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Abstract

With great potential in studying neuro-development,
neuro-degeneration, and the aging process, longitudinal
image data is gaining increasing interest and attention in
the neuroimaging community. In this paper, we present
a parametric nonlinear model to statistically study multi-
variate longitudinal data with asymptotic properties. We
demonstrate our preliminary results in a combined study of
two longitudinal neuroimaging data sets of early brain de-
velopment to cover a wider time span and to gain a larger
sample size. Such combined analysis of multiple longitu-
dinal image data sets has not been conducted before and
presents a challenge for traditional analysis methods. To
our knowledge, this is the first multivariate nonlinear lon-
gitudinal analysis to study early brain development. Our
methodology is generic in nature and can be applied to any
longitudinal data with nonlinear growth patterns that can
not easily be modeled by linear methods.

1. Introduction

With the advances of medical imaging and data acquisi-
tion techniques, longitudinal image data, in which subjects
are scanned and measured repeatedly over time, become
available. Such longitudinal data are of increasing interest
to the neuroimaging community due to their great poten-
tial in studying processes like neuro-development, neuro-
degeneration, and aging. Recently, special effects have been
put into studying early human brain growth in the first few
years of life [9], because it is the most dynamic and perhaps
the most important phase of postnatal brain development.
The ability to study brain growth at a period when it un-
dergoes critical modication is essential to shed light on our
understanding of brain development.

Traditionally, cross-sectional studies were conducted to
compare the mean measurements of two or more age groups
and to find out whether there are any significant differences

among the age groups [13, 1]. However, this type of study
does not provide a growth model that integrates the contin-
uum of time, nor does it tell us the trend of how individuals
and populations change over time.

Researchers have tried to apply traditional or nonpara-
metric regression methods to retrieve growth information
of the population [4, 7], which is a reasonable way to ap-
proximates the true population growth. But we need to re-
alize that the effect of growing or aging is indeed an in-
herently within-individual effect, and the true hidden pop-
ulation growth trajectory should really be the average of
all individual growth trajectories. Moreover, traditional re-
gression is not suitable for the analysis of longitudinal data
because repeated observations from the same individual in
longitudinal data violate the Gauss-Markov assumption of
independence. Ignoring the correlation between repeated
measurements when it exists in longitudinal data could re-
sult in less precise estimation and incorrect inference about
the growth pattern [8]. Indeed, compared to cross-sectional
data, in which each subject is measured only once, longi-
tudinal data possess some unique properties that pose chal-
lenges for analysis:

1. Temporal correlation between repeated measure-
ments. It is a typical feature in longitudinal studies
that repeated measurements of any given subject are
correlated, because they are measured from the same
subject over time. Moreover, the value of temporal
correlation depends on the distance in time between
measurements. For example, we would expect two
measurements that are close in time to be more alike
than those that are far apart. Generally speaking, the
closer the two repeated observations are in time, the
larger the correlation, and vice versa.

2. Missing data. In clinical studies, scheduled imaging
sessions are often missed or image data need to be ex-
cluded due to insufficient quality. Moreover, as illus-
trated in Fig. 1, we can combine several longitudinal
data sets, each of which provide longitudinal samples
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Figure 1. An illustration of properties of longitudinal data. Data are selected from a combination of two longitudinal studies. Repeatedly
scanned MR T2 brain images of 5 children between birth to 5 years old are shown. We can observe the following properties: (1) temporal
correlation: similarity between repeated scanned images; (2) missing data: no children have a complete set of scans that span 5 years; (3)
uneven sampling of time points; (4) multivariate features; (5) Asymptotic growth pattern: growth of brain slows down after some time.

for a certain short period of life, to study longitudinal
development of a wider time span or to gain a larger
sample size. Such studies are bound to have missing
data since time periods of different data sets do not
necessarily overlap.

3. Unbalanced or uneven sampling of time points.
Measuring schedules vary from subject to subject. It is
unlikely to have an equally-spaced and complete clin-
ical data set where each individual has the same time
points with exactly the same time intervals. Temporal
correlations, affected by this unbalanced property, also
vary from subject to subject, which makes population
modeling of temporal correlation challenging.

4. Multivariate features and spatial correlation. Mul-
tiple features can be computed from each image, such
as the three dimensional size of the head, diffusion
properties of white matter tracts, or cortical thickness
at different locations. Correlations often exist among
these features due to neighboring effects, thus we call
them spatial correlations.

