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Abstract— Isosurface extraction is an important tech-
nique for visualizing three-dimensional scalar fields. Dur-
ing recent years, researchers have created many accelera-
tion methods for isosurface extraction, including the span
space representation and view-dependent methods. In this
paper, we introduce a progressive view-dependent isosurface
extraction method that exhibits a rapid convergence rate to
the exact isosurface and is well suited for remote visualiza-
tion. The proposed method takes advantage of rendering
hardware to resolve visibility tests. In contrast to previous
view-dependent isosurface extraction methods, our method
(PHASE) can quickly augment the current partial extracted
isosurface based on a new point of view without the need for
a full view-dependent extraction pass.
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I. I NTRODUCTION

Scientists and engineers often rely upon knowledge
obtained from experiments and simulations that produce
large scale discrete samplings of three-dimensional scalar
fields. Isosurface extraction is an important technique
for visualizing three-dimensional scalar fields. By ex-
posing contours of constant value, isosurfaces provide a
mechanism for understanding the structure of the scalar
field. These contours isolate surfaces of interest, fo-
cusing attention on important features in the data such
as material boundaries and shock waves, while sup-
pressing extraneous information. Several disciplines, in-
cluding medicine [1], [2], computational fluid dynamics
(CFD) [3], [4], and molecular dynamics [5], [6], effec-
tively use this method. However, for very large datasets,
the enormous data size overwhelms the interactive extrac-
tion and rendering times for isosurfaces. Without tech-
niques to address the large-scale data size, the practicality
of these methods would be limited.

The availability of inexpensive yet powerful desktop
computers and parallel supercomputers in few location
leads to the development of remote visualization tech-
niques. The fundamental drive for this paradigm enables
the scientist to perform very large simulations on a remote
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supercomputer while visualizing and investigating the re-
sults on the local desktop. Remote visualization of large
datasets poses an even greater challenge for isosurface ex-
traction due to the limited bandwidth of the intermediate
network.

In respond to this challenge, current research efforts aim
to simplify the geometry of the isosurfaceafter extracting
the isosurface andbefore it renders or transmits over a net-
work [7], [8]. In effect, the aim of such methods are to
reduce the complexity of rendering an isosurface to a sub-
linear complexity with respect to the size of the original
isosurface. However, such methods do not address the ini-
tial challenge of extracting and constructing the isosurface.

In this paper, we present a new view-dependent extrac-
tion framework that progressively and rapidly extracts the
visible portion of an isosurface. The proposed framework
uses a novel visibility propagation scheme that eliminates
the need for software rendering of extracted triangles and
reduces the number of required expensive visibility tests.
Moreover, the few required visibility tests are performed
using the graphics acceleration hardware.PHASE is par-
ticularly attractive for interactive investigation of large
data volumes where only small sections of the data are vis-
ible at any particular moment, such as navigating through
a colonoscopy data set. We begin with a review of earlier
work on isosurface extraction in SectionII . ThePHASE
framework is discussed in SectionIII , followed, in Sec-
tion IV, by a detailed description of the theory underlying
the visibility traversal pipeline and the visibility maps on
which thePHASE algorithm is based. Hardware accelera-
tion of PHASE is presented in SectionV. We present test
results in SectionVI and conclude with future directions
in SectionVII .

II. PREVIOUS WORK

The time complexity of isosurface extraction algorithms
depends on the size of the dataset,n, and the size of the iso-
surface,k. Early extraction methods [9], [10], [11], [12],
[13], [14], [15], [16] exhibit worst case time complexity of
O(n). With the introduction of the Span Space, theNOISE
algorithm [17], [18] achieved a worst case complexity of
O(
√

n+k) while Cignoniet al. [19] achievedO(logn+k)
albeit, with a higher memory cost. As we minimize the
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size dependency of the original dataset, the size of the ex-
tracted isosurface,k, becomes the dominate factor. Inter-
actively rendering a very large isosurface presents a great
challenge even on high-end graphics workstations.

Livnat and Hansen proposed [20], [21] to surpass the
O(k) barrier based upon the observation that the isosur-
faces extracted from very large datasets often exhibit high
depth complexity. There are two reasons for this depth
complexity. First, since the datasets are very large, the pro-
jection of individual cells tend to be sub-pixel. This leads
to a large number of polygons, possibly non-overlapping,
that project onto individual pixels. Second, for some
datasets, the depth complexity is high since large sections
of an isosurface are internal and thus, occluded by other
sections of the isosurface, as illustrated in Figure1.

Fig. 1
A SLICE THROUGH AN ISOSURFACE REVEALS THE

INTERNAL SECTIONS WHICH CAN NOT CONTRIBUTE TO THE

FINAL IMAGE .

These internal sections cannot be seen from any direc-
tion unless the external isosurface is peeled away or cut
off. Therefore, if one can extract just the visible por-
tions of the isosurface, the number of rendered polygons
will be reduced resulting in a faster algorithm and lower
bandwidth requirement for remote visualization. Figure2
depicts a two-dimensional scenario. In a view-dependent
method, only the solid lines are extracted whereas in non
view-dependent isocontours, both solid and dotted lines,
are extracted.

A. View-Dependent Framework

The computer graphics literature contains many view-
dependent rendering and traversal algorithms. These algo-
rithms generally rely on a pre-process stage in which the
geometry primitives are organized for an efficient access
and visibility determination for any given view direction.

Fig. 2
A TWO-DIMENSIONAL SCENARIO.

However, isosurface extraction poses a special problem as
there is no geometry to pre-process prior to extraction, still
worse, the extracted geometry changes for every given iso-
value. As such, view-dependent isosurface extraction can
rely only on the underlying structure of the data volume.

