
1

Dynamic View Dependent Isosurface Extraction

Yarden Livnat, Charles Hansen

UUSCI-2003-004

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, UT 84112 USA

Enter date here: 2002

Abstract:

We present a dynamic view-dependent isosurface extraction method. Our approach is based on
the 3-stage approach we first suggested in WISE [15], i.e., front-to-back traversal, software pruning
based on visibility and final rendering using the graphics hardware. In this work we re-examine
the WISE method and similar view-dependent extraction methods, and propose modifications that
accelerate the extraction time by a factor of 5 to 10. In particular we suggest using a bottom-up
approach for rendering occluding triangles, replacing the traditional marching cubes triangulation
with triangle fans and using point-based rendering for sub-pixel sections of the isosurface.

Dynamic View Dependent Isosurface Extraction

Yarden Livnat Charles Hansen

Scientific Computing and Imaging Institute
School of Computing
University of Utah

Abstract

We present a dynamic view-dependent isosurface extraction
method. Our approach is based on the 3-stage approach
we first suggested in WISE [15], i.e., front-to-back traversal,
software pruning based on visibility and final rendering us-
ing the graphics hardware. In this work we re-examine the
WISE method and similar view-dependent extraction meth-
ods, and propose modifications that accelerate the extraction
time by a factor of 5 to 10. In particular we suggest using
a bottom-up approach for rendering occluding triangles, re-
placing the traditional marching cubes triangulation with
triangle fans and using point-based rendering for sub-pixel
sections of the isosurface.

1 Introduction

The availability of inexpensive yet powerful desktop com-
puters and parallel supercomputers in few location leads to
the development of remote visualization techniques. The
fundamental drive for this paradigm enables the scientist to
perform very large simulations on a remote supercomputer
while visualizing and investigating the results on the local
desktop. Remote isosurface visualization of large datasets
poses a special challenge due to the limited bandwidth of
the intermediate network.

In respond to this challenge, current research efforts aim
to simplify the geometry of the isosurface after extracting
the isosurface and before it renders or transmits over a net-
work [2, 3]. In effect, the aim of such methods is to reduce the
complexity of rendering an isosurface to a sub-linear com-
plexity with respect to the size of the original isosurface.
However, such methods do not address the initial challenge
of extracting and constructing the isosurface.

In this paper, we present a dynamic view-dependent iso-
surface extraction method that is based on 3-stage approach
we suggested in WISE [15],i.e., front-to-back traversal, soft-
ware pruning based on visibility and final rendering using
the graphics hardware. We begin with a review of earlier
work on isosurface extraction in Section 2. In Section 3 we
identify the bottlenecks in the WISE approach and propose
several modification and additions. We present experimental
results and conclude with future work in Section 4.

2 Previous work

Early work [17, 9, 23, 7, 24, 11, 22, 12] on isosurface extrac-
tion focused mainly on a complete isosurface extraction and
thus exhibit a worst case time complexity of O(n), where n
is the size of the data. In 1996, Cignoni et al. [6] presented
an optimal isosurface extraction method based on Livnat
et al. [16] span-space. However, as the size of the datasets

grow new challenges arise. First, the size of the datasets of-
ten is larger than the available memory. Second, the size of
the extracted isosurfaces can overwhelm even the most ad-
vance graphics systems. The first challenge, the size of the
data, is addressed by out of core isosurface extraction meth-
ods [4, 5, 1] which aim at maintaining the data on disk and
loading only relevant sections of it at a time. Another re-
search effort, view dependent isosurface extraction, targets
the size of the extracted isosurface by extracting only the
visible portion of the isosurface.

View-dependent isosurface extraction was first introduced
by Livnat and Hansen [15]. Their approach is based on a
front-to-back traversal of the data while maintaining a vir-
tual framebuffer of all the extracted triangles. The virtual
framebuffer is used during the traversal to cull sections of the
dataset, which are hidden from the given view point by closer
parts of the isosurface. Livnat and Hansen also proposed a
particular implementation for the virtual framebuffer and
for performing visibility queries against this framebuffer.
Their method, termed WISE, is based on shear-wrap fac-
torization [13] and Greene’s coverage maps [10]. Jinzhu and
Shen [8] presented a distributed parallel view-dependent ap-
proach that uses multi-pass occlusion culling with an em-
phasis on load balancing.