5. Asymptotic growth pattern. The asymptotic behav-
ior is not a general longitudinal characteristic, but is
prevailing in human growth data [3]. Polynomial and
other parsimonious linear models may approximate a
short period of human growth, but they are unsuitable
when the growth curve asymptotes to an upper or lower
bound [12]. Nonlinear models are required to study
such longitudinal data as brain development in neu-
roimaging.

These unique properties of longitudinal data demand a
more flexible and powerful model than traditional regres-
sion. Mixed-effects models [8] have received a great deal
of attention because of the flexibility they offer in handling
the unbalanced repeated measurements with missing data.
Compared to linear mixed models, nonlinear mixed-effects
models are considerably more difficult and computationally
intensive to fit because its nonlinearity offers no close-form
solution to the growth parameters [5]. In the following
sections, we start off introducing the linear mixed model
in section 2.1 and then extend it to the nonlinear case in
section 2.2. A joint modeling scheme of nonlinear mixed
models to statistically study longitudinal data with multiple
features is then studied in section 2.3. Details of estima-
tion and inference are given in section 2.4, and individual
growth prediction are presented in section 2.5. In section 3,
we apply the multivariate nonlinear longitudinal method to
a combined study of two longitudinal image data sets whose
time periods barely overlap, and then validate our result us-
ing a third data set whose time points were not measured in
the previous two. Residual plots are also used for further
validation.

Note that the multivariate nonlinear longitudinal method
we use is generic in nature and thus can be applied to any
longitudinal data with single or multiple features that ex-
hibit nonlinear growth patterns. However, the purpose of
this paper is not to provide a complete solution to the com-
plex problem. Instead, this is work in progress that serves
as a scientific exploration into applying multivariate nonlin-
ear longitudinal methods to image data, and as a precursor
to higher dimensional longitudinal shape analysis.



2. Method

The spirit of mixed models is to average individual
growth trajectories rather than individual points such as that
in traditional regression. An effective strategy is to first re-
duce the unbalanced repeated values into a few summaries,
and then analyze each summary variable as a function of in-
dependent variables [8]. We illustrate this idea with linear
mixed models.

2.1. Linear Mixed Models

The linear mixed model is a two-level model [8]. The
first level is the individual level, which lets us think of a
unique trajectory for each individual. Then, the summary
variables of individual trajectories, e.g. intercepts, slopes,
etc., are used to compute an average population growth,
while their variances are considered to represent among-
individual variability.

Individual (first stage) model: For the ith subject, if its
measured time points are ti1, · · · , tini

, and the correspond-
ing univariate features over time are yi1, · · · , yini

, then the
model for individual i, i = 1, · · · ,m, is

yij = β0i + β1itij + eij , j = 1, · · · , ni, (1)

where β0i and β1i are the two summary variables describing
the growth profile of individual i. We can see that no matter
how many repeated measurements (e.g. ni) each individual
has, or how close or far apart the measurements are, the
number of parameters used (e.g. β0i, β1i) to summarize
individual trajectories is always the same (it is 2 in this
illustrating case). Thus, the missing data and unbalanced
properties of longitudinal data described in section 1 is
appropriately handled.

Population (second stage) model: In the population level,
we think of parameters of individual trajectories as random
variables, varying around the ”centered” average population
parameters, e.g. mean intercept β0 and mean slope β1:

βi =
[
β0i

β1i

]
=
[
β0

β1

]
+
[
b0i
b1i

]
= β + bi. (2)

Here b0i and b1i are called random effects describing how
the intercept and slope for the ith subject deviate from their
mean values. Doing simple substitution from Eqn. 1 and 2,
we get:

yij = β0 + β1tij + b0i + b1itij + eij = f(β, bi, tij) + eij ,
(3)

where f(β, bi, tij) is a linear function of random effects
bi. To write the individual i’s entire response vector (i.e. ni

repeated measurements) into a matrix form, we let

yi =


yi1
yi2
...

yini

 , ei =


ei1
ei2
...

eini

 , and

f(β, bi) =


f(β, bi, ti1)
f(β, bi, ti2)

...
f(β, bi, tini

)

 = Xiβ + Zibi,

where Xi and Zi are design matrices of the known con-
stants. Then the individual response vector is written as

yi = f(β, bi) + ei = Xiβ + Zibi + ei. (4)

It is often reasonable to assume that the measurement errors
are i.i.d. ei ∼ N (0, σ2I) and populations of intercepts and
slopes are approximately normally distributed, i.e.[

b0i
b1i

]
∼ N (0,D), whereD =

[
σ11 σ12

σ21 σ22

]
.

