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Abstract:

Isosurface extraction is an important technique for visualizing three-dimensional scalar fields. Dur-
ing recent years, researchers have created many acceleration methods for isosurface extraction,
including the span space representation and view-dependent methods. In this paper, we introduce
a progressive view-dependent isosurface extraction method that exhibits a rapid convergence rate
to the exact isosurface and is well suited for remote visualization. The proposed method takes
advantage of rendering hardware to resolve visibility tests. In contrast to previous view-dependent
isosurface extraction methods, our method (PHASE) can quickly augment the current partial ex-
tracted isosurface based on a new point of view without the need for a full view-dependent extraction
pass.

THEU

UNIVERSITY
OFUTAH



PHASE:ProgressiveHardwareAssisted Is8urface
Extraction Framework

Yarden Livnat, Xavier Cavin, Charles Hansen

Abstract— Isosurface extraction is an important tech- supercomputer while visualizing and investigating the re-
nique for visualizing three-dimensional scalar fields. Dur- sults on the local desktop. Remote visualization of large
ing recent years, researchers have created many acceleragjatasets poses an even greater challenge for isosurface ex-
tion methods for isosurface extraction, including the span 5 ion due to the limited bandwidth of the intermediate
space representation and view-dependent methods. In this network.

paper, we introduce a progressive view-dependent isosurface ) )
extraction method that exhibits a rapid convergence rate to /N respond to this challenge, current research efforts aim

the exact isosurface and is well suited for remote visualiza- t0 Simplify the geometry of the isosurfaaéer extracting
tion. The proposed method takes advantage of rendering the isosurface anbkefore it renders or transmits over a net-
hardware to resolve visibility tests. In contrast to previous work [7], [8]. In effect, the aim of such methods are to
view-dependent jsosurface extraction method;, our method requce the complexity of rendering an isosurface to a sub-
(PHASE) can quickly augment the current partial extracted  |jneqr complexity with respect to the size of the original
'Sosurf.ace based on a new p(.)'nt of view without the need for isosurface. However, such methods do not address the ini-
a full view-dependent extraction pass. ) . . .
. , tial challenge of extracting and constructing the isosurface.

Keywords—lsc_)surface Extraction, Vlew-Dependent,_Pro- In this paper, we present a new view-dependent extrac-
gressive Extraction, Hardware Accelerated, Remote Visual- ! . i
ization, Output Sensitive tion framework that progressively and rapidly extracts the
visible portion of an isosurface. The proposed framework
uses a novel visibility propagation scheme that eliminates
the need for software rendering of extracted triangles and

Scientists and engineers often rely upon knowledgeduces the number of required expensive visibility tests.
obtained from experiments and simulations that produbtoreover, the few required visibility tests are performed
large scale discrete samplings of three-dimensional scalaing the graphics acceleration hardwaP&lASE is par-
fields. Isosurface extraction is an important techniquieularly attractive for interactive investigation of large
for visualizing three-dimensional scalar fields. By exdata volumes where only small sections of the data are vis-
posing contours of constant value, isosurfaces providébée at any particular moment, such as navigating through
mechanism for understanding the structure of the scatacolonoscopy data set. We begin with a review of earlier
field. These contours isolate surfaces of interest, farork on isosurface extraction in Sectitin The PHASE
cusing attention on important features in the data sufthmework is discussed in Sectidh, followed, in Sec-
as material boundaries and shock waves, while sun |V, by a detailed description of the theory underlying
pressing extraneous information. Several disciplines, ifre visibility traversal pipeline and the visibility maps on
cluding medicine f], [2], computational fluid dynamics which thePHASE algorithm is based. Hardware accelera-
(CFD) [3], [4], and molecular dynamics5], [6], effec- tion of PHASE is presented in Sectio. We present test
tively use this method. However, for very large datasetgsults in SectiorVl and conclude with future directions
the enormous data size overwhelms the interactive extracSectionVIl .
tion and rendering times for isosurfaces. Without tech-
niques to address the large-scale data size, the practicality [l. PREVIOUSWORK

of these methods would be limited. The time complexity of isosurface extraction algorithms

The availability of inexpensive yet powerful deSkto%epends on the size of the datasetind the size of the iso-
computers and parallel supercomputers in few Iocaﬂgﬂrface,k. Early extraction method<[, [10], [11], [12],
leads to the development of remote visualization tec 3], [14], [15], [16] exhibit worst case time complexity of
niques. The fundamental drive for this paradigm enabl n). With the introduction of the Span Space, M@ISE
the scientist to perform very large simulations on a remoé?gorithm [17, [18] achieved a worst case complexity of

Scientific Computing and Imaging Institute, University of Utah, eO(v/n+ k) while Cignoniet al. [19] achievedO(logn+ k)
mail:yarden@cs.utah.edu albeit, with a higher memory cost. As we minimize the
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size dependency of the original dataset, the size of the ex-

tracted isosurface, becomes the dominate factor. Inter-

actively rendering a very large isosurface presents a great | ‘_

challenge even on high-end graphics workstations. AN
Livnat and Hansen proposeé(], [21] to surpass the T b s

O(k) barrier based upon the observation that the isosur- | [l | e

faces extracted from very large datasets often exhibit high /

depth complexity. There are two reasons for this depth BN

complexity. First, since the datasets are very large, the pro-

jection of individual cells tend to be sub-pixel. This leads Fig. 2

to a large number of polygons, possibly non-overlapping, A TWO-DIMENSIONAL SCENARIO.

