell a geometry needs to be generated to represent the iso-
surface in that cell. In our implementation, we selected the March-
ing Cubes triangulation with the exception of replacing small trian-
gles with points, as discussed in section 4.1.
There are many approaches and methods for scan conversion of
triangles. We use a barycentric coordinates approach because it
requires the least amount of initial setup. Since we have to scan
convert a large number of small triangles, which on average cover
a few pixels, savings in the setup stage are crucial. Our algorithm
computes the bounding box of the triangle in screen coordinates,
then computes the (α,β ,γ) barycentric coordinates for each pixel
center within this bounding box. For each pixel whose center sat-
isfies α ≥ 0 β ≥ 0 and γ ≥ 0 and is marked visible in the vis-
ibility frame-buffer, a 3D point is created by interpolating the three
vertices of the triangle in 3D using the same (α,β ,γ) coordinates.

5.3 Surface Normals

In the case of near and mid range views, see section 4.1, the triangle
normal can be associated with the point(s) representing the triangle.
However, there is no well-defined surface associated with the points
generated for small nodes in the far view case.

In a ray casting approach such as RTRT [25], when a node con-
taining the isosurface reduces to a pixel, the intersecting ray corre-
sponds to a random sampling. This creates aliasing problems for the
normals and jittered sampling must be applied to avoid a noisy im-
age. While this anti-aliasing can be effective, it may require many
samples per pixel to achieve good results. Hence the performance
of the algorithm, which depends linearly on the number of rays
used, drops significantly.

We propose to defer the surface normal computation to a post-
processing step. Once the entire visible isosurface is extracted, the
surface normals can be computed at the required points, based on
their local properties. More specifically we derive the neighborhood
connectivity of the points from their projection on the screen. To
avoid computing normals across disconnected components of the
isosurface we apply a threshold on the z-coordinates. In essence,
we apply a specialized low pass filter on the extracted geometry.
Computing surface normals using screen space connectivity can be
done in software or using the graphics hardware. Pros and cons are
discussed next.

5.3.1 Software

Flexibility in the design and implementation of the filter is the main
advantage of performing the surface normal computation on the
CPU. There are no practical limitations to the size of the filter, i.e.,
the extent of the processed neighborhood, or to the types of math-
ematical operations and the number of iterations it requires. On
the flip side, the process is inherently slow. At most, two proces-
sors can be used on a typical high-end desktop. Furthermore, a
correspondence needs to be maintained between the 3D points and
their projection on the screen. If mixing points and triangles (for
close-up views) are allowed in the same scene, we must compute in
software the z coordinate for each visible point of the triangles.

5.3.2 Graphics hardware

Modern graphics hardware offers means for computing surface nor-
mals using vertex and fragment programs. The major advantage of
the graphics hardware is the number of dedicated fragment and ver-
tex units, which take advantage of the highly parallel nature of the
type of filters required. The main disadvantage of todays graph-
ics hardware is the limited programmability, especially of fragment
units.

In order to use the graphics hardware, we need to provide it
with the world and screen coordinates of each point. We also need
to provide a method for accessing the computed normals during
later rendering phases. This can be done using off screen p-buffers
that we can both render and use as textures for a later lookup.
Furthermore, modern graphics hardware supports float p-buffers
where both world coordinates and computed normals can be stored
accurately. We use the same projection (modelview, perspective
and viewport) for the extraction, the following normal computation
steps, and the final rendering. This guarantees that in each of the
following steps, the fragment programs can easily find the required
information for that fragment (pixel). This information includes the
world coordinates of the point being projected onto this pixel along
with the point’s screen neighbors (i.e., its neighbors with respect to
the current view).

Position Map The first step is to store on the graphics hard-
ware the world coordinates of the points and their location on the
screen. To this end, we create a position map by projecting all ge-
ometry, points and triangles, onto a float p-buffer, saving the ver-
tices world coordinates the output.

Normals Map Recall that for points derived from triangles,
triangles normals can be used. If these normals are used, they are
stored in the normal map, in addition to the computed normals.

First, we select a new p-buffer of floats, and project the geometry
for which the normal is known along with its normals. In the frag-
ment program, the incoming normals are saved as the output color,
while setting the α channel to 1 (see below).
Next, we bind the position map from the previous step as texture,
and project the geometry to compute the normals, i.e., either there
was no known normals as in the case of very far sub volumes, or
we chose not to compute them from data. For each pixel, the frag-
ment program computes the normal based on the world position of
the point being projected and its screen neighbors (using texture
lookup from the position map). The normals are then stored as out-
put color. The fragment program can use the α value to differentiate
between real neighbors and the background.
The normal map now contains a normal of each of the isosurface
points, and normals for the pixels each triangle covers.