The view-dependent framework presented by Livnat
and Hansen [20] is based on a hierarchical traversal of the
data and a Marching Cubes triangulation. This framework
exploits coherency in the object, value, and image spaces,
as well as balancing work between the hardware and the
software. The algorithm used a three step approach: first,
the data traversal used in Wilhelms’ and Van Gelder’s algo-
rithm [13] is augmented to follow a front-to-back order in
addition to pruning empty sub-trees based on the min-max
values stored at the octree nodes. The second step employs
coarse software visibility tests for each meta-cell visited
during the traversal. The aim of these tests is to deter-
mine whether previously extracted sections of the isosur-
face obscure a meta-cell from view (thus the requirement
for a front-to-back traversal). Finally, the triangulation of
the visible cells are forwarded to the graphics accelerator
for rendering by the hardware, where the final and exact
[partial-] visibility of the triangles is resolved.

B. View-Dependent Implementations

In [20], Livnat and Hansen also presented theWISE
(Warped IsoSurface Extraction) algorithm, which pro-
vided a particular implementation of the view-dependent
approach. The algorithm took advantage of a shear-warp
factorization of the viewing transformation, as well as the
Greeneet al. [22] occlusion culling technique. TheWISE
algorithm demonstrated the potential benefits of such an
approach. The ratio of triangle intersections per screen
cell, and the fill rate of screen tiles hierarchy pose the two
most prominent weaknesses for this method.

Recently, Livnatet al. introduced a new view-dependent
algorithm, termedSAGE [23], [21], that addressed those
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weaknesses. In order to alleviate the problem of projecting
many small triangles down the hierarchical tile structure,
SAGE employs a bottom-up approach. This approach is
based on the observation that the contribution of a small
triangle is limited to only a small neighborhood in the hi-
erarchy,i.e., few tiles at the lowest level. Thus, the trian-
gles are projected at the highest resolution and the changes
are forwarded up the hierarchy. However, the visibility
checks are still performed in a top-down fashion in or-
der to quickly determine if a cell is visible. Replacing
Greene’s occlusion culling technique with scan-conversion
of groups of triangles, reduced the number of triangle in-
tersections per screen cell. TheSAGE method exhibits
an acceleration factor between 5 and 10 over the previous
WISE method.

In 2001, Gao and Shen [24] introduced a parallel multi-
pass view-dependent algorithm, based on similar ideas. A
master host maintains a virtual framebuffer for visibility
queries. It then distribute the cells that require triangula-
tion among the other hosts. Each such host creates, after
the triangulation, a local visibility map based on the tri-
angles it created. The collection of these local visibility
maps are then combined and integrated into the master vir-
tual framebuffer and the procedure is repeated. The master
framebuffer use 2-bit per pixel as oppose to the 1-bit per
pixel bothWISE andSAGE use. This extra bit allows the
algorithm to project meta-cells which may be hidden by
other meta-cells in front of it. As opposed toWISE and
SAGE which do not alter the state of the framebuffer dur-
ing the visibility query, Gao and Shen modify the frame-
buffer and use this extra bit to determine if a meta-cell
is occluded only by previously extracted triangles or by
meta-cells as well. While the algorithm shows a very good
load balancing it has a several key shortfalls. First, all the
rendering is done in software which is slow especially due
to the need to maintain the complex 2-bit per pixel state.
Second, the performance of the algorithm is poor with re-
gard to execution time.

Recently, Liuet al. [25] introduced a progressive view-
dependent isosurface propagation algorithm. This algo-
rithm casts rays from the view point through the data to
find visible non empty cells, and uses these cells as seeds
to propagate the polygonal isosurface. This algorithm al-
lows one to quickly render a good approximation, but takes
a long time to converge to the final image due to the large
number of rays required.

Zhanget al. [26] presented a parallel out of core view
dependent extraction method. In this approach, the sec-
tions of the data are distributed to the various processors.
For a given isovalue, each processor uses ray casting to
generate an occlusion map. The maps are then merged

and redistributed to all the processors. Using this global
occlusion map, each processor extract its visible portion
of the isosurface. They noted that updating the occlusion
map during the traversal is expensive even when using hi-
erarchical occlusion map, and thus opt not to update the
occlusion maps and rely on the first occlusion map approx-
imation.

An alternate approach is to generate anadaptive recon-
struction of the isosurface. These methods extract an ap-
proximation of the isosurface based on some user specified
criteria. Westermannet al. [27] allowed the user to spec-
ify a point of interest inside the data around which they
extract a refined isosurface. Further away from that cen-
ter of attention, they extract the isosurface using a coarse
representation of the data. The view-dependentrefinement
approach of Gregorskiet al. [28] used the user view point
as well as user specified error tolerance in screen space.
They recursively refined the isosurface until these crite-
ria where met. Their method used a novel representation
of the underlying data, and was able to achieve a remark-
able interactivity on very large isosurfaces. However, this
approach is not suitable for the purpose of remote visu-
alization, as the same section of the isosurface can have
different representations from different view points.

C. Visibility Framebuffer

A key requirement in most view-dependent extrac-
tion methods is to maintain the current visibility state
against which the extraction process can perform visibility
queries. To this end, every extracted triangle is projected
onto a virtual framebuffer. However, rendering to the vir-
tual framebuffer and performing visibility tests against it
must be executed quickly and accurately.

Both WISE and SAGE used 1-bit per pixel visibility
masks to maintain the state of the screen pixel (i.e. cov-
ered or not), while Gao and Shen [24] used 2 bits per-
pixel (visible, covered by triangle and covered by a meta-
cell). There are four major drawbacks to these approaches.
First, because the framebuffer maintains only a minimum
state, the first two algorithms cannot simultaneously per-
form visibility checks on two meta-cells whose projec-
tions on the screen may overlap. Second, the rendering
of the visibility masks and visibility queries are performed
in software that is inherently slow. Third, the algorithms
do not take advantage of the coherency between consecu-
tive view points and thus must begin the extraction process
anew for each new view point. Fourth, visibility tests are
performed on each and every meta-cell encountered during
the traversal, though many are trivially visible,e.g., cells
on the boundary of the dataset.
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III. PROGRESSIVEV IEW-DEPENDENTISOSURFACE

EXTRACTION

In this section we address two key shortcomings of pre-
vious view-dependent approaches (a priori knowledge and
view coherency). As part of this discussion we introduce
the notions of strictvs loose traversal order and delayed
visibility queries. These two are the key to thePHASE
framework that we present at the end of this section. In
the next section we provide a more detail discussion of
the theory behindPHASE while implementation issues are
presented in the following sections.

