
ISOSURFACE EXTRACTION

Yarden Livnat
Charles Hansen
Steve Parker
Christopher R. Johnson
SCI Institute
University of Utah

Abstract new advances in isosurface extraction. features in the span space and
improvements of view dependent extraction (WISE-¿SAGE)

Keywords: Isosurface Extraction, Span Space, View Dependent Extraction

1. INTRODUCTION
The need for isosurfaces.

2. BACKGROUND
Researchers in many science and engineering fields rely on insight

gained from instruments and simulations that produce discrete sam-
plings of three-dimensional scalar fields. Visualization methods allow
for more efficient data analysis and can guide researchers to new in-
sights. Isosurface extraction is an important technique for visualizing
three-dimensional scalar fields. By exposing contours of constant value,
isosurfaces provide a mechanism for understanding the structure of the
scalar field. These contours isolate surfaces of interest, focusing attention
on important features in the data such as material boundaries and shock
waves while suppressing extraneous information. Several disciplines, in-
cluding medicine [?, ?], computational fluid dynamics (CFD) [?, ?], and
molecular dynamics [?, ?], have used this method effectively.

In this chapter, we present an overview of isosurface extraction. We
then describe acceleration of isosurface extraction based upon the Space
Space. Improvements to Space Space acceleration can be made based
upon View Dependent methods and we discuss two such methods.

1

2

Let ϕ : G → V be a given field and let D be a sample set over ϕ,
such that,

D = {di} di ∈ D = G× V

where G ⊆ Rp is a geometric space and V ⊆ Rq, for some p, q ∈ Z, is
the associated value space. Also, let d = ‖D‖ be the size of the data set.

Definition 1 (Isosurface Extraction) Given a set of samples D over a field
ϕ : G → V, and given a single value v ∈ V, find,

S = {gi} gi ∈ G such that, ϕ(gi) = v. (1)

Note that S, the isosurface, need not be topologically simple.

Approximating an isosurface, S, as a global solution to Eq. 1 can be
a difficult task because of the sheer size, d, of large scientific data sets.
Originally, isosurface extraction methods were restricted to structured
grid geometry and, as such, early efforts focused on extracting a single
isosurface [?] from the volumetric data set. Recently, in an effort to speed
up isosurface extraction, several methods were developed that could be
adapted to the extraction of multiple isosurfaces from structured [?, ?]
as well as from unstructured geometry [?, ?]. Nevertheless, for large
data sets, these methods do not allow for interactive investigation of the
data set, especially for unstructured grids.

Defining n as the number of data cells and k as the number of cells
intersecting a given isosurface, most of the existing algorithms have time
complexity of O(n). While [?] has an improved time complexity of
O(k log(n

k) + k), the algorithm is suitable only for structured hexahe-
dral grids.

3. THE SPAN SPACE
Efficient isosurface extraction for unstructured grids is more difficult,

as no explicit order, i.e., position and shape, is imposed on the cells, only
an implicit one that is difficult to utilize. Methods designed to work in
an unstructured domain have to use additional explicit information or
revert to a search over the value space, V. The advantage of the latter
approach is that one needs only to examine the minimum and maximum
values of a cell to determine if an isosurface intersects that cell. Hence,
the dimensionality of the problem reduces to two for scalar fields. To
facilitate the understanding and analysis of the search over the value
space, we introduced [?] the notion of the Span Space:

Isosurface Extraction 3

Definition 2 (The Span Space) Let C be a given set of cells, define a set
of points P = {pi} over V2 such that,

∀ci ∈ C associate, pi = (ai, bi)

where,
ai = min

j
{vj}i and bi = max

j
{vj}i

and {vj}i are the values of the vertices of cell i.

Using this definition, the isosurface extraction problem can be stated
as,

Approach 1 (The Span Search) Given a set of cells, C, and its associ-
ated set of points, P , in the span space, and given a value v ∈ V, find
the subset Ps ⊆ P , such that

∀(xi, yi) ∈ Ps xi < v < yi

max

minv

v

Figure 1. Search over the Span
Space.

max

min

root

1

1

2

2 2

2

v

Figure 2. Kd Tree decomposition of
the Span Space

We note that ∀(xi, yi) ∈ Ps, xi ≤ yi and thus the associated points
will lie on or above the line yi = xi. A geometric perspective of the span
search is given in Fig. 1.