Rendering In the rendering phase, the normal map is used as
a texture where each fragment can lookup its normal and perform
correct shading. Care must be taken in the case of incomplete re-
construction, for example, when the user is allowed to change the
viewpoint without recomputing the isosurface. In this case, the ge-
ometry will be projected onto a different location, and the fragment
lookup will not work correctly.
We address this issue by saving the modelview and projection ma-
trix used during the creation of the normal map. During the render-
ing phase, this matrix is provided to the vertex program, along with
other shading parameters, such as the position of the light. The ver-
tex program uses the given matrix, computes the fragment position
at the time the normal map was created, and passes this index to the
fragment shader.

5.4 Parallel Implementation

An increasing number of commodity computers feature a second
processor thus allowing for parallel computing. Our view depen-
dent extraction can be parallelized using sort first approach, i.e.,
based on screen projection. We construct two visibility frame-
buffers, each representing half the screen. To better balance the
computation load, in each processor, a different thread traverses
the dataset using its own visibility frame buffer. Since each frame
buffer represents a different section of the screen, each thread ef-
fectively ignores large sections of the dataset. An additional opti-
mization can be achieved by splitting, not the entire screen, but the
projection of the bounding box of the dataset.

6 RESULTS

Setup Our setup includes a Dual Processor Power Mac 2GHz
G5 with 2GB memory and ATI 9800 Pro graphics card. We chose
the Visible Woman dataset for our benchmarks because it is a rela-
tively large dataset (512x512x1734 shorts = 867MB) that exhibits
both smooth and noisy complex isosurfaces. The later (mainly the
skeleton) provides challenging test cases for view dependent iso-
surface extraction algorithms.

GridTree memory requirement The GridTree structure is
determined by its depth, which can be set by the user. We allow the
user to impose a particular branch factor for the lowest level. Ta-
ble 1 shows depth versus memory requirement of the GridTree and
an Octree (a Branch On Need version to conserve memory) for the
Visible Woman dataset. The original Visible Woman dataset consists
of seven sections, all of which have the same cross section of 512
by 512 pixels but different world space sizes. In addition, the num-
ber of slices in each section varies dramatically (209, 18, 22, 857, 4,
7, 617). PISA can work with these 7 sections by traversing them in
a view dependent order. However, this is not a typical situation and
thus we chose to resample the datasets and create a single dataset of

the same size (512×512×1734) that is based on the spatial char-
acteristics of the torso section. We note that the performance using
the seven sections is only slightly slower than when using the sin-
gle dataset. The RTRT is optimal when used with a very shallow
hierarchy of only 3 level which allow for an extremely low memory
requirement.

Depth Base Size Relative
Branch (MB) %

Octree 2 744 86
RTRT 12 3.5 0.4
PISA

5 2 227 26
5 5 18 2
9 2 353 40

Table 1: Memory requirements of the Octree, RTRT and PISA rel-
ative to their depth and the branch factor of the base level. The
dataset size is 867MB.

Performance We compare the performance of the proposed
algorithm to the classic Octree [27] and to the Real Time Ray
Tracer (RTRT) [25, 24], using either one or two of the G5 CPUs.
In addition we reimplemented three routines using the Altivec, the
G5 vector unit, which is similar to the Pentium SSE/SSE2. The
three routines that benefit the most from using the Altivec units
are the bounding box projection, triangulation using the marching
cubes, and finally the scan-conversion routine that generates the fi-
nal points.

Two isovalues were used, one for the skin and one for the skele-
ton. The skin isosurface exhibits large continuous sections which
allow early termination in a view dependent extraction, Figure 5[c].
The skeleton isosurface constitutes a challenging case for any view
dependent approach as it comprises a very large number of small
sections (bones) and exhibits many see-through holes which pre-
vent early termination, Figure 5[a]. The torso section is especially
hard since it is very noisy which leads to very large number of tri-
angles/points.