A ray casting approach was presented by Parker et
al. [20, 19]. This approach lends itself very well to large
shared memory machines due to the parallel nature of ray
casting. An additional benefit of the ray casting approach
is the ability to generate global illumination effects such as
shadows. Liu et al. [14] also used ray casting but instead
of calculating the intersection of each ray with the isosur-
face, their rays are used to identify active cells. These active
cells are then used as seeds to the more traditional isosurface
propagation method.

Zhang et al. [25] presented a parallel out of core view
dependent extraction method. In this approach, the sections
of the data are distributed to the various processors. For a
given isovalue, each processor uses ray casting to generate an
occlusion map. The maps are then merged and redistributed
to all the processors. Using this global occlusion map, each
processor extracts its visible portion of the isosurface. They
noted that updating the occlusion map during the traversal
is expensive even when using hierarchical occlusion map, and
thus opt not to update the occlusion maps and rely on the
first occlusion map approximation.

3 SAGE

The WISE algorithm provides a particular implementation
of the view dependent approach. The performance of the
WISE algorithm demonstrated the potential benefits of such
an approach. The two most prominent weaknesses of cur-
rent view-dependent methods, which are based on the WISE
approach, are the ratio of triangle intersections per screen

cell and the fill rate of the screen tiles hierarchy.
In the following we present a new approach to view de-

pendent isosurface extraction that aims at addressing these
weaknesses. This approach is based on the WISE method
and lessons learned from it and thus is termed SAGE. Our
new approach present four new features:

1. Bottom-up updates to the framebuffer hierarchy while
maintaining a top-down queries.

2. Scan conversion of multiple triangles at once, i.e., the
use of concave polygons.

3. Replacing sub-pixel [meta-] cells with points and nor-
mals.

4. Fast estimation of the screen bounding box of a given
[meta-] cell.

3.1 A Bottom Up Approach

Current view-dependent isosurface extraction methods [15,
8] that use a virtual framebuffer, employ hierarchical struc-
ture in order to accelerate visibility queries. However, if the
triangles are small then each update (rendering of a triangle)
of the hierarchy requires a deep traversal of the hierarchy.
Such traversals are expensive on one hand and generally add
only a small incremental change.

To alleviate the problem of projecting many small tri-
angles down the hierarchical tile structure, we employ a
bottom-up approach, as shown in Figure 1. Using this ap-
proach the contribution of a small triangle is limited to only
a small neighborhood in the hierarchy, i.e., few tiles at the
lowest level.

Polygons:
Scan and update

Meta Cells
visibility check

Figure 1: Bottom-up and top-down usage in SAGE.

The bottom-up approach is realized by projecting the tri-
angles directly on to the bottom level, which is at the screen
resolution. Only the tiles that are actually changed by the
projection of the triangle will be further checked to see if
they cause changes up the hierarchy. Since the contribu-
tion of the triangle is assumed to be small, its effect up the
hierarchy will also be minimal.

3.2 Scan Conversion of Concave Polygons

One of the disadvantages of a top-down approach based on
the hierarchical tiles is that this algorithm is restricted to
convex polygons. In the WISE algorithm, this restriction
forced the projection of triangles by only one triangle at a
time.

To alleviate this restriction, the SAGE algorithm employs
a scan conversion algorithm, which simultaneously projects
a collection of triangles and concave polygons. The use of
the scan conversion algorithm is made particularly simple
in SAGE due to the bottom-up update approach. The pro-
jected triangles and polygons are scan-converted at screen
resolution at the bottom level of the tile hierarchy before
the changes are propagated up the hierarchy. Applying the
scan conversion in a top-down fashion would have made the
algorithm unnecessarily complex.