4

3.1. SEARCH OVER THE SPAN SPACE
Given a data set, a kd-tree that contains pointers to the data cells is

constructed. Using this kd-tree as an index to the data set, the algorithm
can now rapidly answer isosurface queries. Fig. 2 depicts a typical
decomposition of a span space by a kd-tree. It is clear that the kd-tree
has one node per cell, or span point, and thus the memory requirement
of the kd-tree is O(n).

Given an iso-value, v, we seek to locate all the points in Fig. 1 that
are to the left of the vertical line at v and are above the horizontal line at
v. The kd-tree is traversed recursively when the iso-value is compared to
the value stored at the current node alternating between the minimum
and maximum values at each level. If the node is to the left (above) of
the iso-value line, then only the left (right) sub-tree should be traversed.
Otherwise, both sub-trees should be traversed recursively. For efficiency
we define two search routines, SearchMin and SearchMax which are used
on the odd and even levels of the kd-tree respectively, see Figure ??.

SearchMin(node) { if (
node.min < isovalue) { if

(node.max > isovalue)
construct a polygon(s) from

node SearchMax(right child
) } SearchMax(left child)

}

SearchMax(node) { if (
node.min < isovalue) { if

(node.max > isovalue)
construct a polygon(s) from

node SearchMin(right child
) } SearchMin(left child)

}

Estimating the complexity of the query is not straight-forward. In-
deed, the analysis of the worst case was developed by Lee and Wong [?]
only several years after Bentley introduced kd-trees. Clearly, the query
time is proportional to the number of nodes visited. Lee and Wong an-
alyzed the worst case by constructing a situation where all the visited
nodes are not part of the final result. Their analysis showed that the
worst case time complexity is O(

√
n + k). The average case analysis

of a region query is still an open problem, though observations suggest
it is much faster than O(

√
n + k) [?, ?]. In almost all typical applica-

tions k ∼ n2/3 >
√

n, which suggests a complexity of only O(k). On
the other hand, the complexity of the isosurface extraction problem is
Ω(k), because it is bound from below by the size of the output. Hence,
the NOISE algorithm is optimal, θ(k), for almost all cases and is near
optimal in the general case.

The span space representation has recently been used by Cignoni et
al. [?] to reduce the complexity of the search phase to O(log n + k)
at the expense of higher memory requirements. Shen et al. [?] used a

Isosurface Extraction 5

lattice decomposition of the span space for a parallel version on a massive
parallel machine.

4. VIEW DEPENDENT
The complexity of isosurface extraction algorithms depends on the

size of the dataset, n, and the size of the isosurface, k. The NOISE
algorithm achieved a worst case complexity of O(

√
n + k) while Cignoni

et al. achieved O(log n + k). As the dependency on the size of the
original dataset was minimized, the size, k, of the extracted isosurface
became the major factor. Rendering a very large isosurface presents a
great challenge even on high-end graphics workstations. An even larger
toll has to be paid when remote visualization is involved. To answer
this challenge, current research efforts aim to simplify the geometry of
the isosurface after the isosurface is extracted and before it is rendered
or transmitted over a network. In effect, the quest is to reduce the
complexity of rendering an isosurface to a sublinear complexity with
respect to size of the isosurface. However, these methods do not address
the effort spent to extract and construct the isosurface in the first place.
Furthermore, these methods are slow and have a complexity at least
linear with k.

4.1. BREAKING THE O(K) COMPLEXITY
BARRIER

Livnat et al. [?] proposed to surpass the the O(k) barrier based on the
observation that isosurfaces extracted from very large data sets often ex-
hibit high depth complexity for two reasons. First, since the data sets are
very large, the projection of individual cells tend to be sub-pixel. This
leads to a large number of polygons, possibly non-overlapping, project-
ing onto individual pixels. Secondly, for some data sets, large sections of
an isosurface are internal and thus, are occluded by other sections of the
isosurface, as illustrated in Figure 3. These internal sections, common in
medical data sets, can not be seen from any direction unless the external
isosurface is peeled away or cut off. Therefore, if one can extract just
the visible portions of the isosurface, the number of rendered polygons
will be reduced resulting in a faster algorithm. Figure 4 depicts a two
dimensional scenario. In a view dependent method only the solid lines
are extracted whereas in non view dependent isocontouring both solid
and dotted are extracted.

The proposed paradigm, which is based on a hierarchical traversal
of the data and a marching cubes triangulation, exploits coherency in
the object, value, and image spaces, as well as balancing the work be-

6

Figure 3. A slice through an isosurface reveal the internal sections which can not
contribute to the final image.