The proposed framework,PHASE, is based on two ob-
servations. First, many of the meta-cells may be trivially
categorized as either visible or occluded without perform-
ing an expensive visibility query. Second, most of the
visible/occluded cells from one view point will remain so
when viewed from a nearby view point.

A. Full Z-Buffer Visibility Tests

In order to take advantage of view coherency, one needs
to replace the one or two bits per pixel visibility frame-
buffer with a full z-buffer. Using a z-buffer removes the
need to perform the visibility checks in astrict front-to-
back order. One must still perform most of the visibil-
ity tests in a hierarchical front-to-back manner in order
to achieve efficient pruning during the data traversal. In
addition, the full z-buffer allows the extraction process to
use visible triangles from a previous view point, aspo-
tential occluders [29][Note:add more citations] dur-
ing the extraction from a new view point. To this end, at
the beginning of each view-dependent extraction cycle the
visibility framebuffer is initialized with the projection of
the currently visible triangles. Due to the view coherency,
only a few previously hidden meta-cells and triangles will
become visible. In essence, most of the construction of
the visibility framebuffer is achieved in the first projection
pass.

There is, however, a cost of using this approach. While
new triangles can be added in each cycle, none are re-
moved even if they are hidden from the new view point.
More importantly, the projection of the triangles and the
visibility queries are much more complex and time con-
suming than those performed on a one bit per pixel visibil-
ity buffer. Rendering requires computing and comparing
the z value for each rendered pixel. Visibility checks of
meta-cells can not rely on a single bit for large areas in the
visibility framebuffer rather the z values of all the pixels
that are covered by a meta-cell must be examined. The vis-
ibility queries are also more complex and expensive even
with sophisticated data structures such as the hierarchical

z-buffer [30].
One way to accelerate the full z-value rendering is to

replace the virtual visibility framebuffer with the graphics
hardware framebuffer. This approach resolves the render-
ing issue, but on the other hand, introduces a major hur-
dle because reading back from the framebuffer is relatively
slow. This is a problem especially in view-dependent algo-
rithms that must perform large number of visibility checks.

B. Loose versus Strict Traversal Order

PHASE addresses the slow read back problem by defer-
ring the read as long as possible and performing many visi-
bility checks via a single query of the hardware buffer. Re-
ferring to Figure3, we first note that octantB, C andD do
not overlap and thus, can be traversed in parallel (once oc-
tantA is fully traversed),i.e., their visibility queries can be
performed in one read from the hardware framebuffer. Yet,
this parallelism is limited as none of the sub-octants inside
each of them can be traversed before a visibility query is
performed on their parent. In addition, this approach is
limited only to non-overlapping regions.

The key to thePHASE approach is that a full z-buffer
removes the need for astrict front-to-back traversal of the
data. A strict front-to-back traversal requires that all the
cells in octantA be checked before octantB, C andD can
be traversed. However, even though some portions of these
octants may be occluded by triangles in octantA, other
portions are, nevertheless, trivially visible. As such, a hi-
erarchical traversal can descend these three octants even
before a complete traversal of octantA completes. Fur-
thermore, sub-octantsBA,B,D,E are also trivially visible as
they form part of the outside boundary.

AB
C

DE

G

F

BF

V1

V2

Fig. 3
OCTANTS, SUB-OCTANTS AND VARIOUS VIEW DIRECTIONS.

In summary, we can conclude that octantsA,B,C,D,E,F
andG are trivially visible without the need to perform any
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visibility queries against the framebuffer. Some of the sub-
octants are also trivially visible and can be traversed out of
order. However, not all octants can be traversed out of
the strict front-to-back order. It is not clear, for example,
that octantBF can be traversed before octantA is fully tra-
versed.

Consider two view points,V1 andV2, as shown in Fig-
ure 3 and assume that sub-octantBD is empty (the iso-
surface does not go though it). From view pointV1,
sub-octantBF should not be visited before sub-octantAH .
However, from view pointV2, no such constraint exists.
Furthermore, the fact thatBD is visible and empty implies
that BF may be visible from many other view points be-
tweenV1 andV2 (as well as many other view points). Note
that we concluded (for view pointV2) that sub-octantBF

is visible, and can thus be traversed at anytime, purely on
adjacency information, current view point, and data val-
ues. All of this information is readily available without the
need to perform expensive visibility queries.

C. Delayed Visibility Queries

The notion of out of order traversal allows us to con-
tinue the hierarchy traversal even when a strict front-to-
back traversal order stalls waiting for a visibility query. In
essence, we can queue requests and continue the traver-
sal out of order. Note that we should triangulate any non-
empty leaf cell that the traversal does reach. After we tra-
verse all possible out-of-order traversal paths we are left
with a set of triangles and collection of cells for which vis-
ibility queries are required. We then render these triangles
into the framebuffer in a single batch and execute a sin-
gle visibility query against the hardware framebuffer (see
sectionV). The algorithm is now repeated using the meta-
cells we determine are visible.

It is important to note that the delayed visibility queries
may refer to meta-cells that overlap or even hide each
other. Due to the use of a full z-buffer for the rendering
and visibility we can ensure the correct visibility results
are returned (see sectionV).

D. ThePHASE Framework

For the sake of clarity we refer to both cells and meta-
cells as nodes. In addition, visiting a node will mean
triangulating a cell or traversing a meta-cell.