Additional acceleration can be achieved by eliminating
redundant edges, projecting each vertex only once per cell
and using triangle strips or fans. To achieve these goals, the
marching cubes lookup table is first converted into a trian-
gles fans format. The usual marching cubes lookup table
contains a list of the triangles (three vertices) per case.

Wise Sage

3 Triangles
9 Edges

3 Triangles
9 Edges

1 Polygon
5 Edges
1 Double Edge

1 Polygon
5 Edges

3 Triangles
9 Edges

1 Polygon (convex)
5 Edges

View direction Image

Figure 2: Comparison between WISE and SAGE.

A comparison of the WISE and the SAGE algorithms with
respect to the number of polygons and edges that are pro-
jected onto the hierarchical tiles is shown in Figure 2.

3.3 Rendering Points

Another potential savings is achieved by using points with
normals to represent triangles or [meta-] cells that are
smaller than a single pixel. The use of points in isosur-
face visualization was first proposed as the Dividing Cubes
Method by Lorensen and Cline. Phister et al. [21] used
points to represent surface elements (surfels) for efficient ren-
dering of complex geometry. The surfels method employs a
pre-process sampling stage to create an octree-based surfel
representation of a given geometry. During rendering the
surfels are projected onto the z-buffer and shaded based on
their attributes such as normal and texture. Special atten-
tion is given to the removal of holes and correct visibility.

The use of point rendering is an improvement over the
WISE algorithm as the exact location of each screen pixel
center is known during the scan line and the visibility
tests. In contrast, WISE operated on a warped image of
the final image and thus the exact location of each pixel
was not easily obtained. Whenever a non-empty [meta-]
cell is determined to have a size less then two pixels and its
projection covers the center of a pixel, it is represented by a
single point. Note that the size of the bounding box can be
almost two pixels wide (high) and still cover only a single
pixel. Referring to Figure 4, we require,

Figure 3: Rendering points. The left image was extracted
based on the current view point. The right image shows a
closeup of the same extracted geometry.

if (right - left < 2) {

int l = trunc(left);

if (left - l >= 0.5) l++;

if (l+0.5 < right && right < l+1.5)

// create a point
else

// ignore [meta-] cell
}

and similarity for the bounding box height.

Figure 3 shows an example in which some of the projected
cells are small enough such that they can be rendered as
points. On the left is the image as seen by the user while on
the right is a closeup view of the same extracted geometry
(i.e., the user zoomed in but did not re-extract the geometry
based on the new view point). Notice that much of the image
on the left is represented as points. Points are not only useful
in accelerating the rendering of a large isosurface but also
assists in remote visualization since less geometry needs to
be transferred over the network.

left right
left

left right

left

left right
left

B CA

Figure 4: Pixel center and the projected bounding box. A
point is created for cases A and B but not for C.

3.4 Fast Estimates of a Bounding Box of a Pro-
jected Cell

The use of the visibility tests adds an overhead to the extrac-
tion process that should be minimized. Approximating the
screen area covered by a meta-cell rather than computing it
exactly can accelerate the meta-cell visibility tests. In gen-
eral the projection of a meta-cell on the screen has a hexagon
shape with non-axis aligned edges. We reduce the complex-
ity of the visibility test by using the axis aligned bounding
box of the cell projection on the screen as seen in Figure 5.
This bounding box is an overestimate of the actual coverage
and thus will not misclassify a visible meta-cell, though the
opposite is possible.

Screen

Eye

Meta Cell

Bounding box
of the meta cell
projection

Figure 5: Perspective projection of a meta-cell, the covered
area and its bounding box.

The problem is how to find this bounding box quickly.
The simplest approach is to project each of the eight vertices
of each cell on to the screen and compare them. This process
involves eight perspective projections and either two sorts (x
and y) or 16 to 32 comparisons.