Table 2 and Table 3 present statistics for the two isosurfaces and
from two viewpoints. The viewpoints where picked based on the
portion of the dataset that was visible. Other viewpoints from the
same areas exhibit the same characteristics. The torso as seen in
Figure 5[a] is slower in all the cases but statistics were dropped out
for lack of space. The tables show the performance using the classi-
cal Octree method (using a BonTree to conserve memory), the Real
Time Ray Tracer (RTRT), and three different configurations of the
GridTree. For each case we show the time in msec to perform a
single extraction (Cull), the frame rate, and a relative speedup. The
frame rate is shown for both a view-dependent cull + normal com-
putation on the GPU + a single draw, and for the case when the
current isosurface is redrawn from a new viewpoint, i.e. an incom-
plete reconstruction. The speedup is measured for each GridTree
configuration when using one or two CPUs and when using the Al-
tivec vector unit. In addition we compare the relative speed up of
the 2 CPUs (+Altivecs) to the RTRT performance using 2 CPUs.

It is interesting to note that using the Altivec unit with a single
CPU is almost equivalent to using a second CPU. In most cases this
contribution is about 50%. Using both the Altivec and a second
CPU leads to an improvement of about 250% across the board. It is
clear that a full extraction of the isosurface (Octree) is not a feasible
solution for large datasets. Comparing the results of the various
GridTree, we note that the branch factor at the base level is a key
for the acceleration but that this acceleration comes at a price of
a higher memory footprint. The branch factors of the 5(5) tree is
3×3×3×4×5 in X and Y, and 4×4×5×5×5 in the Z direction.
The 5(2) tree exhibits 4× 4× 4× 4× 2 in X and Y, and 5× 5×

Skin Isosurface
Test Type Cull+Draw Draw Cull

speedup only msec
RTRT Tree f/sec f/sec

Full extraction (not view dependent)
Octree 15M tri n/a n/a 0.03 0.2 29,700

Far view of the whole body
RTRT 2 CPUs - n/a 2.7 n/a n/a
PISA (41K points)
5 (5) 1 CPU - 0.6 277 1652

+ Altivec x1.2 0.7 277 1428
2 CPUs x1.7 1.0 277 943
+ Altivec x0.4 x2.0 1.2 277 812

5 (2) 1 CPU - 3.6 277 269
+ Altivec x1.6 5.7 277 163
2 CPUs x1.6 5.8 277 159
+ Altivec x3.3 x2.5 9.0 277 98

9 (2) 1 CPU - 3.8 277 253
+ Altivec x1.5 5.9 277 160
2 CPUs x1.6 6.3 277 146
+ Altivec x3.6 x2.5 9.6 277 94

Closeup view of the feet
RTRT 2 CPUs - n/a 0.7 n/a n/a
PISA (170K points)
5 (5) 1 CPU - 3.3 73 271

+ Altivec x1.1 3.8 73 234
2 CPUs x1.5 4.9 73 174
+ Altivec x7.4 x1.6 5.2 73 152

5 (2) 1 CPU - 3.9 73 226
+ Altivec x1.5 5.7 73 146
2 CPUs x1.5 5.8 73 141
+ Altivec x11.6 x2.1 8.3 73 91

9 (2) 1 CPU - 3.8 73 253
+ Altivec x1.5 5.9 73 160
2 CPUs x1.6 6.3 73 146
+ Altivec x13.7 x2.5 9.6 73 94

Table 2: Performance statistics for the isosurface of the skin. Test
X (Y) refers to a GridTree of depth X with a base branch factor of
Y. Cull+Draw refers to extracting a new isosurface + computing the
normals on the GPU + a draw phase.

6× 6× 2 in Z. The 9(2) has almost a constant branch factor of 2,
i.e., almost an Octree though much more compact. While the 9(2)
does outperform all the others, it seems that the 5(2) is the optimal
configuration. We may conclude that the optimal GridTree is one
where the base factor is 2. More tests are needed to find if there
exists a priori an optimal tree depth based on the size of the data.

The most surprising point is the relative speedup of PISA vs. the
Real Time Ray Tracer. We expected PISA to perform well as it
takes advantage of coherence in image space, value space, geomet-
ric space, vector units and the GPU, yet PISA on a single G5 is able
to perform on the same level as RTRT on a 8-32 CPUs machine.

Finally, the notion of incomplete reconstruction as seen in Fig-
ure 1 can allow manipulation of the data at 70-400 fps. We intend
to explore the idea of partial extraction during a dynamic manipula-
tion of the viewpoint by the user, i.e. allow the extraction to proceed
for a limited amount of time and add the results to the current iso-
surface. Such an approach will require special modification such
that the current extracted isosurface can be used to cull away large
sections of the data and accelerate the search for the new sections
of the isosurface that becomes visible.