The key steps in the progressive hardware accelerated
extraction framework are:

We can take advantage of view coherency when just the
view point changes between consecutive extraction passes.
In essence, we can treat this case similar to another refine-
ment loop. First, we initialize the set of potentially visible
nodes with all the non-visible nodes (not just the root) from

Algorithm 1
PHASE FRAMEWORK

potentialNodes← rootNode
repeat

traversedata (SectionIV-B) and determine:
· visibleNodes← visible non-empty leaf nodes
· possibleNodes← partial occluded nodes
TriangulatevisibleNodes
RendervisibleNodes to framebuffer
Queryhardware framebuffer (SectionV):

(one query for all possibleNodes)
· potentialNodes← visible nodes

until potentialNodes is empty

the previous view point, sorted front-to-back, relative to
the current view point. We then clear the framebuffer, and
project all the triangles we extracted for the previous view
point. This time however, we project using the new view
point. In other words, we use the extracted triangles as
potential occluders. Due to the view coherency, very few
previously non-visible cells will become visible and the
loop will end quickly. We can also determine which of the
previously extracted triangles are not visible from the new
view point, and mark their cells as non-visible. However,
this will require a special step that will not affect the final
image, only the number of triangles rendered. As such, the
cost of removing the hidden triangles may be higher than
the cost of rendering them.

The following sections explore, in detail, the notions
of out of order traversal and visibility queries against the
hardware framebuffer.

IV. T HE TRAVERSAL PIPELINE

With thePHASE framework concept in mind, we now
formalize the theory of visibility propagation using the
notions of loose traversal order, and delayed visibility
queries. We also present our particular implementation ap-
proach and prove its correctness.

In sectionIII we established that some of the nodes can
be determined to be visiblea priori and can thus be tra-
versed out of order. However, we need a mechanism to
serialize this process so that we can establish some of its
properties and devise a method to execute it. This will al-
low us to determine which node can be visited first and
which nodes traversal must be delayed until some prereq-
uisites are met.

We first note that a strict front-to-back traversal of the
data can be implemented as a stack. At each stage, the
front node is examined and classified as either:empty, vis-
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ible or non-visible. An empty node (i.e. one that does not
intersect the isosurface) is skipped. A non-visible node is
discarded or added to thenon-visible set for use in the next
iteration. A visible node, on the other hand, is either tri-
angulated (a cell) or is traversed (meta-cell) and its eight
children are push into the top of the stack in back-to-front
order.

Consider again the scenario in Figure3 and the states
of the traversal stack (Figure4). In step 1, the stack is
initialized with the root nodeR. The stack top node,R, is
then popped and after we determine it is visible, we push,
in step 2, octantsA throughH onto the stack. Again, the
traversal must stall as we need to determine if the node at
the top of the stack (AA) is visible. In fact, we have to stall
the traversal and perform a visibility query for each node
we pop from the traversal stack.

R

HGFEDCBA

AHAGAFAEADACABAA HGFEDCB

HGFEDCBAH

HGFEDCAH BHBGBFBEBDBCBBBA

HGFEDCBHBFAH

FHFGFEFBEHEGAH EFECDHDGCHCEBHBF HGHGFGEGD

STEP Stack

1

2

3

4

5

6

n

Fig. 4
OUT OF ORDER VIEW-DEPENDENT TRAVERSAL.

Using the notion of out of order traversal we can liken
the traversal stack to a CPU pipeline. When a simple
pipeline reaches a read from memory it must stall until the
data is retrieved. An advanced compiler can anticipate this
stall and schedule other operations, which do not depend
on the result of the read, ahead of operations which do.
Similar if we do not use a strict view-dependent traversal
order, we can continue to visit the next nodes in the traver-
sal pipeline that do not depend on the visibility results of
the node at the head of the pipeline.

Consider again, scenario in Figure3, with respect to
our view point. Even before we start to traverse the data,
we can determine that the root node, as well as nodesA
thoughG (but notH) are all visible. Furthermore, we can
determine that certain additional nodes must also be vis-
ible because they are on the visible boundary of the root
node. Using this information, we can see (Figure4) that
the traversal does not need to stall in step 1, nor in step
2 as we know both the root node and nodeA are visible.
Better yet, we also know that nodesAA throughAG are also

visible and thus we can traverse them without the need to
perform a visibility query against the framebuffer. It does
not matter if nodesAA throughAH are empty or contain tri-
angles. After we traverse the visibleAA thoughAG nodes
we can visit nodeAH . However, in the case of nodeAH ,
we must perform a visibility check as it may be hidden by
triangles we extracted from the previously traversed nodes
AA thoughAG. Yet, we do not need to stall the traversal
pipeline, even at that step. Taking advantage of the no-
tion of out-of-order traversal, we note that the next node
in the pipeline, nodeB, is already known to be visible. As
such we can traverse nodeB and replace it with a list of
its children, sorted based upon the current view point (step
5). Note that we must maintain the general view depen-
dent order and keep nodeAH in front of all the children of
B. Once again, we know from the initial check that nodes
Bi are all visible exceptBF andBH . We can thus traverse
these nodes, leaving nodeAH at the front of the pipeline
(step 6).

Continuing the above procedure, we can traverse 37
nodes before the traversal pipeline finally does stall. At
that step we are left with 19 sub-octants and one full oc-
tant (H) in the pipeline. Assuming we did find triangles
during our traversal, we update the visibility framebuffer
by rendering the triangles we extracted, and then perform
a single visibility query to determine which of the 20 nodes
in the stalled pipeline are visible (see SectionV).

The traversal pipeline can then resume by traversing the
visible nodes while maintaining the front-to-back order in
the pipeline. We stop the traversal once there are no more
visible nodes in the pipeline (after a visibility query).