The solution in SAGE is to approximate the bounding
box as follows. Let P be the center of the current meta-
cell in object space. Assuming the size of the meta-cell is
(dx, dy, dz), we define the eight vectors

D = (±dx

2
,±dy

2
,±dz

2
, 0)

The eight corner vertices of the cell can be represented as

V = P + D = P + (±Dx,±Dy,±Dz)]

Applying the viewing matrix M to a vertex V amounts
to:

V M = (P + D)M = PM + DM

After the perspective projection the x screen coordinate of
the vertex is:

[V M]x
[V M]w

=
[PM]x + [DM]x
[PM]w + [DM]w

To find the bounding box of the projected meta-cell we
need to find the minimum and maximum of these projections
over the eight vertices in both x and y. Alternatively, we can

overestimate these extrema values such that we may classify
a non-visible cell as visible but not the opposite. Overesti-
mating can thus lead to more work but will not introduce
errors.

The maximum x screen coordinate can be estimated as
follows,

max(
[V M]x
[V M]w

) ≤ max([PM]x + [DM]x)

min([PM]w + [DM]w)

≤ [PM]x + max([DM]x)

min([PM]w + [DM]w)

≤ [PM]x + [D+M+]x
min([PM]w + [DM]w)

where we define the + operator to mean to use the absolute
value of the vector or matrix elements.

Assuming that the meta-cells are always in front of the
screen we have

Vz > 0 ⇒ Pz −D+
z > 0 ⇒ [PM]z − [D+M+]z > 0

thus,

max
[V M]x
[V M]w

=

8><>:
[PM]x+[D+M+]x
[PM]w−[D+M+]w

if numerator ≥ 0

[PM]x+[D+M+]x
[PM]w+[D+M+]w

otherwise

Similarly, the minimum x screen coordinate can be over-
estimated as,

min
[V M]x
[V M]w

≤

8><>:
[PM]x−[D+M+]x
[PM]w+[D+M+]w

if numerator ≥ 0

[PM]x−[D+M+]x
[PM]w−[D+M+]w

otherwise

The top and bottom of the bounding box are computed
similarly.

The complete procedure for estimating the bounding box
(see Figure 6) requires only two vector matrix multiplica-
tions, two divisions, four multiplications, four comparisons,
and six additions.

4 Results

To evaluate the performance of the SAGE method we
compare it to the performance of the Bon Octree [24],
NOISE [16] and WISE [15] methods. We also compare the
performance of the three acceleration modifications we pro-
pose, namely: scan conversion of convex polygons, bounding
box estimation and point-base rendering. The various exper-
iments were done using the head and legs sections from the
visible female dataset [18]. The head dataset has dimensions
of 512x512x208 for a total of 104MB, and the legs dataset is
512x512x617 for a total of 308MB.

4.1 SAGE vs. Other Extraction Methods

The tests cases included (see Figure 7) a normal view of
each dataset, a closeup of a small section, and a distant
view. Each test was performed twice using the isovalues cor-
responding to the skin (600.5) and bone (1224.5). The tests
were selected such that each will reflect different characteris-
tics. For the visible woman dataset, the skin isosurface had

PrecomputeM+:
M = V iewMatrix
M+

i,j = ‖Mi,j‖

Compute(t, f1, f2)
return t > 0 ? t ∗ f1 : t ∗ f2

FindBouningBox(cell)
P = center of cell
D = (dx

2
, dy

2
, dz

2
, 1)

PM = p ∗M
DM = d ∗M+

ffar = 1
PMw+DMw

fnear = 1
PMw−DMw

right = Compute(PMx + DMx, fnear, ffar)
left = Compute(PMx −DMx, ffar, fnear)
top = Compute(PMy + DMy, fnear, ffar)
bottom = Compute(PMy −DMy, ffar, fnear)

Figure 6: Procedure for (over)estimating the bounding box
of a projected cell.

(a) Distant (b) Normal (c) Closeup

Figure 7: Example of the three views.

large contiguous areas of coverage whereas the isosurfaces
for the bone exhibit complex structures with many holes and
cavities. The closeup test demonstrates one of the benefits
of view dependent isosurface extraction when only a small
section of the isosurface in needed. In contrast, the distant
tests shows examples where not even the visible isosurface
should be extracted, rather only the visible portion with re-
gard to the resolution of the screen. The size of the objects
on the screen, in the case of the distance view, also corre-
sponds to their size when the full dataset (see Figure 3) is
used.