7 CONCLUSIONS

We have presented a new point-based approach to view-dependent
isosurface extraction, where points are selected based on both the
visibility and the projected area of sections of the isosurface. We

Skeleton Isosurface
Test Type Cull+Draw Draw Cull

speedup only (msec)
RTRT Tree (f/sec) f/sec

Full extraction (not view dependent)
Octree 11M tri n/a n/a 0.04 0.3 20,600

Far view of the whole body
RTRT 2 CPUs - n/a 2.3 n/a n/a
PISA (25K points)
5 (5) 1 CPU - 0.7 398 1469

+ Altivec x1.2 0.8 398 1217
2 CPUs x1.4 1.0 398 925
+ Altivec x0.5 x1.7 1.2 398 772

5 (2) 1 CPU - 2,8 398 352
+ Altivec x1.6 4.6 398 211
2 CPUs x1.6 4.6 398 205
+ Altivec x3.3 x2.7 7.5 398 123

9 (2) 1 CPU - 3.5 398 277
+ Altivec x1.5 5.4 398 177
2 CPUs x1.7 6.0 398 158
+ Altivec x3.9 x2.6 9.0 398 101

Closeup view of the feet
RTRT 2 CPUs - n/a 1.1 n/a n/a
PISA (99K points)
5 (5) 1 CPU - 4.4 130 208

+ Altivec x1.2 5.4 130 170
2 CPUs x1.7 7.5 130 114
+ Altivec x8.1 x2.1 8.9 130 93

5 (2) 1 CPU - 5.8 130 155
+ Altivec x1.5 8.4 130 101
2 CPUs x1.7 9.6 130 84
+ Altivec x12 x2.3 13.2 130 56

9 (2) 1 CPU - 6.0 130 150
+ Altivec x1.4 8.7 130 97
2 CPUs x1.6 9.9 130 80
+ Altivec x13.5 x2.5 14.9 130 53

Table 3: Performance statistics for the isosurface of the skeleton.
Test X (Y) refers to a GridTree of depth X with a base branch factor
of Y. Cull+Draw refers to extracting a new isosurface + computing
the normals on the GPU + a draw phase.

proposed a software-based view dependent implementation along
with a fast visibility query system. A post-processing surface nor-
mal estimation framework was also introduced to provide points
with consistent and robust normals in configurations where a large
region of the isosurface projects onto a single pixel. We showed
that the combination of these techniques yields a method that, in
contrast to previous work, allows for isosurface extraction of large
data sets at interactive frame rates on a standard desktop computer.

For future work, we are looking at extending the algorithm to
allow out of core extraction of larger datasets that cannot fit into
main memory.

ACKNOWLEDGMENTS

This work was supported in part by grants from the DOE ASCI, the
DOE AVTC, the NIH NCRR, and by the National Science Founda-
tion. We would like to thank Rachel McNeil and Charles Hansen
for their contribution. We also thank Chris Co and the anonymous
reviewers for their comments that helped improve the paper.

REFERENCES

[1] J. A. Baerentzen and N. J. Christensen. Hardware accelerated point
rendering of isosurfaces. Journal of WSCG, 11(1):41–48, 2003.

[2] C. L. Bajaj, V. Pascucci, D. Thompson, and X. Y. Zhang. Parallel ac-
celerated isocontouring for out-of-core visualization. In Proceedings

(a) (b) (c) (d)

Figure 5: Several views of the visible woman dataset.

of the 1999 IEEE symposium on Parallel visualization and graphics,
pages 97–104. ACM Press, 1999.

[3] Yi-Jen Chiang and Cláudio T. Silva. I/O optimal isosurface extraction.
In Roni Yagel and Hans Hagen, editors, IEEE Visualization ’97, pages
293–300, 1997.

[4] Yi-Jen Chiang, Cludio T. Silva, and William J. Schroeder. Interactive
out-of-core isosurface extraction. In Proceedings of the conference
on Visualization ’98, pages 167–174. IEEE Computer Society Press,
1998.

[5] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Optimal isosur-
face extraction from irregular volume data. In Proceedings of IEEE
1996 Symposium on Volume Visualization. ACM Press, 1996.

[6] H.E. Cline, Lorensen W.E., and Ludke S. Two algorithms for the
three-dimensional reconstruction of tomograms. Medical Physics,
15(3):320–327, 1988.

[7] C. S. Co, B. Hamann, and K. I. Joy. Iso-splatting: A point-based
alternative to isosurface visualization. In 11th Pacific Conference on
Computer Graphics and Applications (PG’03), pages 325–334, 2003.