The conditional distribution of repeated response vector yi
given bi is thus given by

yi|β, bi,D, σ2 ∼ N (f(β, bi), σ2I) = N (Xiβ+Zibi, σ2I),
(5)

which basically says the condition mean of individual i is
E(yi|bi) = Xiβ+Zibi with variance var(yi|bi) = σ2I .
Thus, the marginal density of yi turns out to be

p(yi|β,D, σ2) =
∫
p(yi|β, bi,D, σ2)p(bi)dbi (6)

= Φ(Xiβ,ZiDZ
′
i + σ2I). (7)

Then the population growth parameters β and the variance
components in D and σ2 are estimated by maximizing the
likelihood based on the marginal density of all yi. The rea-
son the integral of the marginal density in Eqn. 6 can eas-
ily be expressed in a closed form as Eqn. 7 is the fact that
f(β, bi) is a linear function of bi. For nonlinear mixed
models, this nice close-form solution can not be obtained.

2.2. Nonlinear Mixed Models

Similar to linear mixed models, nonlinear mixed models
also assume a unique trajectory for each individual, except
that it is nonlinear with regard to the growth parameters βi.
For example,

yij =
β1i

1 + β2i exp(−β3itij)
+ eij , j = 1, · · · , ni, (8)

where β1i, β2i, β3i > 0. This is called the logistic growth
function, one of the common models for the process of



growth [14]. If one assumes that the growth rate of the
response variable (e.g. yij) relative to the response value
itself declines in a linear fashion with increasing growth, it
may be shown that the response value at time tij may be
represented by a logistic growth function of Eqn. 8. Here,
β1i controls the asymptote of growth, β1i

1+β2i
is the intercept,

and β3i is the ”time scale” parameter characterizing how
quickly the growth value increases from the initial value to
the asymptote.

Figure 2. Illustration of individual growth trends. A spaghetti plot
that connects repeated measurements of the same individual is
shown. The two red upper and lower bound curves are generated
by varying β1 and β3 only and with fixed β2, which indicates pop-
ulation variance can be captured by varying only β1 and β3.

Similarly to the linear case, we think of individual
growth parameters β1i, β2i, β3i as random variables, vary-
ing around the ”centered” average population parameters:

βi =

 β1i

β2i

β3i

 =

 β1

β2

β3

+

 b1i
0
b3i

 . (9)

The distribution of random effects are modeled normally as

bi =
[
b1i
b3i

]
∼ N (0,D), whereD =

[
σ11 σ13

σ31 σ33

]
.

Note that we could choose to exclude some random effects
(e.g. set to zero) if the population of individual growth
trends do not exhibit significant variation with regard to
the corresponding growth parameters. As seen in the il-
lustrative example of Fig. 2, the variation of individual tra-
jectories can mostly be captured by β1i, which controls
the asymptote and intercept, and β3i which controls the
”growth rate”. It is dangerous to include extra random ef-
fects in the model when there is little variation in them, be-
cause they would result in a non-full rank covariance ma-
trixD, and would pose challenges for parameter estimation.
Doing simple substitution from Eqn. 8 and 9, we get:

yij =
β1 + b1i

1 + β2 exp(−(β3 + b3i)tij)
+eij = f(β, bi, tij)+eij .

(10)

The repeated measurement vector of individual i can again
be written as

yi = f(β, bi)+ei, where f(β, bi) =


f(β, bi, ti1)
f(β, bi, ti2)

...
f(β, bi, tini

)

 .
(11)

As the nonlinearity of bi causes the difficulty for integra-
tion in the marginal distribution in Eqn. 6, there are several
methods to approximate the integral [6]. One of the natural
way is to consider a linear approximation. A Taylor series
expansion of f(β, bi) about the expected value of bi = 0
to linear terms leads to

yi ≈ f(β, 0) +Zi(β, 0)bi + ei, (12)

where Zi(β, 0) is a matrix of derivatives

Zi(β, 0) =
[
∂f(β, bi, tij)

∂bi

]
bi=E(bi)=0

.

Thus the integral in the marginal distribution is analytically
calculable analogous to a linear mixed model, and can be
approximated by a normal distribution:

p(yi|β,D, σ2) =
∫
p(yi|β, bi,D, σ2)p(bi)dbi

≈ Φ(f(β, 0), Σi),

where Σi = Zi(β, 0)DZi(β, 0)′ + σ2I .