that project onto individual pixels. Second, for some

datasets, the depth complexity is high since large sections

of an |sosurfac_e are internal gnd thus, gccl'uded by Oﬂi%wever, isosurface extraction poses a special problem as
sections of the isosurface, as illustrated in Figlire there is no geometry to pre-process prior to extraction, still
worse, the extracted geometry changes for every given iso-
value. As such, view-dependent isosurface extraction can
rely only on the underlying structure of the data volume.
The view-dependent framework presented by Livnat
and Hansend(] is based on a hierarchical traversal of the
data and a Marching Cubes triangulation. This framework
exploits coherency in the object, value, and image spaces,
as well as balancing work between the hardware and the
software. The algorithm used a three step approach: first,
the data traversal used in Wilhelms’ and Van Gelder’s algo-
rithm [13] is augmented to follow a front-to-back order in
addition to pruning empty sub-trees based on the min-max
values stored at the octree nodes. The second step employs
coarse software visibility tests for each meta-cell visited
during the traversal. The aim of these tests is to deter-
mine whether previously extracted sections of the isosur-
face obscure a meta-cell from view (thus the requirement
for a front-to-back traversal). Finally, the triangulation of

These internal sections cannot be seen from any dir t&(_a visible cells are forwarded to the graphics accelerator

tion unless the external isosurface is peeled away or ot rendering by the hardware, where the final and exact

off. Therefore, if one can extract just the visible po partial-] visibility of the triangles is resolved.

tions of the isosurface, the number of rendered polygons i

will be reduced resulting in a faster algorithm and Iowé%' View-Dependent Implementations

bandwidth requirement for remote visualization. Figlre |n [20], Livnat and Hansen also presented #W&SE
depicts a two-dimensional scenario. In a view-dependgQ¥arped IsoSurface Extraction) algorithm, which pro-
method, only the solid lines are extracted whereas in ngigled a particular implementation of the view-dependent
view-dependent isocontours, both solid and dotted linggproach. The algorithm took advantage of a shear-warp

—— Visible Isoline

--------- Non-Visible Isoline

Fig. 1
A SLICE THROUGH AN ISOSURFACE REVEALS THE
INTERNAL SECTIONS WHICH CAN NOT CONTRIBUTE TO THE
FINAL IMAGE .

are extracted. factorization of the viewing transformation, as well as the
Greeneet al. [22] occlusion culling technique. Thé/ISE
A. View-Dependent Framework algorithm demonstrated the potential benefits of such an

The computer graphics literature contains many viewpproach. The ratio of triangle intersections per screen
dependent rendering and traversal algorithms. These alge}, and the fill rate of screen tiles hierarchy pose the two
rithms generally rely on a pre-process stage in which theost prominent weaknesses for this method.
geometry primitives are organized for an efficient accessRecently, Livnatt al. introduced a new view-dependent
and visibility determination for any given view directionalgorithm, terme®AGE [23], [2]], that addressed those



weaknesses. In order to alleviate the problem of projectingd redistributed to all the processors. Using this global
many small triangles down the hierarchical tile structurecclusion map, each processor extract its visible portion
SAGE employs a bottom-up approach. This approach a$ the isosurface. They noted that updating the occlusion
based on the observation that the contribution of a smaibp during the traversal is expensive even when using hi-
triangle is limited to only a small neighborhood in the hierarchical occlusion map, and thus opt not to update the
erarchy,i.e., few tiles at the lowest level. Thus, the trianecclusion maps and rely on the first occlusion map approx-
gles are projected at the highest resolution and the chanigestion.

are forwarded up the hierarchy. However, the visibility An alternate approach is to generateadnptive recon-
checks are still performed in a top-down fashion in oktruction of the isosurface. These methods extract an ap-
der to quickly determine if a cell is visible. Replacingroximation of the isosurface based on some user specified
Greene’s occlusion culling technique with scan-conversigfiteria. Westermanat al. [27] allowed the user to spec-
of groups of triangles, reduced the number of triangle iffy a point of interest inside the data around which they
tersections per screen cell. TBAGE method exhibits extract a refined isosurface. Further away from that cen-
an acceleration factor between 5 and 10 over the previQyp of attention, they extract the isosurface using a coarse
WISE method. representation of the data. The view-dependefiiement

In 2001, Gao and Shei4] introduced a parallel multi- approach of Gregorskit al. [28] used the user view point
pass view-dependent algorithm, based on similar ideasaé well as user specified error tolerance in screen space.
master host maintains a virtual framebuffer for visibilitfrhey recursively refined the isosurface until these crite-
queries. It then distribute the cells that require trianguléia where met. Their method used a novel representation
tion among the other hosts. Each such host creates, affethe underlying data, and was able to achieve a remark-
the triangulation, a local visibility map based on the triable interactivity on very large isosurfaces. However, this
angles it created. The collection of these local visibilitspproach is not suitable for the purpose of remote visu-
maps are then combined and integrated into the master wiization, as the same section of the isosurface can have
tual framebuffer and the procedure is repeated. The masiifferent representations from different view points.
framebuffer use 2-bit per pixel as oppose to the 1-bit per
pixel bothWISE andSAGE use. This extra bit allows the Visibility Framebuffer
algorithm to project meta-cells which may be hidden by
other meta-cells in front of it. As opposed Y8ISE and A key requirement in most view-dependent extrac-
SAGE which do not alter the state of the framebuffer dution methods is to maintain the current visibility state
ing the visibility query, Gao and Shen modify the frameagainst which the extraction process can perform visibility
buffer and use this extra bit to determine if a meta-cejueries. To this end, every extracted triangle is projected
is occluded only by previously extracted triangles or bynto a virtual framebuffer. However, rendering to the vir-
meta-cells as well. While the algorithm shows a very goddal framebuffer and performing visibility tests against it
load balancing it has a several key shortfalls. First, all tmeust be executed quickly and accurately.
rendering is done in software which is slow especially due Both WISE and SAGE used 1-bit per pixel visibility
to the need to maintain the complex 2-bit per pixel statgasks to maintain the state of the screen pixel (cov-
Second, the performance of the algorithm is poor with rered or not), while Gao and Shef4] used 2 bits per-
gard to execution time. pixel (visible, covered by triangle and covered by a meta-