Visible Isoline

Non!Visible Isoline

Screen

Figure 4. A two-dimensional scenario.

tween the hardware and the software. We employ a three step approach,
first we augment Wilhelms’ and Van Gelder’s algorithm [?] by traversing
down the octree in a front-to-back order in addition to pruning empty
sub-trees based on the min-max values stored at the octree nodes. The
second step employs coarse software visibility tests for each [meta-] cell
which intersect the isosurface. The aim of these tests is to determine
whether the [meta-] cell is hidden from the view point by previously
extracted sections of the isosurface (thus the requirement for a front-
to-back traversal). Finally, the triangulation of the visible cells are for-
warded to the graphics accelerator for rendering by the hardware. It is

Isosurface Extraction 7

at this stage that the final and exact [partial-] visibility of the triangles
is resolved.

4.2. VISIBILITY
Quickly determining whether a meta-cell is hidden and thus can be

pruned, is fundamental to this algorithm. This is implemented by creat-
ing a virtual screen with one bit per pixel. We then project the triangles,
as they are extracted, on to this screen and set those bits which are cov-
ered, providing an occlusion mask.

The pruning of the octree nodes is accomplished by projecting the
meta-cell on to the virtual screen and checking if any part of it is visible,
i.e. if any of the pixels it covers are not set. If the entire projection of
the meta-cell is not visible, none of its children can be visible.

We note that it is important to quickly and efficiently classify a cell as
visible. A hidden cell, and all of its children, will not be traversed further
and thus can justify the time and effort invested in the classification. A
visible cell, on the other hand, does not gain any benefit from this test
and the cost of the visibility test is added to the total cost of extracting
the isosurface. As such, the cell visibility test should not depend heavily
on the projected screen area otherwise the cost would prohibit the use
of the test for meta-cells at high levels of the octree - exactly those
meta-cells that can potentially save the most.

4.3. WARPED ISOSURFACE EXTRACTION
(WISE)

In the WISE algorithm [?] we employed hierarchical tiles [?] as a
mean for fast classification of meta-cells and determining the coverage
of extracted triangles. The hierarchical nature of the algorithm ensures
that the cost of either of these two operations will not depend highly on
their projected area.

A coverage map (a tile) is a rectangular bitmap (we use 8x8) in which
each bit represents a pixel in the final image, see Figure 5. The coverage
pattern of a convex polygon for a particular tile of the image is computed
by combining the coverage maps of the polygon edges.

A key component in the visibility test is the projection of a point, a
triangle or a meta-cell onto the screen. Clearly, the cost of performing
such transformation for each and every vertex of the projected meta-cells
and triangles is too high. In addition, the non-linearity of the perspective
transformation prohibits the use of pre-computed transformation table.
To accelerate this critical step, we take advantage of the shear-warp
factorization [?, ?] of the viewing transformation. The underlying idea

8

InOut

Covered

Partially covered

Not covered

Edge

Figure 5. An edge tile.

is to factor the viewing transformation into a shear followed by a warp
transformation. The data is first projected into a sheared object space
that is used to create an intermediate, albeit warped, image. Once this
image is complete a warping transformation is applied to create the
correct final image.

4.3.1 Shear But No Warp. We now note that the visibility on
the image plane and on the warped projection plane are the same. In
other words, any point in the data set that is visible on the image plane
is also visible on the warped projection plane and similarly, points which
would be occluded on the image plane are also occluded on the warped
plane. It is therefore sufficient to perform the visibility tests on the
warped projection plane. The advantage of this approach is two fold.
First, the perspective projection is removed. Second, since the shear
and scale factors are, with respect to the current view point, constant
for each slice we can pre-compute them once for each new view point.

4.4. SAGE
The WISE algorithm provides a particular implementation of the view

dependent approach. The performance of the WISE algorithm demon-
strated the potential benefits of such an approach. The two most promi-
nent weaknesses of the WISE method are the ratio of triangle intersec-
tions per screen cell and the fill rate of the screen tiles hierarchy.

In the following we present a new approach to view dependent isosur-
face extraction that aims at addressing these weaknesses. This approach
is based on the WISE method and lessons learned from it and assumes
that most of the extracted triangles are fairly small and that the con-
tribution of each triangle to the final image is also small. Based on
these assumptions, the triangles are applied to the screen hierarchy in
a bottom-up approach (most refined to less refined). The bottom-up

Isosurface Extraction 9

approach helps to restrict the rendering of a triangle to a very small
part of the screen hierarchy data structure. The visibility tests of the
data meta-cells are still performed in a top-down fashion in order to take
advantage of the relative large size of their footprint on the screen.