A. The Theory of Visibility Propagation

Now that we establishedhow we can traverse the nodes
out of order, we need to establishwhen are we allowed to.
In other words, how do we establish that a node is visible
without performing an explicit visibility query against the
framebuffer. In the previous scenario, we were able to skip
over 19 nodes during the traversal due to our initial exam-
ination of the scene. In effect, we were able to peel off the
visible portion of the data volume’s outer shell. We can
follow the same procedure after every visibility query.

Let us again consider the initial examination of the scene
and, this time, assume some of the nodes are empty. For
example, assume nodeE is empty. We can then ask
whether nodeH has became visible from our view point
and, if so, what can be stated about any of its childrenHi .
It is clear that from view pointV1, we gain no new infor-
mation aboutH in this case. However, from view point
V2, nodeH is visible as well as nodesHA,HB,HD andHE.
On the other hand, the visibility of nodeHE from some
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particular view point somewhere betweenV1 andV2 may
depend on the triangles we extract in nodeD.

Now, we must ask whether we can formulate a set of
simple rules that will enable us to tell how the visibility of
one nodemay affects the visibility of another node. We
seek rules that answer this without resorting to a visibility
query against the framebuffer. We could ask for acertain
answer but this will require us to consider the exact cover-
age of the previous extract triangles. Furthermore, it will
require us to stall the traversal pipeline until all the nodes,
which may cover the node in question, are processed. On
the other hand if we allow some leniency, such that a node
may be classified as visible when it is not (but not the other
way around) then we may be able avoid stalling the traver-
sal pipeline. In this case, we may overshoot and traverse
non-visible nodes, though we are guaranteed not to miss
any visible triangles.

In other words, knowing the visibility status of the three
front faces of a cube, what can we infer about the visibility
of the inside and the back faces of that cube?

A.1 Basic Visibility Propagation Rules

We start with a few basic rules. These rules are some-
what trivial but nevertheless always true.

Consider the two-dimensional scenario depicted in Fig-
ure5. As long as the point of view remains in the shaded
area,i.e., a corner view, only thefront andleft (from the
eye view point) sides of the node are visible. Furthermore,
if both sides are not visible,e.g., obscure by objects closer
to the eye point, then the back facing sides (right andback )
are not visible as well.

We can deduce from the above case the following two
basic rules:

Propagation rule 1:If all the viewer facing sides of a
cell are occluded then so is the cell itself, and its back-
facing sides.

Propagation rule 2:If any viewer facing side of cell is
visible then the cell itself is visible.

AB

CD

Front

Left

Back

Right

eye
screen

view point
neighborhood

Isosurface

Fig. 5
A TWO-DIMENSIONAL VISIBILITY SCENARIO .

Consider now two different view points both of which
are inside the shaded area as seen in Figure6. The vis-
ibility of cell D from view point 1 cannot be determined
before cells A and B are triangulated. If we disregard, for
a moment, that cell D may be visible through cell C, we
note that it is not possible to determine thea priori visi-
bility of a cell for which some of the cells in front of it
contain triangles (unless the there is another path through
which the cell is determined to be visible). We formulate
this with respect to the obstructing cell as:

Propagation rule 3:if a visible cell intersects the iso-
surface then it is not possible to determine the visibility of
the cell back facing facesa priori , i.e., before the trian-
gles are extracted, and we must perform an exact visibility
check.

In this final case, the back-faces can only be marked as
Possible.
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Fig. 6
TWO VIEW POINTS FROM THE SAME REGION.

A.2 General Visibility Propagation Rules

Two of the three basic rules specify when visibility
propagation cannot continue while the third can help de-
termine that a cell interior is visible. None of these rules
enable us to propagate visibility information from the front
faces to the back ones. The reason is that we can not make
any such statements about the visibility propagation which
will be true fromany direction.

We can, however, consider approximation rules. Such
rules can state the visibility status of the back faces in
most cases. We should be able to use such rules as long as
they are conservative,i.e., they may define a face as visi-
ble when it is not but not the other way. But there is a cost
associated with each such rule, it is the amount we pay for
over reaching and traversing or triangulating cells which
are hidden.

Returning to the second example, it is clear that in both
cases cells A, B and C are all visible. Yet, while cell D may
not be visible from view point 1, it is visible from view
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point 2 due to the fact that cell C is empty. In general we
can state that if an emptycell is [partially-] visible, then
each of the back-facing sides may be visible from some
view points in the shaded area. An approximation rule for
this case can be stated as:

Propagation rule 4:If an emptycell is [partially-] visi-
ble, then each of the back-facing sides is visible.

The cost associated with this rule maybe too high in
some cases. Consider, the application of rule4 to a visible
boundary cell. If the top of the cell is visible then accord-
ing to this rule, so it the bottom. However, this means that
the cell bellow it is also visible (its top is visible) and thus
that cell’s bottom is visible. It follows that if the entire
column is made out of empty cells then all of them will be
defined as visible. However, most of this column may in
fact be hidden from view except its top,i.e., this is clearly
an over estimate in most cases.

A more conservative rule may state:
Propagation rule 5:If a face of an emptycell is

[partially-] visible, then the two adjacent back faces are
also visible while the visibility of the opposite face can
not be determined without an explicit visibility check (i.e.
Possible).

However, when we view a cell face on then the above
rule maybe far from appropriate. In this case it is the oppo-
site face which should be designated as visible. The other
faces are likely to have a small footprint on the screen and
thus it would be more cost effective to designate them as
Possible:

Propagation rule 6:If we view an emptycell face on
and that face is visible, then the opposite back face is visi-
ble. The other faces should be considerPossible.

One can devise more such rules, each with its own cost
and pre-conditions. Determining an optimal set of such
rule is an open question for future research.

B. Visibility Maps

It is obviously impractical to maintain the visibility state
of all six faces for each and every node. When we consider
the initial state, before the traversal starts, we note the need
to establish the visibility state only for the boundary nodes.
This is true in the general case as well. Better yet, the
number of cells on the boundary cannot grow during the
traversal. Based on this observation we can devise a way
to implement the idea of visibility propagation using only
two-dimensional structures we term visibility maps.