Recently, Liuet al. [25] introduced a progressive view-cell). There are four major drawbacks to these approaches.
dependent isosurface propagation algorithm. This algeirst, because the framebuffer maintains only a minimum
rithm casts rays from the view point through the data &ate, the first two algorithms cannot simultaneously per-
find visible non empty cells, and uses these cells as se@sien visibility checks on two meta-cells whose projec-
to propagate the polygonal isosurface. This algorithm alens on the screen may overlap. Second, the rendering
lows one to quickly render a good approximation, but take$the visibility masks and visibility queries are performed
a long time to converge to the final image due to the lar@ie software that is inherently slow. Third, the algorithms
number of rays required. do not take advantage of the coherency between consecu-

Zhanget al. [26] presented a parallel out of core viewtive view points and thus must begin the extraction process
dependent extraction method. In this approach, the saoew for each new view point. Fourth, visibility tests are
tions of the data are distributed to the various processqusrformed on each and every meta-cell encountered during
For a given isovalue, each processor uses ray castinghe traversal, though many are trivially visibkeg., cells
generate an occlusion map. The maps are then mergedhe boundary of the dataset.



[1l. PROGRESSIVEVIEW-DEPENDENTISOSURFACE  z-buffer [30].
EXTRACTION One way to accelerate the full z-value rendering is to

In this section we address two key shortcomings of Iorreplace the virtual visibility framebuffer with the graphics

vious view-dependent approachesfiori knowledge and Rardware framebuffer. This approach resolves the render-

. Lo . - ing issue, but on the other hand, introduces a major hur-
view coherency). As part of this discussion we introduc g )

the notions of stricvs loose traversal order and delayeéﬁgv?e.?ﬁiﬁz ;eaggirzagz f;%rgﬁh?;r\izvizueﬁeérzzgf ;IVGOIY
visibility queries. These two are the key to tRéIASE ' P P y b g

. . rithms that must perform large number of visibility checks.
framework that we present at the end of this section. In P 9 y

the next section we provide a more detail discussion Bf Loose versus Strict Traversal Order

the theory behin®HASE while implementation issues are PHASE addresses the slow read back problem by defer-
pr(::rshented n th(ej ];O”O\ng TPeHCinI]ES.' based on t b ring the read as long as possible and performing many visi-
€ proposed framework, » 1S Dased on two ob- fility checks via a single query of the hardware buffer. Re-

servations. First, many of the meta-cells may be trivial )érring to Figure3, we first note that octari, C andD do
categorized as either visible or occluded without perforrﬂ ’ ’

. . L ot overlap and thus, can be traversed in parallel (once oc-
ing an expensive visibility query. Second, most of th

2 : : _ T MB3ntais fully traversed)j.e., their visibility queries can be
visible/occluded cells from one view point will remain S%erformed in one read from the hardware framebuffer. Yet
when viewed from a nearby view point. o

this parallelism is limited as none of the sub-octants inside

each of them can be traversed before a visibility query is

performed on their parent. In addition, this approach is
In order to take advantage of view coherency, one nedtgited only to non-overlapping regions.

to replace the one or two bits per pixel visibility frame- The key to thePHASE approach is that a full z-buffer

buffer with a full z-buffer. Using a z-buffer removes theéemoves the need forsrict front-to-back traversal of the

need to perform the visibility checks insarict front-to- data. A strict front-to-back traversal requires that all the

back order. One must still perform most of the visibileells in octantA be checked before octaBf C andD can

ity tests in a hierarchical front-to-back manner in ordde traversed. However, even though some portions of these

to achieve efficient pruning during the data traversal. petants may be occluded by triangles in octantother

addition, the full z-buffer allows the extraction process tportions are, nevertheless, trivially visible. As such, a hi-

use visible triangles from a previous view point, @s  erarchical traversal can descend these three octants even

tential occluders 9 [Note:add more citations]dur- before a complete traversal of octahtcompletes. Fur-

ing the extraction from a new view point. To this end, dhermore, sub-octanBapgp e are also trivially visible as

the beginning of each view-dependent extraction cycle tHey form part of the outside boundary.

visibility framebuffer is initialized with the projection of

the currently visible triangles. Due to the view coherency,

A. Full Z-Buffer Visibility Tests

only a few previously hidden meta-cells and triangles will . g C
become visible. In essence, most of the construction of . B C A
the visibility framebuffer is achieved in the first projection P Vi
pass. g | }-
There is, however, a cost of using this approach. While
new triangles can be added in each cycle, none are re- a a F
moved even if they are hidden from the new view point.
: o : ‘E D
More importantly, the projection of the triangles and the V2

visibility queries are much more complex and time con-
suming than those performed on a one bit per pixel visibil-
ity buffer. Rendering requires computing and comparing
the z value for each rendered pixel. Visibility checks of Fig. 3

meta-cells can not rely on a single bit for large areas in th§-ranTs, SUB-OCTANTS AND VARIOUS VIEW DIRECTIONS
visibility framebuffer rather the z values of all the pixels

that are covered by a meta-cell must be examined. The vis-

ibility queries are also more complex and expensive evenin summary, we can conclude that octafB,C,D, E,F
with sophisticated data structures such as the hierarchigatlG are trivially visible without the need to perform any




visibility queries against the framebuffer. Some of the sub- Algorithm 1
octants are also trivially visible and can be traversed out of PHASE FRAMEWORK
order. However, not all octants can be traversed out of

the strict front-to-back order. It is not clear, for example, potentialNodes— rootNode

that octanBg can be traversed before octais fully tra- repeat

versed. traversedata (SectionV-B) and determine:
Consider two view pointsy* andV?, as shown in Fig- - visibleNodes— visible non-empty leaf nodes

ure 3 and assume that sub-octeBy is empty (the iso- . possibleNodes- partial occluded nodes

surface does not go though it). From view powit, TriangulatevisibleNodes

sub-octanBg should not be visited before sub-oct#pf. RendeisibleNodes to framebuffer