The experiments were done on an SGI Onyx2 (using a
single CPU). Table 1 and Table 2 illustrate the results for
these tests.

In all the tests the view dependent approaches, WISE
and SAGE, consistently reduced the number of extracted
polygons. The SAGE algorithm generated far fewer triangles
then the WISE method (except for one case) by up to factors
70 (1.5%) for the distance cases, factor of 1.5 for closeup, and
up to a factor of 7 on the normal view cases. With respect to

Table 1: Visible Woman Head Dataset

view method extraction number of view

time (sec) polygons (sec)

Skin

any Octree 10.9 1,430,824 2.6

NOISE 10.2

distant WISE 35.1 292,242 0.6

SAGE 3.4 18,645 <0.1

normal WISE 35.8 344,628 0.6

SAGE 4.4 195,408 0.3

closeup WISE 4.6 43,222 0.1

SAGE 0.6 36,939 <0.1

Bone

any Octree 17.0 2,207,592 4.6

NOISE 14.6

distant WISE 13.9 271,075 0.5

SAGE 4.1 12,747 <0.1

normal WISE 32.7 278,735 0.7

SAGE 4.5 153,617 0.2

closeup WISE 10.6 84,599 0.2

SAGE 1.5 67,808 0.2

the extraction time, the SAGE method outperformed WISE
consistently by factors of 3 to 7, and in one case up to a
factor of 50.

These results depend on the depth complexity of the full
isosurface as well as the visible portion of the isosurface and
its footprint on the screen.

4.2 SAGE Acceleration Modification

The key feature of the SAGE algorithm is the use of the
bottom-up rendering approach. In addition, SAGE utilizes
three acceleration modifications different than its predeces-
sor algorithm WISE: scan-conversion of concave polygons,
bounding box approximation and point-based rendering. In
Table 3 and Table 4 we show the advantage these three
modifications exhibit. The experiments were done using the
same datasets, on a 1.7 MHz Pentium 4 Linux machine with
768MB and GeForce4 graphics card.

The results show that using point-based rendering, when
appropriate, consistently accelerate the rendering time by a
factor of 10. This result is especially appealing for isosur-
face extraction from very large datasets where many meta
cells project onto the same pixel on the screen. Using scan-
conversion of concave polygons shows a consistent reduction
of about 30% in the extraction time. The bounding box
algorithm had the least impact and in general reduces the
extraction time by 7-9%. It is interesting to note that for the
distance test cases the bounding box estimation performed
worst then the full projection by about 1% if point-based ren-
dering was not used. However, when combined with point-
based rendering, the bounding box estimation consistently
reduced the rendering time by more then 30%.

Another interesting point is the fact that SAGE performed
the best when only a small section of the isosurface is visible
(closeup) or if the isosurface is far and point-based rendering
can be used. This is especially intriguing when one considers
that in the first case the isosurface covers most if not all of
the image (i.e., the scan conversion has to touch each and
every pixel) while in the later case the isosurface covers only
a very small faction of the final image.

Table 2: Visible Woman Legs Dataset

view method extraction number of view

time (sec) polygons (sec)

Skin

any Octree 33.4 3,264,755 6.2

NOISE 27.1

distant WISE 37.5 968,073 2.0

SAGE 0.7 14,917 <0.1

normal WISE 70.4 935,784 1.8

SAGE 12.1 122,229 0.2

closeup WISE 16.6 364,394 0.80

SAGE 5.7 234,607 0.51

Bone

any Octree 18.9 2,328,940 4.7

NOISE 16.3

distant WISE 18.0 412,530 0.9

SAGE 0.5 6,099 <0.1

normal WISE 33.3 406,262 0.9

SAGE 6.8 503,545 0.1

closeup WISE 9.6 180,270 0.5

SAGE 3.8 122,262 0.3

SAGE performs the worst when the isosurface is large
enough such that the proposed point-base rendering is not
used but the triangles it generates are very small. This issue
should be further investigated in future research.