2.3. Joint Modeling of Nonlinear Mixed Models

To study the relationship between two or more develop-
mental processes, an approach of jointly modeling the ran-
dom effects for different features can be adopted [11]. First,
the average evolution of each feature is described. We still
use our logistic growth model here as an illustrative exam-
ple, other nonlinear functions could also be adopted:

yij,X =
β1,X + b1i,X

1 + β2,X exp(−(β3,X + b3i,X)tij,X)
+ eij,X

yij,Y =
β1,Y + b1i,Y

1 + β2,Y exp(−(β3,Y + b3i,Y )tij,Y )
+ eij,Y

yij,Z =
β1,Z + b1i,Z

1 + β2,Z exp(−(β3,Z + b3i,Z)tij,Z)
+ eij,Z

The repeated response vector for each feature can be written
similar to Eqn. 11 and 12. Concatenating response vectors
of multiple features for individual i results in: yi,X
yi,Y
yi,Z

 ≈
 fX(βX , 0)
fY (βY , 0)
fZ(βZ , 0)

+Zi,A

 bi,X
bi,Y
bi,Z

+

 ei,X
ei,Y
ei,Z

 ,
(13)



where

Zi,A =

 Zi,X(βX , 0) 0 0
0 Zi,Y (βY , 0) 0
0 0 Zi,Z(βZ , 0)

 .
Then, by imposing a joint multivariate distribution on the all
the random effects, the growth patterns of different features
are associated:

bi =


b1i,X
b1i,Y
b1i,Z
b3i,X
b3i,Y
b3i,Z

 ∼ N (0,D).

The elements in matrix D capture both the among-
individual variability with regard to growth patterns within a
single feature, as well as the association between the growth
patterns of different features. Crucial questions such as as-
sociation and evolution between growth patterns of differ-
ent features are of critical interest for neuroimaging appli-
cations. These problems can be appropriately addressed in
longitudinal analysis but cannot be answered in a traditional
regression analysis framework.

Similar to that described in Sec. 2.2, the marginal distri-
bution of the joint response vector follows a normal distri-
bution approximately

p(yi,A|βA,D, σ2) ≈ Φ(fA, Zi,ADZ′
i,A + σ2I), (14)

where

βA =

 βX
βY
βZ

 , fA =

 fX(βX , 0)
fY (βY , 0)
fZ(βZ , 0)

 .
Estimation of population growth parameters βA and
variance-covariance parameteris in D and σ2 can then be
computed by maximizing the marginal distribution of all
yi,A.

2.4. Estimation and Inference

Let us assume the joint response vectors of multiple fea-
tures for different individuals yi,A are independent across
i, then the joint probability density function is

m(θ) =
m∏
i=1

∫
p(yi,A|βA, bi,D, σ2)p(bi)dbi

=
m∏
i=1

p(yi,A|βA,D, σ2)

≈
m∏
i=1

Φ(fA, Zi,ADZi,A + σ2I),

where θ represents the all the unknown parameters in βA,
D, and σ2. In particular, the function

h(θ) = − logm(θ) (15)

is minimized over θ numerically in order to estimate θ.
Here h(θ) is referred to as the objective function for op-
timization.

Because objective function h(θ) is not a simple
quadratic function with regard to θ, we must solve for
the solution iteratively. A Quasi-Newton optimization
method [2] is adopted. For each Newton step, we compute
a new estimation for θ

θ(k+1) = θ(k) − α(k)δ(k),

where
δ(k) = H−1(θ(k))g(θ(k)).

The matrix H−1(θ) refers to the Hessian ∇2h(θ) and the
function g(θ) refers to the gradient vector ∇h(θ). α(k)

is called the step length, which is determined by a local
optimization of the function h(θ(k) − α(k)δ(k)), called a
line search [10]. Also, the computation of Hessian matrix
H−1(θ(k)) is approximated using the BFGS method [2].
The above Newton step is iteratively executed until the con-
vergence criterion is met, resulting an estimation θ̂.

It turns out that the inverse of the Hessian matrix of the
log-likelihood evaluation at θ̂ describes the asymptotic dis-
tribution of the θ̂ about the actual parameter value θ, i.e.

θ̂ ∼ N (θ,H−1(θ̂)).