[8] R. S. Gallagher. Span filter: An optimization scheme for volume visu-
alization of large finite element models. In Proceedings of Visualiza-
tion ’91, pages 68–75. IEEE Computer Society Press, Los Alamitos,
CA, 1991.

[9] Jinzhu Gao and Han-Wei Shen. Parallel view-dependent isosurface
extraction using multi-pass occlusion culling. In Parallel and Large
Data Visualization and Graphics, pages 67–74. IEEE Computer Soci-
ety Press, Oct 2001.

[10] Jinzhu Gao and Han-Wei Shen. Hardware-assisted view-dependent
isosurface extraction using spherical partition. In Proceedings of the
symposium on Data visualisation 2003, pages 267–276. Eurographics
Association, 2003.

[11] M. Giles and R. Haimes. Advanced interactive visualization for CFD.
Computing Systems in Engineering, 1(1):51–62, 1990.

[12] Ned Greene. Hierarchical polygon tiling with coverage masks. In
Computer Graphics, Annual Conference Series, pages 65–74, 1996.

[13] Benjamin Gregorski, Mark Duchaineau, Peter Lindstrom, Valerio Pas-
cucci, and Keneth I. Joy. Interactive view–dependent rendering of
large isosurfaces. In Visualization ’02, pages 475–482. IEEE Com-
puter Society Press, 2002.

[14] T. Itoh and K. Koyamada. Isosurface generation by using extrema
graphs. In Visualization ’94, pages 77–83. IEEE Computer Society
Press, Los Alamitos, CA, 1994.

[15] T. Itoh, Y. Yamaguchi, and K. Koyyamada. Volume thining for au-
tomatic isosurface propagation. In Visualization ’96, pages 303–310.
IEEE Computer Society Press, Los Alamitos, CA, 1996.

[16] G. Ji, H.-W. Shen, , and J. Gao. Interactive exploration of remote
isosurfaces with point-based non-photorealistic rendering. In Joint
Eurographics - TCVG Symposium on Visualization, 2003.

[17] Philippe G. Lacroute. Fast volume rendering using shear-warp fac-

torization of the viewing transformation. Technical report, Stanford
University, September 1995.

[18] M. Levoy and T. Whitted. The use of points as display primitives.
Technical report, The University of North Carolina at Chapel Hill,
Department of Computer Science, 1985.

[19] Zhiyan Liu, Adam Finkelstein, and Kai Li. Progressive view-
dependent isosurface propagation. In Proceedings of Vissym’2001,
2001.

[20] Y. Livnat, X. Cavin., and C. Hansen. Phase: Progressive hardware as-
sisted isosurface extraction framework. Technical Report USCI-2002-
001, SCI Institute, 2002.

[21] Y. Livnat and C. Hansen. View dependent isosurface extraction. In
Visualization ’98, pages 175–180. ACM Press, October 1998.

[22] Y Livnat, H. Shen, and C. R. Johnson. A near optimal isosurface
extraction algorithm using the span space. IEEE Trans. Vis. Comp.
Graphics, 2(1):73–84, 1996.

[23] W.E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D
surface construction algorithm. Computer Graphics, 21(4):163–169,
July 1987.

[24] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen, and P. Shirley.
Interactive ray tracing for volume visualization. IEEE Transactions
on Visualization and Computer Graphics, 1999.

[25] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. Interactive
ray tracing for isosurface rendering. In Visualization 98, pages 233–
238. IEEE Computer Society Press, October 1998.

[26] H. Shen and C. R. Johnson. Sweeping simplicies: A fast iso-surface
extraction algorithm for unstructured grids. Proceedings of Visualiza-
tion ’95, pages 143–150, 1995.

[27] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface genera-
tion. Computer Graphics, 24(5):57–62, November 1990.

[28] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface genera-
tion. ACM Transactions on Graphics, 11(3):201–227, July 1992.

[29] Xiaoyu Zhang, Chandrajit Bajaj, and Vijaya Ramachandran. Parallel
and out-of-core view-dependent isocontour visualization using ran-
dom data distribution. In D. Ebert, P. Brunet, and I. Navazo, edi-
tors, Joint Eurographics — IEEE TVCG Symposium on Visualization
(VisSym-02), pages 1–10, 2002.

[30] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface splatting. In
Eugene Fiume, editor, Proceedings of ACM SIGGRAPH 2001, pages
371–378. ACM Press/ ACM SIGGRAPH, 2001.