B.1 Definition and Validity

For simplicity, assume first that we deal only with cells
(no meta-cells). We create three visibility maps, one for
each front facing side of the volume, see Figure7. Each

map has the same number of cells as are on the volume
side facing it.

4x4x4 Volume

Fig. 7
A 3D VOLUME THE THREE SIMPLE2D VISIBILITY MAPS .

Definition: At every stage of the traversal, the visibility
state of each of the faces of the next node in the pipeline
is reflected in the corresponding entry in the visibility map
associated with that face.

Construction: We start by initializing all the visibility
maps toOccluded . We then consider the visibility of the
root node and all the cells on the its front facing faces. For
each visible boundary node we set the appropriate entry
corresponding visibility map toVisible.

Theorem 1:It is sufficient to maintain visibility state
only in the entries of the three visibility maps. In other
words, the visibility maps reflect the correct state of the
next cell in the traversal pipeline.

To prove this theorem we first need the following two
lemmas:

Lemma 1:If a node is the next to be visited in the
pipeline then it must be on the current boundary.

Proof: Assume, in negative, that the node is not on
the current boundary. It follows that none of its adjacent
nodes have been visited. But this contradicts the require-
ment that we traverse the nodes in a front-to-back order.
Remember that we consider a node out of order only if we
know it is visible from at least one view point yet, we can-
not know this for the current node as we did not visit any
of its neighbors.

Recall that we visit a node only if it is visible. A node
can be marked as visible only if it was determined to be
visible based on a visibility query or if any of its three
neighbors in front of it were both visible and empty.
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Lemma 2:The visibility state of the next cell to be tra-
versed isVisible if and only if that cell reside on the outer
most boundary in the direction of the map which mark that
cell asVisible.

Proof:
If: if the cell reside on the outer most boundary then

there is no other cell between it and the map. Based on the
map construction, if the map state isvisible then the cell
must be visible as well.
Only if: Assume, in negative, that the map state for

the cell isvisible but the cell does not reside on the out-
ermost boundary with respect to that map. It follows that
there is another cell on the boundary and is closer to the
map. However, according to the view dependent traversal
order, we should have visited that other cell before the cur-
rent one and thus, remove it. The only case in which we
would not removed a cell is if that cell is not visible, but
this contradicts the assumption. If follows that no other
cell may exist closer to the map than the current cell.

Proof: [Theorem1]
The trivial case: Based on their construction, the entries

in the three maps correspond one-to-one to the cells on the
boundary of the volume. Consequently, setting the visibil-
ity state of a map entry to the state of the corresponding
volume boundary cell satisfies the theorem.

The general case: Consider the general case where the
next node in the traversal pipeline is nodeNi . According to
lemma1, cell Ni must be on the boundary, and according
lemma2, its status can bevisible only if the corresponding
status in the visibility map isvisible. It follows then that
the visibility maps are sufficient to determine if the next
cell in the pipeline is visible.

We can now generalize the visibility maps for any kind
of a node. In this case, we construct and maintain a sepa-
rate set of visibility maps for each level in the volume hi-
erarchy. In other words, the octree structure of the volume
can be reflected in the visibility maps as a quadtree.

B.2 Manipulation Rules

In the previous section, we defined and showed how to
construct the three visibility maps. We argued that the vis-
ibility maps can be represented as quadtree. We now con-
sider how to maintain these maps consistent throughout the
pipeline traversal.

Consider a face visibility map of a three dimensional
volume as depicted in Figure8.

Visibility Map rule 1: A node isoccluded if all of its
four children are occluded.

Visibility Map rule 2: A node isvisible if any of its four
children is visible.

 Three levels
Visibility map

4x4x4 Volume

Visible

Possible

Occluded

Fig. 8
A 3D VOLUME AND ONE OF ITS 2D QUADTREE VISIBILITY

MAP.

Last, we need to address the cases of a visible cell that
contains triangles and the visibility status of the cells be-
hind it.

Visibility Map rule 3: If a visible cell contains triangles
then the back facing sides are markedpossible.

Visibility Map rule 4: If none of the front facing sides
is visible and at least oneis possible then the cell is also
possible.

Using the binary values:Occluded = 00,Possible = 01
andVisible = 11 the cell visibility is abitwise OR of the
visibility of the front faces.

B.3 Initialization

In the simple case where the bounding box of the data
is visible, all the visibility maps entries are initialized to
Visible. However, if portions of the data bounding box
are not visible then the initialization step is slightly more
involved.

For each visibility map, we first determine which por-
tion is visible by projecting the screen on the map plane
and clipping it to the map area. Alternatively, the map’s
four coordinates can be projected and clipped to the screen
and then back-projected to the map. Once the visibility
portion is determined we scan convert it onto the map’s
lowest level,i.e., the highest resolution. The map is then
updated in a recursive fashion, up until the root entry is
reached.

Alternatively, the visibility of root node can be deter-
mined using the procedure outlined in sectionIV-B.6. In
this case thePossible list is initialized with only the root
node.
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B.4 Updates

When the visibility of a meta-cell or a leaf cell is set,
each visibility map is updated according to the spatial po-
sition of the cell on each map and its position in the hier-
archy. Each map entry then propagates the change to its
parent. The parent entries are called recursively and are
ordered to recompute their values based on the values of
their children. This climbing continues until reaching the
root of the map or finding an ancestor for which the value
does not change. The value of a parent entry is set to an
OR of the values of its children.

B.5 Rebuilding the Visibility Maps

Theorem1 asserts that the visibility maps are correct
for the next node in the pipeline. This assertion stands as
long as we keep the front-to-back traversal order. Once
the pipeline is empty, if there are still nodes in thePossible
list, then we need to perform a visibility query on all of
these nodes and repeat the traversal. Care must be taken as
the visibility maps from the previous iteration can not be
use as is. The maps reflect the correct visibility status only
as long we continue to traverse in a front-to-back order but
the next iteration will start with a node which, by defini-
tion, is in front of the last node we examined. We must,
therefore, reinitialize the visibility maps. The question is
what should we initialize them to?