Knowing the parameter estimate θ̂ and the variance of its
sampling distribution V̂θ = H−1(θ̂), it is straightforward
to conduct hypothesis testing and determine whether certain
parameter is statistically significant. We can specify appro-
priate matrices L to represent various questions of interest.
For example, if we want to study whether the asymptote
of feature X is statistically different than that of feature Y,
we let the corresponding element of L to be 1 and -1, e.g.
L = (1,−1, 0, · · · , 0). When L consists of a single row, a
general t-statistic can be constructed as follows:

t =
Lθ̂√
LV̂θL

′
. (16)

2.5. Individual Growth Prediction

In some longitudinal studies, we may want to predict
subject-specific growth trajectories, which is equivalent to
predict the random effect bi for each individual. Thus we
need to compute the conditional expectation of the random
effects bi = E(bi|yi,A). It can be accomplished by maxi-
mizing the following objective function [6]:

`(bi) =
1
σ2

[yi,A−f(βA, bi)]′[yi,A−f(βA, bi)]+b′
iDbi.

(17)



For a fixed βA, the above objective function is a constant
plus the log of the posterior density of bi:

p(bi|yi,A,βA,D, σ2) =
p(yi,A|βA, bi,D, σ2)p(bi)

p(yi,A|βA,D, σ2)
.

Therefore, the bi maximizing Eqn. 17 is the posterior mode.
Once we have the estimation b̂i, we can reconstruct the con-
tinuous individual growth profiles by

fi,X =
β̂1,X + b̂1i,X

1 + β̂2,X exp(−(β̂3,X + b̂3i,X)t)
,

fi,Y =
β̂1,Y + b̂1i,Y

1 + β̂2,Y exp(−(β̂3,Y + b̂3i,Y )t)
, (18)

fi,Z =
β̂1,Z + b̂1i,Z

1 + β̂2,Z exp(−(β̂3,Z + b̂3i,Z)t)
.

3. Application: Early Brain Development
Motivation. The motivation of our application relies on
the project of building parallel head coils for neonates and
young children for the acquisition of pediatric brain MRI
images. We would like to know how the average head size
of the population changes longitudinally. We would also
like to predict the average head size at time points where
we currently do not have MR scans, so that we can de-
cide whether we need to build new coils for these ages even
though we do not have existing scans at these time points.

Figure 3. An illustration of individual growth trends. A spaghetti
plot that connects repeated measurements of the same individual is
shown. Multiple features that describe the three dimensional head
size derived from each MRI brain image of neonates and young
children is illustrated. X dimension: red dots connected by dashed
lines; Y dimension: blue triangles connected by dotted lines; Z
dimension: green stars connected by solid lines.

Data. For our study presented here, we apply the multivari-
ate nonlinear mixed model analysis described in section 2
to a combination of two longitudinal neuroimaging studies,
one of which contains repeated MR scans of neonates and
young children aged between 0 to around 2 years old, while

the other provides repeated MR scans of young children be-
tween 2 to around 6 years old. Out of the 236 subjects in
our combined data set, 128 had 1 MR scan, 97 had 2 scans,
and 11 had 3 scans. By combining the two data sets, we are
able to study the longitudinal change of average head size
during a wider time period.

As preliminary analysis, we consider the longitudinal
growth of head size in X (left-right), Y (anterior-posterior),
Z (superior-inferior) dimensions. We use the same prob-
abilistic atlas of 1 year old as a reference to apply linear
registration to all the image data and to obtain the X, Y, Z
dimensions of the head size for each individual over time.
Fig. 3 shows the spaghetti plot of the X, Y, Z head size for
all individuals. We can observe from the plot that our data
is unbalanced and incomplete and that the trend of growth
displays an asymptotic property, which is shared by all the
three dimensions of the head size and by all subjects.

Population growth curves. We use the logistic growth
function as in Eqn. 8 to model the asymptotic growth pattern
of early brain development. The joint modeling scheme of
nonlinear mixed model described in section 2.3 is applied
to study the growth of head size dimensiosn X, Y, Z and
to obtain the population growth trajectories as a nonlinear
function of time (Fig.4). The β2 parameter that contributes
to part of the intercept of the growth curve, as well as the
β3 parameter that determines how quickly the value grows
from the initial value to the asymptote value, are tested to
be not statistically different for all three dimension X, Y,
Z. But the β1 parameter that controls both the asymptote
and the intercept of the growth curve are tested to be sta-
tistically different (p<0.05). This result means the X, Y, Z
dimensions of the head share similar growth pattern, while
each has its own initial and asymptote value.

Figure 4. Population growth trajectories of head size dimension X,
Y, Z plotted against the original data points ranged from age 0 to
around 6 years old. A third population of 22 infants aged from 4
to 8 months old (in the black dashed ellipse) are also plotted to
validate the soundness of the average growth estimation. Symbols
are the same as those in Fig. 3.