Another limitation of the WISE algorithm is the restriction to the
use of triangles. This restriction is due to the requirement of the tiles
method that the projected polygons must be convex. The marching
cube algorithm generates between one and four triangles per cell with
an average of about 2.05 triangles per cell for the datasets used in this
work. Since a cell can be viewed from any direction it is not possible to
determine a priori if the projection of more than one triangle will be a
convex or a concave polygon. The WISE algorithm, thus, projects each
and every triangle separately.

Furthermore, as each triangle edge is shared by two triangles, the
edge is projected and intersected against the hierarchy twice. The only
exceptions are silhouette edges, which are rendered only once. The use
of triangles therefore does not permit elimination of those edges that
are shared between triangles in the same cell and that form a convex
polygon when projected onto the screen.

4.4.1 A Bottom Up Approach. To alleviate the problem
of projecting many small triangles down the hierarchical tile structure,
SAGE employs a bottom-up approach, Figure 6. This approach is based
on the observation that the contribution of a small triangle is limited to
only a small neighborhood in the hierarchy, i.e., few tiles at the lowest
level. This contribution will also be limited in the number of levels in
the hierarchy.

The bottom-up approach is realized by projecting the triangles di-
rectly on to the bottom level, which is at the screen resolution. Only
the tiles that are actually changed by the projection of the triangle will
be further checked to see if they cause changes up the hierarchy. Since

Polygons:
Scan and update

Meta Cells
visibility check

Figure 6. Bottom-up and top-down usage in SAGE.

10

the contribution of the triangle is assumed to be small, its effect up the
hierarchy will also be minimal.

4.4.2 Scan Conversion of Concave Polygons. One of the
disadvantages of a top-down approach based on the hierarchical tiles, is
that it is restricted to only convex polygons. In the WISE algorithm,
this restriction has forced the projection of triangles only one triangle
at a time.

To alleviate this restriction, the SAGE algorithm employs a scan con-
version algorithm, which simultaneously projects a collection of triangles
and concave polygons. The use of the scan conversion algorithm is made
particularly simple in SAGE due to the bottom-up update approach.
The projected triangles and polygons are scan-converted at screen res-
olution at the bottom level of the tile hierarchy before the changes are
propagated up the hierarchy. Applying the scan line in a top-down fash-
ion would have made the algorithm unnecessarily complex.

Additional acceleration can be achieved by eliminating redundant
edges, projecting each vertex only once per cell and using triangles strips
or fans. To achieve these goals, the marching cubes lookup table is first
converted into a triangles fans format. The usual marching cubes lookup
table contains a list of the triangles (three vertices) per case.

A comparison of the WISE and the SAGE algorithms with respect to
the number of polygons and edges that are projected onto the hierarchi-
cal tiles is shown in Figure 7.

4.5. RENDERING POINTS
Another potential saving is achieved by using points with normals to

represent triangles or [meta-] cells which are smaller than a single pixel.
This is an improvement over the WISE algorithm as the exact location
of the each screen pixel center is known during the scan line and the
visibility tests. Whenever a nonempty [meta-] cell is determined to have
a size less then a single pixel and its projection covers the center of a
pixel, it is represented by a single point. Figure 8 shows an example in
which some of the cells are far enough such that they can be rendered
as point. On the left is the image as seen by the user while on the right
is a close up view of the same extracted geometry (i.e., the user zoomed
in but did not extract the geometry based on the new view point).

5. SUMMARY
We have described an overview of isosurface extraction. By utilizing

the space space, one can rapidly accelerate the search for existing iso-

Isosurface Extraction 11

Wise Sage

3 Triangles
9 Edges

3 Triangles
9 Edges

1 Polygon
5 Edges
1 Double Edge

1 Polygon
5 Edges

3 Triangles
9 Edges

1 Polygon (convex)
5 Edges

View direction Image

Figure 7. Comparison between WISE and SAGE.

surfaces within scientific data sets. When the depth complexity is high,
leveraging view dependent methods can be quite effective. We have de-
scribed two such methods: Warped ISosurface Extraction (WISE) and
SAGE.

Acknowledgments
This work was supported in part by awards from the DOE ASCI, the

DOE AVTC, the NIH NCRR, and the NSF. The authors would like to
thank Peter-Pike Sloan and Phil Sutton for their contributions.

12

Figure 8. Rendering points. The left image was extracted based on the current
view point. The right image show a closeup of the same extracted geometry.