However, from view poinV2, no such constraint exists. Queryhardware framebuffer (Sectior):

Furthermore, the fact th&p is visible and empty implies "~ (one query for all possibleNodes)

that B may be visible from many other view points be- . potentialNodes— visible nodes

tweenV ! andV? (as well as many other view points). Note yntil potentialNodes is empty
that we concluded (for view poitt?) that sub-octanBg
is visible, and can thus be traversed at anytime, purely on

adjacency information, current view point, and data valhe previous view point, sorted front-to-back, relative to
ues. All of this information is readily available without theéhe current view point. We then clear the framebuffer, and

need to perform expensive visibility queries. project all the triangles we extracted for the previous view
o _ point. This time however, we project using the new view
C. Delayed Visibility Queries point. In other words, we use the extracted triangles as

The notion of out of order traversal allows us to corotential occluders. Due to the view coherency, very few
tinue the hierarchy traversal even when a strict front-tgreviously non-visible cells will become visible and the
back traversal order stalls waiting for a visibility query. Itoop will end quickly. We can also determine which of the
essence, we can queue requests and continue the trWiOUSly extracted triangles are not visible from the new
sal out of order. Note that we should triangulate any noview point, and mark their cells as non-visible. However,
empty leaf cell that the traversal does reach. After we tridis will require a special step that will not affect the final
verse all possible out-of-order traversal paths we are |#ftage, only the number of triangles rendered. As such, the
with a set of triangles and collection of cells for which viscost of removing the hidden triangles may be higher than
ibility queries are required. We then render these trianglé cost of rendering them.
into the framebuffer in a single batch and execute a sin-The following sections explore, in detail, the notions
gle visibility query against the hardware framebuffer (se¥ out of order traversal and visibility queries against the
sectionV). The algorithm is now repeated using the met&ardware framebuffer.
cells we determine are visible.

It is important to note that the delayed visibility queries
may refer to meta-cells that overlap or even hide eachwith the PHASE framework concept in mind, we now
other. Due to the use of a full z-buffer for the renderinfprmalize the theory of visibility propagation using the
and visibility we can ensure the correct visibility resultaotions of loose traversal order, and delayed visibility
are returned (see sectiot). queries. We also present our particular implementation ap-

proach and prove its correctness.
D. ThePHASE Framework In sectionlll we established that some of the nodes can

For the sake of clarity we refer to both cells and met&e determined to be visible priori and can thus be tra-
cells as nodes. In addition, visiting a node will mean versed out of order. However, we need a mechanism to

IV. THE TRAVERSAL PIPELINE

triangulating a cell or traversing a meta-cell. serialize this process so that we can establish some of its
The key steps in the progressive hardware accelerapedperties and devise a method to execute it. This will al-
extraction framework are: low us to determine which node can be visited first and

We can take advantage of view coherency when just tiwdich nodes traversal must be delayed until some prereg-
view point changes between consecutive extraction pass#sites are met.
In essence, we can treat this case similar to another refineWe first note that a strict front-to-back traversal of the
ment loop. First, we initialize the set of potentially visibl@lata can be implemented as a stack. At each stage, the
nodes with all the non-visible nodes (not just the root) frofront node is examined and classified as eitleetpty, vis-



ible or non-visible. An empty nodei(e. one that does not visible and thus we can traverse them without the need to
intersect the isosurface) is skipped. A non-visible nodepgrform a visibility query against the framebuffer. It does
discarded or added to then-visible set for use in the next not matter if nodeé\ throughAy are empty or contain tri-
iteration. A visible node, on the other hand, is either trangles. After we traverse the visibdg thoughAg nodes
angulated (a cell) or is traversed (meta-cell) and its eiglie can visit nodédy. However, in the case of nodgy,
children are push into the top of the stack in back-to-fromte must perform a visibility check as it may be hidden by
order. triangles we extracted from the previously traversed nodes
Consider again the scenario in Figuiend the states Ax thoughAg. Yet, we do not need to stall the traversal
of the traversal stack (Figuré). In step 1, the stack ispipeline, even at that step. Taking advantage of the no-
initialized with the root nod®R. The stack top noddy, is tion of out-of-order traversal, we note that the next node
then popped and after we determine it is visible, we push,the pipeline, nod®, is already known to be visible. As
in step 2, octant# throughH onto the stack. Again, thesuch we can traverse no@eand replace it with a list of
traversal must stall as we need to determine if the noddtatchildren, sorted based upon the current view point (step
the top of the stackA,) is visible. In fact, we have to stall5). Note that we must maintain the general view depen-
the traversal and perform a visibility query for each nod#ent order and keep nodsg; in front of all the children of

we pop from the traversal stack. B. Once again, we know from the initial check that nodes
B; are all visible excepBr andBy. We can thus traverse
STEF Stack these nodes, leaving nodg, at the front of the pipeline
1 (step 6).
2 [a]8 [c [D]Z [F g [H] Continuing the above procedure, we can traverse 37

[As]2s] Ac[A0] 2| 2r [ 2| 2] B [C [D [£ [F [ [H] nodes before the traversal pipeline finally does stall. At
2«03 [c [p]z [F [¢ [#] that step we are left with 19 sub-octants and one full oc-
(@] Ba] Ba] B [Bo] B[ B+ [Bs[BaC [D |2 |F |6 [#] tant () in the pipeline. Assuming we did find triangles
[a]8:[8]C [D[E [ [¢ [#] during our traversal, we update the visibility framebuffer
by rendering the triangles we extracted, and then perform
(@] Br| Ba] Cz [Cn| De| DA £ | £+ | Es | B Fa | F| Fe [P GolGe G- lgn]#7] @ Single visibility query to determine which of the 20 nodes
in the stalled pipeline are visible (see Section
The traversal pipeline can then resume by traversing the
visible nodes while maintaining the front-to-back order in
the pipeline. We stop the traversal once there are no more
visible nodes in the pipeline (after a visibility query).