5 Acknowledgments

This work was supported in part by grants from the DOE
ASCI, the DOE AVTC, the NIH NCRR, and by the National
Science Foundation under Grants: 9977218 and 9978099.
The authors would like to thank Blythe Nobleman and Chris
Johnson for their contribution.

References

[1] C. L. Bajaj, V. Pascucci, D. Thompson, and X. Y.
Zhang. Parallel accelerated isocontouring for out-of-
core visualization. In Proceedings of the 1999 IEEE
symposium on Parallel visualization and graphics, pages
97–104. ACM Press, 1999.

[2] Martin Bertram, Mark A. Duchaineau, Bernd Hamann,
and Kenneth I. Joy. Bicubic subdivision-surface
wavelets for large-scale isosurface representation and vi-
sualization. In Proceedings of Visualization 2000, pages
389–396, October 2000.

[3] Martin Bertram, Daniel E. Laney, Mark A.
Duchaineau, Charles D. Hansen, Bernd Hamann,
and Kenneth I. Joy. Wavelet representation of contour
sets. In Proceedings of Visualization 2001, pages
303–310, October 2001.

[4] Yi-Jen Chiang and Cláudio T. Silva. I/O optimal iso-
surface extraction. In Roni Yagel and Hans Hagen, ed-
itors, IEEE Visualization ’97, pages 293–300, 1997.

[5] Yi-Jen Chiang, Cludio T. Silva, and William J.
Schroeder. Interactive out-of-core isosurface extraction.
In Proceedings of the conference on Visualization ’98,
pages 167–174. IEEE Computer Society Press, 1998.

Table 3: Visible Woman Head Dataset

view Scan. BBox Points Extract Draw Tri.

Est. (msec) (msec) (points)

Skin

octree 1,493 576 1.430M

distant reg no no 1,590 2 13,610

new no no 1,084 2 13,610

new yes no 1,100 2 13,610

- no yes 159 0.5 (5,751)

- yes yes 112 0.5 (5,751)

normal reg no - 1,857 80 191,483

new no - 1,294 80 191,483

new yes - 1,205 80 191,483

closeup reg no - 155 3 22,628

new no - 102 3 22,628

new yes - 99 3 22,628

Bone

octree 2667 894 2.207M

distant reg no no 1,820 1.4 9,736

new no no 1,326 1.4 9,736

new yes no 1,279 1.4 9,736

- no yes 169 0.3 (4,289)

- yes yes 115 0.3 (4,289)

normal reg no - 2,062 70 167,949

new no - 1,512 70 167,949

new yes - 1,380 70 167,949

closeup reg no - 615 25 57,669

new no - 432 25 57,669

new yes - 437 25 57,669

[6] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno.
Optimal isosurface extraction from irregular volume
data. In Proceedings of IEEE 1996 Symposium on Vol-
ume Visualization. ACM Press, 1996.

[7] R. S. Gallagher. Span filter: An optimization scheme
for volume visualization of large finite element models.
In Proceedings of Visualization ’91, pages 68–75. IEEE
Computer Society Press, Los Alamitos, CA, 1991.

[8] Jinzhu Gao and Han-Wei Shen. Parallel view-
dependent isosurface extraction using multi-pass occlu-
sion culling. In Parallel and Large Data Visualization
and Graphics, pages 67–74. IEEE Computer Society
Press, Oct 2001.

[9] M. Giles and R. Haimes. Advanced interactive visual-
ization for CFD. Computing Systems in Engineering,
1(1):51–62, 1990.

[10] Ned Greene. Hierarchical polygon tiling with coverage
masks. In Computer Graphics, Annual Conference Se-
ries, pages 65–74, August 1996.

[11] T. Itoh and K. Koyamada. Isosurface generation by
using extrema graphs. In Visualization ’94, pages 77–
83. IEEE Computer Society Press, Los Alamitos, CA,
1994.

[12] T. Itoh, Y. Yamaguchi, and K. Koyyamada. Volume
thining for automatic isosurface propagation. In Visu-
alization ’96, pages 303–310. IEEE Computer Society
Press, Los Alamitos, CA, 1996.