The answer is two-fold. First, the visibility maps are
initialized to Occluded . Second, before processing the
next node in the pipeline we check if we have already per-
formed a visibility query on it. If we did, then rather then
referring to visibility maps, we use the result of the visi-
bility query andupdate the visibility maps. Note that this
accrues only for nodes from the previous iteration. New
nodes that are encounter during the current traversal are
processed as usual and their visibility status is determine
by consulting the visibility maps. Caution must be taken
not to update the visibility maps with the visibility infor-
mation of a node,before the node reaches the front of the
pipeline, e.g., initializing the visibility maps with all of
the results from the visibility query at the start of the next
traversal iteration.

B.6 Visibility Query

In sectionV, we discuss how to perform a visibility
query using the graphics hardware. Here, we are interested
with what should this query determine, nothow. The sim-
plest query need only determine ifany portion of a node is
visible. A more refined query will determine which of the
three front faces is visible and update only the appropriate
visibility maps. In both cases, however, the entry in the

map’s quadtree is updated as well as its entire subtree. In-
stead, our visibility queries determine the visibility status
of each of thecells on the front faces of the node. We can
then update the visibility maps entries with more accurate
information.

Recall that this is similar to the situation we had at the
start when we had only the root node. We can, therefore,
use this procedure to initialize the visibility maps at the
start as well. All we need is to initialize the maps toOc-
cluded , initialize thePossible list with the root node, per-
form this visibility query and start the loop.

C. Other Viewing Regions

Until now, we assumed that three of the exterior faces
are facing toward the user. In this case, only three visibility
maps are needed, one for each pair: left/right, top/bottom
and front/back. However, when the view point is such that
only one or two faces are visible then we must use both
maps of the two occluded faces. As the algorithm descends
down the data hierarchy, the traversal order in each of the
two portions of the data (see Figure9) will be different,
thus a different visibility map must be maintained for each
case. This does not pose a problem as the traversal direc-
tion determines which of the two visibility maps should be
used for each cell. Furthermore, the two appropriate maps
are initialized toOccluded as no portion of them is visible
at the start. Note, that as the algorithm discoverVisible
or Possible cells, some of the entries in these maps will
change.
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V IEWING THE DATA FROM THE SIDE.

A similar situation occurs when the view point is inside
the volume. Consider a two-dimensional case depicted in
Figure10. The view point is inside the data and, from the
start, the only known information is that the cells just in
front of it in the viewing direction are visible. This case
translates to an orthogonal projection of the image onto
the facing sides of the volume’s bounding box. Again, if
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the image plane is perpendicular to a face, then the face
is reset toOccluded . In many cases, the image’s absolute
size inside of the data will shrink to less than the size of
a single entry at the highest resolution of the map. In this
case, we will mark a single entry asVisible.
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Fig. 10
V IEW POINT INSIDE THE DATA VOLUME.

V. HARDWARE ACCELERATEDV ISIBILITY QUERIES

After the initial pass, where most of visible cells the iso-
surface intersects are identified, we are left with a collec-
tion of nodes that are marked as possibly visible. These
nodes may overlap and even completely overshadow each
other. However, we do know their relative front to back
order.

In order to quickly determine which of thesePossible
nodes are visible from the current direction,PHASE uses
the graphics hardware accelerator. The nodes which were
classified as visible can be interrogated using the same vis-
ibility propagation method used in the initial approxima-
tion step. The process then continues recursively by clear-
ing the framebuffer, projecting all the triangles and check-
ing which of thePossible nodes becomes visible. Note
that aPossible node that did not pass the visibility test in
one iteration, may become visible in a later iteration if it
was hidden by another node which, at one time, was deter-
mined to be visible.

Procedure?? takes advantage of the rendering speed as
well as the z-buffer provided by the graphics accelerator.
The order in which the triangles, as well as the meta-cells,
are projected is not important. There are, however, sev-
eral drawbacks to this approach. First, it uses the actual
screen window the user sees. Second, we project each of
the previously extracted triangles in each iteration. Third,

it is time consuming to read the entire framebuffer in each
pass.

Using the displayed window can be avoided by using
either the back-buffer or a separate off-screen buffer,e.g.,
pbuffer. One can also avoid the need to project all the
triangles by turning off the write to (but not the compare
against) the depth buffer before projecting the nodes. This
preserves the z-buffer and eliminates the need to re-project
the triangles. The meta-cells will still be drawn correctly
with respect to the triangles. However, as the write to
the depth buffer was turned off, the meta-cells may not be
drawn correctly with respect to each other. The solution is
to project the nodes in aback-to-front order. Note that the
nodes are extracted in a front to back order and thus, there
is no need to sort the cells prior to the projection, only to
traverse the node list in reverse order. Using this approach,
closer nodes will overwrite more distant cells and the final
image will be correct.

There are two ways to address the issue of slow z-
buffer readback. Some graphics accelerators support the
histogram extension that returns the number of time each
pixel value is repeated in the framebuffer (or a sub region
of it). The problem with this approach is that it is not
widely supported and even for the hardware that support
it, it may take a long time to compute a histogram for a
large area of the framebuffer. Our approach is to compute,
see Listing??, a three-dimensional bounding box of all
the meta-cells that were projected. We then project this
box onto the screen and find the bounding box (in screen
space) of its projection. We can then read back only that
region of the framebuffer and compute the histogram in
software.

A. Visualization of the Progressive Approximation

If the user is not interested in intermediate approxima-
tion thenPHASE can use the back buffer for the visibil-
ity tests during the progressive extraction. Alternatively,
if intermediate approximations are preferred, an auxiliary
buffer can be used to accelerate the progressive process as
depicted in Figure12.