Using the notion of out of order traversal we can liken o .
the traversal stack to a CPU pipeline. When a simp’ﬁ) The Theory of Visibility Propagation
pipeline reaches a read from memory it must stall until the Now that we establishellbw we can traverse the nodes
data is retrieved. An advanced compiler can anticipate tloist of order, we need to establisthen are we allowed to.
stall and schedule other operations, which do not depdndther words, how do we establish that a node is visible
on the result of the read, ahead of operations which deithout performing an explicit visibility query against the
Similar if we do not use a strict view-dependent traversihmebuffer. In the previous scenario, we were able to skip
order, we can continue to visit the next nodes in the traverver 19 nodes during the traversal due to our initial exam-
sal pipeline that do not depend on the visibility results @afation of the scene. In effect, we were able to peel off the
the node at the head of the pipeline. visible portion of the data volume’s outer shell. We can
Consider again, scenario in Figuge with respect to follow the same procedure after every visibility query.
our view point. Even before we start to traverse the data,Let us again consider the initial examination of the scene
we can determine that the root node, as well as nddesnd, this time, assume some of the nodes are empty. For
thoughG (but notH) are all visible. Furthermore, we canexample, assume node is empty. We can then ask
determine that certain additional nodes must also be wshether nodeH has became visible from our view point
ible because they are on the visible boundary of the raatd, if so, what can be stated about any of its childdgn
node. Using this information, we can see (Figdjehat It is clear that from view point/!, we gain no new infor-
the traversal does not need to stall in step 1, nor in steyation aboutH in this case. However, from view point
2 as we know both the root node and nddare visible. V2, nodeH is visible as well as noddsa, Hg, Hp andHe.
Better yet, we also know that nodag throughAg are also On the other hand, the visibility of noddg from some

o wn A W
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Fig. 4
OUT OF ORDER VIEWDEPENDENT TRAVERSAL



particular view point somewhere betweé¢h andV? may Consider now two different view points both of which
depend on the triangles we extract in ndle are inside the shaded area as seen in Figuré&he vis-
Now, we must ask whether we can formulate a set ffility of cell D from view point 1 cannot be determined
simple rules that will enable us to tell how the visibility obefore cells A and B are triangulated. If we disregard, for
one nodemay affects the visibility of another node. Wea moment, that cell D may be visible through cell C, we
seek rules that answer this without resorting to a visibilityote that it is not possible to determine theriori Visi-
guery against the framebuffer. We could ask fareaain bility of a cell for which some of the cells in front of it
answer but this will require us to consider the exact covearentain triangles (unless the there is another path through
age of the previous extract triangles. Furthermore, it wilhich the cell is determined to be visible). We formulate
require us to stall the traversal pipeline until all the nodethis with respect to the obstructing cell as:
which may cover the node in question, are processed. OrPropagation rule 3:if a visible cell intersects the iso-
the other hand if we allow some leniency, such that a nogerface then it is not possible to determine the visibility of
may be classified as visible when it is not (but not the othtre cell back facing faces priori, i.e., before the trian-
way around) then we may be able avoid stalling the traveyles are extracted, and we must perform an exact visibility
sal pipeline. In this case, we may overshoot and traveideeck.
non-visible nodes, though we are guaranteed not to misdn this final case, the back-faces can only be marked as
any visible triangles. Possible.
In other words, knowing the visibility status of the three
front faces of a cube, what can we infer about the visibility
of the inside and the back faces of that cube?

A.1 Basic Visibility Propagation Rules

We start with a few basic rules. These rules are some- T Tesdea,,
what trivial but nevertheless always true. :
Consider the two-dimensional scenario depicted in Fig-
ure5. As long as the point of view remains in the shaded
area,i.e., a corner view, only théront andleft (from the
eye view point) sides of the node are visible. Furthermore, Fig. 6
if both sides are not visible;, g., obscure by objects closer TWO VIEW POINTS FROM THE SAME REGION
to the eye point, then the back facing sidegHt andback)
are not visible as well.
We can deduce from the above case the following two N .
basic rules: A.2 General Visibility Propagation Rules
Propagation rule 1:If all the viewer facing sides of a Two of the three basic rules specify when visibility
cell are occluded then so is the cell itself, and its bacRropagation cannot continue while the third can help de-
facing sides. termine that a cell interior is visible. None of these rules
Propagation rule 2:If any viewer facing side of cell is enable us to propagate visibility information from the front
visible then the cell itself is visible. faces to the back ones. The reason is that we can not make
any such statements about the visibility propagation which
L will be true fromany direction.
E \ We can, however, consider approximation rules. Such
) v poine rules can state the visibility status of the back faces in
: most cases. We should be able to use such rules as long as
1.2 _ __________ they are conservative.e., they may define a face as visi-
ble when it is not but not the other way. But there is a cost
A associated with each such rule, it is the amount we pay for
over reaching and traversing or triangulating cells which
are hidden.
Fig. 5 Returning to the second example, it is clear that in both
A TWO-DIMENSIONAL VISIBILITY SCENARIO. cases cells A, Band C are all visible. Yet, while cell D may
not be visible from view point 1, it is visible from view




point 2 due to the fact that cell C is empty. In general waap has the same number of cells as are on the volume
can state that if an emptell is [partially-] visible, then side facing it.
each of the back-facing sides may be visible from some

view points in the shaded area. An approximation rule for

this case can be stated as:

Propagation rule 4:1f an emptycell is [partially-] visi-
ble, then each of the back-facing sides is visible.