Table 4: Visible Woman Legs Dataset
view MC. BBox Pts Extract Draw Tri.

Est. (msec) (msec) (points)

Skin

octree 11,407 1,832 3.874M

distant reg no no 4,688 8 32,618

new no no 3,306 8 32,618

new yes no 3,376 8 32,618

- no yes 475 2 (14,900)

- yes yes 300 2 (14,900)

normal reg no - 4,826 63 150,818

new no - 3,331 63 150,818

new yes - 3,058 63 150,818

closeup reg no - 976 42 102,103

new no - 683 42 102,103

new yes - 638 42 102,103

Bone

octree 2,381 1,044 2.2329M

distant reg no no 2,593 3 12,976

new no no 1,841 3 12,976

new yes no 1,705 3 12,976

- no yes 274 0.3 (6333)

- yes yes 180 0.3 (6333)

normal reg no - 2,593 30 76,931

new no - 1,818 30 76,931

new yes - 1,608 30 76,931

closeup reg no - 1,101 39 95,710

new no - 775 39 95,710

new yes - 742 39 95,710

[13] Philippe G. Lacroute. Fast volume rendering using
shear-warp factorization of the viewing transformation.
Technical report, Stanford University, September 1995.

[14] Zhiyan Liu, Adam Finkelstein, and Kai Li. Progressive
view-dependent isosurface propagation. In Proceedings
of Vissym’2001, 2001.

[15] Y. Livnat and C. Hansen. View dependent isosurface
extraction. In Visualization ’98, pages 175–180. ACM
Press, October 1998.

[16] Y Livnat, H. Shen, and C. R. Johnson. A near optimal
isosurface extraction algorithm using the span space.
IEEE Trans. Vis. Comp. Graphics, 2(1):73–84, 1996.

[17] W.E. Lorensen and H. E. Cline. Marching cubes:
A high resolution 3D surface construction algorithm.
Computer Graphics, 21(4):163–169, July 1987.

[18] National Library of Medicine.
The visible human project, 1986.
http://www.nlm.nih.gov/research/visible/visible human.html.

[19] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen,
and P. Shirley. Interactive ray tracing for volume vi-
sualization. IEEE Transactions on Visualization and
Computer Graphics, 1999.

[20] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P.
Sloan. Interactive ray tracing for isosurface rendering.
In Visualization 98, pages 233–238. IEEE Computer So-
ciety Press, October 1998.

[21] Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar,
and Markus Gross. Surfels: Surface elements as render-
ing primitives. In Kurt Akeley, editor, Siggraph 2000,

Computer Graphics Proceedings, pages 335–342. ACM
Press / ACM SIGGRAPH / Addison Wesley Longman,
2000.

[22] H. Shen and C. R. Johnson. Sweeping simplicies: A fast
iso-surface extraction algorithm for unstructured grids.
Proceedings of Visualization ’95, pages 143–150, 1995.

[23] J. Wilhelms and A. Van Gelder. Octrees for faster iso-
surface generation. Computer Graphics, 24(5):57–62,
November 1990.

[24] J. Wilhelms and A. Van Gelder. Octrees for faster iso-
surface generation. ACM Transactions on Graphics,
11(3):201–227, July 1992.

[25] Xiaoyu Zhang, Chandrajit Bajaj, and Vijaya Ra-
machandran. Parallel and out-of-core view-dependent
isocontour visualization using random data distribu-
tion. In D. Ebert, P. Brunet, and I. Navazo, editors,
Joint Eurographics — IEEE TCVG Symposium on Vi-
sualization (VisSym-02), pages 1–10, 2002.

	sage.pdf
	Introduction
	Previous work
	SAGE
	A Bottom Up Approach
	Scan Conversion of Concave Polygons
	Rendering Points
	Fast Estimates of a Bounding Box of a Projected Cell

	Results
	SAGE vs. Other Extraction Methods
	SAGE Acceleration Modification

	Acknowledgments