The first pass, described in SectionIV-A , does not in-
volve any projection of triangles and thus the auxiliary
buffer is not used. The initial approximationA0 is then
projected on the back buffer and subsequently is shown to
the user after the buffers swap.

The second iteration begins with the projection of the
first approximationA0 onto the auxiliary buffer followed
by visibility check of all the unclassified nodes. Based
on this visibility test more triangles are generated,D1, to
augment the first approximation. As the back buffer does
not contain any useful information, it is cleared and the
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procedure fast_hw_visibility_test()
{

// set up the depth buffer

disable shading

disable color buffer write
draw( new_triangles )
enable color buffer write;

// project possible nodes back to front

reset bbox3d
clear color buffer to 0
disable depth buffer write;
for ( node in possible_list ) {

color = node.index+1;
draw( node.boundingBox)
bbox3d.extend( node.boundingBox)

}
enable depth buffer write;

// read back visibility results

bbox2d= screen bounding box( bbox3d)
pixels = read framebuffer( bbox2d)
hist = histogram( pixels )

// visibility status

for ( index=1; index<hist.size(); index++ )
if (hist[index] > 1)

nodes[index-1].visible = true
}

Fig. 11
HARDWARE ASSISTEDV ISIBILITY TEST

next approximationA1 = A0 + D1 is projected. The front
and back buffers are swapped again to present the user with
the next approximation.

From the third iteration on, we can take advantage of
the information already in the auxiliary and back buffers.
The auxiliary buffer already contains the projection of the
initial approximation, and thus only the triangles found
in the previous iteration need to be projected. The back-
buffer already contains the second approximationA1, there
is no need to re-project all the triangles, only the newly ex-
tracted trianglesD2.

B. Progressive Extraction While the View Point Changes

Assume the user has changed the point of view slightly,
e.g., rotated the data slightly during the timePHASE ex-

Step Front Back Aux. Operation
1 n/a A0 n/a

swap Front/Back
A0 n/a

2 A0 init Aux.
computeD1

render to Back
A0 +D1

A1 swap Front/Back
A1 A0

3 renderD1 to Aux.
+D1

A1 computeD2

update Back
+D1 +D2

A2 swap Front/Back
A2 A1

n An−1 An−2 An−2 renderDn−2 to Aux.
+Dn−2

An−1 computeDn−1

update Back
+Dn−2 +Dn−1

An swap Front/Back
An An−1

Fig. 12
PROGRESSIVE ISOSURFACE EXTRACTION.

tracted the initial approximation. Due to view coherency,
the initial approximation of the isosurface for the new view
point should be very similar to the one just extracted. Con-
sequently, it should be sufficient to re-project this old ap-
proximation using the new view point as though it was the
initial extraction from the new view point, and then con-
tinue with the next pass. Care must be taken, though, to
reorder the nodes based on the new view point.

Moreover, if the view point did not change much then
we can approximate the visibility status by using the back
depth buffer as an approximation of the projection of the
triangles based on the new view point. Instead of the back
buffer, we use it as is and continue with the visibility test of
the cells in thePossible list. Note that thePossible nodes
are projected according to the new viewpoint onto a depth
buffer which is correct for the previous viewpoint,i.e., a
two view position back of the new one. As long as the
viewpoint does not changedrastically this approximation
works well.

VI. RESULTS

We have implemented thePHASE framework on a
graphics PC running Linux. For the sake of compari-
son, we also have implemented within a common appli-
cation the standard octree-based algorithm and theSAGE
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method. For the experimentations, we used a 1.9 GHz
AMD Athlon processor with 1.5 GB of DDR DIMM mem-
ory and a GeForce4 Ti 4600 graphics board.

We applied these methods to three different sections of
the Visible Woman CT data: one 512x512x209 2-byte
values dataset from the head section, one 512x512x857
2-byte values dataset from the body section and one
512x512x617 2-byte values dataset from the legs section.
The extracted isosurfaces were rendered to a 512x512 win-
dow using hardware accelerated OpenGL.

A. Fixed Point of View

First, we must consider the classical isosurface extrac-
tion for two different values (v = 600.5 for the skin and
v = 1224.5 for the bones) and with a fixed point of view
showing the whole isosurface to the user from outside the
dataset. This is the typical case when the user sets a new
isovalue to explore the dataset.

As a reference, TableI show the timings for a full isosur-
face extraction using the octree-based algorithm and for a
view-dependent isosurface extraction and rendering using
theSAGE method.

During a progressive isosurface extraction with the
PHASE method, the first iteration takes about 1 s both for
the skin (for about 500,000 triangles) and the bones (for
about 400,000 triangles). After this first iteration, about
85% of the final image has already been computed. The
second iteration takes about 0.6 s and leads to more than
97% of the final image. Finally, a few more iterations, tak-
ing about 0.3 s each are required to get to full convergence.

For an isovalue change, the view dependentSAGE
method can be up to two times faster than the full isosur-
face extraction. The slowest isPHASE since it needs at
least two iterations to get a good image quality.

B. Moving the Point of View

The full isosurface extraction leads to a huge number
of triangles than can overwhelm the graphics accelerator
capacity. The framerate when moving the point of view is
limited to 5fps for the skin and 3fps for the bones.

The SAGE method needs to recompute everything for
every new point of view. The framerate is limited to 1fps.

The progressive approach ofPHASE allows to only ex-
tract new triangles (with iterations of 300ms). We can then
get 2fps.

This dataset is obviously no more a good example!

C. Closeup views

When we are inside or very close to the dataset,PHASE
reacts very fast whileSAGE needs more time.

VII. C ONCLUSIONS

ACKNOWLEDGMENTS

REFERENCES

[1] W. E. Lorensen, “Marching through the visible man,” inProceed-
ings of Visualization 1995, Oct. 1995, pp. 368–373.

[2] U. Tiede, T. Schiemann, and K. H. Höhne, “High quality render-
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