The cost associated with this rule maybe too high in — v
some cases. Consider, the application of Aile a visible | | ;'
boundary cell. If the top of the cell is visible then accord- L T
ing to this rule, so it the bottom. However, this means that
the cell bellow it is also visible (its top is visible) and thus
that cell’'s bottom is visible. It follows that if the entire
column is made out of empty cells then all of them will be
defined as visible. However, most of this column may in
fact be hidden from view except its toje., this is clearly
an over estimate in most cases.

A more conservative rule may state:

Propagation rule 5:1f a face of an emptycell is .

. . . Fig. 7
[partially-] visible, then the two adjacent back faces are
L . S . A 3D VOLUME THE THREE SIMPLE2D VISIBILITY MAPS.
also visible while the visibility of the opposite face can
not be determined without an explicit visibility cheake(

Possible). _ Definition: At every stage of the traversal, the visibility
However, when we view a cell face on then the abovgate of each of the faces of the next node in the pipeline

rule maybe far from appropriate. In this case it is the oppgs-reflected in the corresponding entry in the visibility map
site face which should be designated as visible. The othgiociated with that face.

faces are likely to have a small footprint on the screen andconstruction: We start by initializing all the visibility

thus it would be more cost effective to designate them gfaps toOccluded. We then consider the visibility of the

Possible: root node and all the cells on the its front facing faces. For
Propagation rule 6:If we view an emptycell face on each visible boundary node we set the appropriate entry

and that face is visible, then the opposite back face is vigirresponding visibility map tisible.

ble. The other faces should be consigtessible. Theorem 1:lt is sufficient to maintain visibility state
One can devise more such rules, each with its own c@gfly in the entries of the three visibility maps. In other

and pre-conditions. Determining an optimal set of sufjords, the visibility maps reflect the correct state of the

rule is an open question for future research. next cell in the traversal pipeline.

B. Visibility Maps To pro've this theorem we first need the following two
lemmas:
Itis obviously impractical to maintain the visibility state Lemma 1:If a node is the next to be visited in the
of all six faces for each and every node. When we consigsipeline then it must be on the current boundary.
the initial state, before the traversal starts, we note the need Proof: Assume, in negative, that the node is not on
to establish the visibility state only for the boundary nodeghe current boundary. It follows that none of its adjacent
This is true in the general case as well. Better yet, thedes have been visited. But this contradicts the require-
number of cells on the boundary cannot grow during thgent that we traverse the nodes in a front-to-back order.
traversal. Based on this observation we can devise a Waymember that we consider a node out of order only if we
to implement the idea of visibility propagation using onlknow it is visible from at least one view point yet, we can-
two-dimensional structures we term visibility maps. not know this for the current node as we did not visit any
o o of its neighbors. |
B.1 Definition and Validity Recall that we visit a node only if it is visible. A node
For simplicity, assume first that we deal only with cellsan be marked as visible only if it was determined to be
(no meta-cells). We create three visibility maps, one feisible based on a visibility query or if any of its three
each front facing side of the volume, see FigdreEach neighbors in front of it were both visible and empty.




Lemma 2:The visibility state of the next cell to be tra-
versed isVisible if and only if that cell reside on the outer
most boundary in the direction of the map which mark that
cell asVisible. D Possible |

Proof:

If: if the cell reside on the outer most boundary then Occluded D
there is no other cell between it and the map. Based on the
map construction, if the map stateigible then the cell D
must be visible as well.

Only if: Assume, in negative, that the map state for
the cell isvisible but the cell does not reside on the out- e &
ermost boundary with respect to that map. It follows that Vi e
there is another cell on the boundary and is closer to the
map. However, according to the view dependent traversal
order, we should have visited that other cell before the cur- _
rent one and thus, remove it. The only case in which we Fig. 8
would not removed a cell is if that cell is not visible, butA 3D VOLUME AND ONE OF ITS2D QUADTREE VISIBILITY
this contradicts the assumption. If follows that no other MAP-.
cell may exist closer to the map than the current cell

Proof: [Theoreml]
The trivial case: Based on their construction, the entries Last, we need to address the cases of a visible cell that

in the three maps correspond one-to-one to the cells on gﬁ)é]tgins triangles and the visibility status of the cells be-
boundary of the volume. Consequently, setting the visibftind '_t- - o _ .

ity state of a map entry to the state of the Correspondmg\ﬁsmnny Map rl_JIe 3:_ If a visible cell contains triangles
volume boundary cell satisfies the theorem. then the back facing sides are maredsible.

The general case: Consider the general case where the VISiPility Map rule 4: 1 none of the front facing sides
next node in the traversal pipeline is ndde According to S Visible and atleast onés possible then the cell is also
lemmal, cell Ni must be on the boundary, and according°ssible- _ _ o
lemmay, its status can beisible only if the corresponding ~ YSI"9 the_blnary valuesOccluded = 00, Possible = 01
status in the visibility map isisible. It follows then that @nd Visible =11 the cell visibility is abitwise OR of the
the visibility maps are sufficient to determine if the nexfiSiPility of the front faces.
cell in the pipeline is V|§|ble. o l. B.3 Initialization

We can now generalize the visibility maps for any kind _ _
of a node. In this case, we construct and maintain a sepal” the simple case where the bounding box of the data
rate set of visibility maps for each level in the volume hi$ visible, all the visibility maps entries are initialized to

erarchy. In other words, the octree structure of the volumdsible. However, if portions of the data bounding box
can be reflected in the visibility maps as a quadtree. ~ '€ Not visible then the initialization step is slightly more
involved.

B.2 Manipulation Rules For each visibility map, we first determine which por-
tion is visible by projecting the screen on the map plane
In the previous section, we defined and showed how 3@ clipping it to the map area. Alternatively, the map’s
construct the three visibility maps. We argued that the Vigsyr coordinates can be projected and clipped to the screen
ibility maps can be represented as quadtree. We now c@@g then back-projected to the map. Once the visibility
sider how to maintain these maps consistent throughout Htﬁtion is determined we scan convert it onto the map’s
pipeline traversal. lowest level,i.e., the highest resolution. The map is then
Consider a face visibility map of a three dimension@jpdated in a recursive fashion, up until the root entry is
volume as depicted in Figui reached.
Visibility Map rule 1: A node isoccluded if all of its Alternatively, the visibility of root node can be deter-
four children are occluded. mined using the procedure outlined in sectlofB.6. In
Visibility Map rule 2: A node isvisible if any of its four this case theéPossible list is initialized with only the root
children is visible. o node.

4x4x4 Volume

Visible
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B.4 Updates map’s quadtree is updated as well as its entire subtree. In-

When the visibility of a meta-cell or a leaf cell is Set,stead, our visibility queries determine the visibility status

each visibility map is updated according to the spatial IOof each of thecells on the front faces of the node. We can

sition of the cell on each map and its position in the hie%ir;muggg‘;e the visibility maps entries with more accurate

archy. Each map entry then propagates the change to'i L . .
Y P y propag 9 Eiecall that this is similar to the situation we had at the

parent. The parent entries are called recursively and are

ordered to recompute their values based on the valuesStoafrt when we had only the root node. We can, therefore,

their children. This climbing continues until reaching the>¢ this procedure to initialize the visibility maps at the

root of the map or finding an ancestor for which the valusetart as well. All we need is to initialize the maps@o-

does not change. The value of a parent entry is set tocélﬁded’ initialize the Possible list with the root node, per-

OR of the values of its children. form this visibility query and start the loop.

o o C. Other Viewing Regions
B.5 Rebuilding the Visibility Maps ) )
Until now, we assumed that three of the exterior faces

Theorem1 asserts that the visibility maps are corregre facing toward the user. In this case, only three visibility
for the next node in the pipeline. This assertion stands Aaps are needed, one for each pair: left/right, top/bottom
long as we keep the front-to-back traversal order. Onggq front/back. However, when the view point is such that
the pipeline is empty, if there are still nodes in @sible  only one or two faces are visible then we must use both
list, then we need to perform a visibility query on all ofnaps of the two occluded faces. As the algorithm descends
these nodes and repeat the traversal. Care must be takefb@m the data hierarchy, the traversal order in each of the
the visibility maps from the previous iteration can not bgyg portions of the data (see Figugp will be different,
use as is. The maps reflect the correct visibility status onfyys a different visibility map must be maintained for each
as long we continue to traverse in a front-to-back order lglse. This does not pose a problem as the traversal direc-
the next iteration will start with a node which, by definition determines which of the two visibility maps should be
tion, is in front of the last node we examined. We musfised for each cell. Furthermore, the two appropriate maps
therefore, reinitialize the visibility maps. The question igre initialized toOccluded as no portion of them is visible
what should we initialize them to? at the start. Note, that as the algorithm discovéible

The answer is two-fold. First, the visibility maps argyr possible cells, some of the entries in these maps will
initialized to Occluded. Second, before processing thehange.

next node in the pipeline we check if we have already per-
formed a visibility query on it. If we did, then rather then
referring to visibility maps, we use the result of the visi-
bility query andupdate the visibility maps. Note that this
accrues only for nodes from the previous iteration. New /
nodes that are encounter during the current traversal are Fron » fFont 0 4

view point view point view point
neighborhood ~ €Ye neighborhood ~ ©Ye neighborhood ~ Y€

processed as usual and their visibility status is determine B\sosuracf‘i \A
by consulting the visibility maps. Caution must be taken £ —2 &
not to update the visibility maps with the visibility infor- D/ | ¢ D)1 C.

mation of a nodebefore the node reaches the front of the
pipeline, e.g., initializing the visibility maps with all of
the results from the visibility query at the start of the next _
traversal iteration. Fig. 9

VIEWING THE DATA FROM THE SIDE.
B.6 Visibility Query

In sectionV, we discuss how to perform a visibility A similar situation occurs when the view point is inside
query using the graphics hardware. Here, we are interestieel volume. Consider a two-dimensional case depicted in
with what should this query determine, nladw. The sim- Figure10. The view point is inside the data and, from the
plest query need only determineaity portion of a node is start, the only known information is that the cells just in
visible. A more refined query will determine which of thdront of it in the viewing direction are visible. This case
three front faces is visible and update only the appropridtanslates to an orthogonal projection of the image onto
visibility maps. In both cases, however, the entry in the facing sides of the volume’s bounding box. Again, if
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the image plane is perpendicular to a face, then the fdatis time consuming to read the entire framebuffer in each
is reset toOccluded. In many cases, the image’s absolutpass.

size inside of the data will shrink to less than the size of Using the displayed window can be avoided by using
a single entry at the highest resolution of the map. In thesther the back-buffer or a separate off-screen buéet,
case, we will mark a single entry a&sible. pbuffer. One can also avoid the need to project all the
triangles by turning off the write to (but not the compare
against) the depth buffer before projecting the nodes. This
preserves the z-buffer and eliminates the need to re-project
the triangles. The meta-cells will still be drawn correctly
with respect to the triangles. However, as the write to
the depth buffer was turned off, the meta-cells may not be
drawn correctly with respect to each other. The solution is
to project the nodes in &dack-to-front order. Note that the
nodes are extracted in a front to back order and thus, there
is no need to sort the cells prior to the projection, only to
traverse the node list in reverse order. Using this approach,
closer nodes will overwrite more distant cells and the final
image will be correct.

There are two ways to address the issue of slow z-
buffer readback. Some graphics accelerators support the

Fig. 10 histogram extension that returns the number of time each
VIEW POINT INSIDE THE DATA VOLUME. pixel value is repeated in the framebuffer (or a sub region
of it). The problem with this approach is that it is not
widely supported and even for the hardware that support
it, it may take a long time to compute a histogram for a
V. HARDWARE ACCELERATEDVISIBILITY QUERIES  |5rge area of the framebuffer. Our approach is to compute,

After the initial pass, where most of visible cells the iscSee Listing??, a three-dimensional bounding box of all
surface intersects are identified, we are left with a collete meta-cells that were projected. We then project this
tion of nodes that are marked as possibly visible. TheBgx onto the screen and find the bounding box (in screen
nodes may overlap and even completely overshadow e&giace) of its projection. We can then read back only that
other. However, we do know their relative front to backegion of the framebuffer and compute the histogram in
order. software.

In order to quickly determine which of theRessible
nodes are visible from the current directidtHASE uses
the graphics hardware accelerator. The nodes which werdf the user is not interested in intermediate approxima-
classified as visible can be interrogated using the same tien thenPHASE can use the back buffer for the visibil-
ibility propagation method used in the initial approximaity tests during the progressive extraction. Alternatively,
tion step. The process then continues recursively by cleifiintermediate approximations are preferred, an auxiliary
ing the framebuffer, projecting all the triangles and checkuffer can be used to accelerate the progressive process as
ing which of thePossible nodes becomes visible. Notedepicted in Figuré.2.
that aPossible node that did not pass the visibility test in The first pass, described in SectibitA, does not in-
one iteration, may become visible in a later iteration if itolve any projection of triangles and thus the auxiliary
was hidden by another node which, at one time, was deteuffer is not used. The initial approximatidly is then
mined to be visible. projected on the back buffer and subsequently is shown to

Procedure?? takes advantage of the rendering speed #e user after the buffers swap.
well as the z-buffer provided by the graphics accelerator.The second iteration begins with the projection of the
The order in which the triangles, as well as the meta-celfgst approximationAg onto the auxiliary buffer followed
are projected is not important. There are, however, sdy visibility check of all the unclassified nodes. Based
eral drawbacks to this approach. First, it uses the actwoal this visibility test more triangles are generatBd, to
screen window the user sees. Second, we project eaclawgment the first approximation. As the back buffer does
the previously extracted triangles in each iteration. Thirdpt contain any useful information, it is cleared and the

Front

Back

A. Visualization of the Progressive Approximation
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procedure fasthw_visibility_test() Step | Front Back Aux. | Operation
{ 1 n/a Ao n/a
// set up the depth buffer swap Front/Back

disable shading ; Ao n/a i
init Aux.

computeD,

render to Back

disable color buffer write

draw( new_triangles ) Ao+ Dy
enable color buffer write Ay swap Front/Back
A Ao
// project possible nodes back to front 3 renderD; to Aux.
reset bbox3d +Dg
clear color buffer to 0 AL | computeD;
disable depth buffer write update Back
for ( node in possiblgist ) { +D1+D2
. = Ay swap Front/Back
color = node.index-1; A Ay
draw( node boundingBox) _ N A A, A, | rende,  to Aux,
bbox3d extend node. boundingBox) +Dp_»
} An_1 | computeD;,_1
enable depth buffer write update Back
+Dn—2+Dn-1
// read back visibility results An swap Front/Back
bbox2d= screen bounding bdxbbox3d) An An-1
pixels = read framebuffe¢ bbox2d) Fig. 12
hist = histogran( pixels ) PROGRESSIVE ISOSURFACE EXTRACTION

// visibility status
for ( index1; indexhist.size(); index-+ )
if Chistlindex > 1)
nodedindex-1] .visible = true

tracted the initial approximation. Due to view coherency,
the initial approximation of the isosurface for the new view
point should be very similar to the one just extracted. Con-

¥ sequently, it should be sufficient to re-project this old ap-
proximation using the new view point as though it was the

Fig. 11 initial extraction from the new view point, and then con-
HARDWARE ASSISTEDVISIBILITY TEST tinue with the next pass. Care must be taken, though, to

reorder the nodes based on the new view point.
Moreover, if the view point did not change much then
we can approximate the visibility status by using the back

next approximatiory = Ao + Dy is projected. The front d%ﬁh buffer as an approximation of the projection of the

and back buffers are swapped again to present the USery gles based on the new view point. Instead of the back

the next approIX|m.at|on.. buffer, we use it as is and continue with the visibility test of
From the third iteration on, we can take advantage ffe celis in thePossible list. Note that thePossible nodes

The auxiliary buffer already contains the projection of thg e which is correct for the previous viewpoirite., a
initial approximation, and thus only the triangles foung, 4 view position back of the new one. As long as the

in the previous iteration need to be projected. The badliaypoint does not changedrastically this approximation
buffer already contains the second approxima#igithere o« \well.

is no need to re-project all the triangles, only the newly ex-
tracted triangle®.. VI. RESULTS

B. Progressive Extraction While the View Point Changes We.have |mple|_fnent9d th@HASE framework on a .
graphics PC running Linux. For the sake of compari-

Assume the user has changed the point of view slightsgn, we also have implemented within a common appli-
e.g., rotated the data slightly during the tintkHHASE ex- cation the standard octree-based algorithm andb&eE
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method. For the experimentations, we used a 1.9 GHz VIl. CONCLUSIONS
AMD Athlon processor with 1.5 GB of DDR DIMM mem-
ory and a GeForce4 Ti 4600 graphics board.
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