We further validate our result by plotting a third pop-
ulation of 22 infants with age ranging from 4 to 8 months
against the obtained population growth curves, as shown in
Fig. 4. The head size data of the third population were not
used to calculate the shown population growth curves, yet
they fall nicely along the growth trend represented by the
average growth trajectories.

Population growth rates. We can compute the growth rate
of head size dimensions by taking the derivatives of the
parametric growth curves:

∂ty =
β1β2β3 exp(−β3t)

(1 + β2 exp(−β3t))2
, (19)

as shown in Fig. 5. It indicates that the growth of the Y
dimension is faster than those of X and Z dimensions of the
head, i.e. almost 1mm faster per month. But at the same
time, the growth rate of the Y dimension also slows down
faster.

Figure 5. Growth rates of head size dimension X, Y, Z between
birth to around 6 years old. X dimension: dashed red lines; Y
dimension: dotted blue lines; Z dimension: solid green lines.

The faster growth rate of the Y dimension of the head
can be expected if we examine the original repeated MR
scans of any children. As shown in Fig. 6, the head for
the neonate at 0.7 month old looks more round, while the
head of the same child after two years is elongated in the
anterior-posterior (Y) direction.

Individual growth trajectories. As described in sec-
tion 2.5, we can predict the subject-specific growth trajecto-
ries by computing the random effects bi for each individual.
Fig. 7 shows the predicted individual growth trajectories for
all 236 subjects. Remember that a lot of the individuals
have very few scans, e.g. one or two scans, during the 6
year period, it is unlikely to predict their growth curves us-
ing traditional methods. On the other hand, the prediction of
individual growth trajectories by longitudinal analysis can
borrow ”strength” across individual, while at the same time

Figure 6. Repeated MR scans of the same child at age 0.7 month
old and again at 24.2 months old. We can observe that the head
for the neonate is more round, while the head of the same child
after two years is elongated in the anterior-posterior (Y) direc-
tion.(Contrast changes between the neonate image and that of the
two years old are due to the early brain myelination.)

maintain individual characteristics, e.g. individual profiles
have different initial values at age 0 and different asymptote
values as the children grow over time. This phenomenon
justifies the approach of mixed models, which treats indi-
vidual growth parameters, e.g. initial values, asymptotes,
as random variables, and model them as samples from a
population with variance characterizing among-individual
variability.

Figure 7. Individual growth trajectories for head size X, Y, Z di-
mensions. X dimension: dashed red lines; Y dimension: dotted
blue lines; Z dimension: solid green lines.

Residuals. Given the fact that numerous individuals have
very few time points and most of them just have one mea-
surement, the prediction to individual growth curves could
present a challenge, in a way that the prediction could be
biased or erroneous. Thus, validation is necessary. In Fig. 7
we validate that all the predicted individual trajectories fol-
low a reasonable growth pattern, i.e. no individual profile
exhibit unrealistic behavior that violates the original growth
trend. Next, we further validate our prediction results by



looking at the residuals between the original measurements
yij and the predicted value calculated by Eqn. 18:

rij = yij − f(β̂, b̂i, tij),

where f(β̂, b̂i, tij) is the individual growth trajectory com-
puted by predicting the random effects b̂i. Residual plots

Figure 8. Residule plot between the original measurements yij and
the predicted value calculated by rij = yij − f(β̂, b̂i, tij).

for all three dimensions are shown in Fig. 8. We observe
that each individual trajectory does not vary too far away
from the original measurements, which is within the range
of ±6mm during the whole 80 month period.

4. Discussion
We present a joint modeling scheme of nonlinear mixed

models to statistically study multivariate longitudinal im-
age data that exhibit asymptotic growth trends. We demon-
strate our results using a combination of two neuroimag-
ing longitudinal studies whose time periods barely overlap
to study early brain development. We obtain population
growth curves and growth rates for the head size dimensions
as a nonlinear function of time and validate our result using
a third population whose time points were not measured in
the other two. Given the limited number of repeated mea-
sures per individual, we are able to predict the continuous
individual growth trajectories for all 236 subjects. Residual
plots are examined to make sure the predicted trajectories
are a good fit to the original data. To our knowledge, this
paper is the first multivariate nonlinear longitudinal analysis
to study early brain development.

The nonlinear mixed model scheme we use is flexible
enough to permit statistical hypothesis testing such as gen-
der differences or differences between a patient and a con-
trol population. It also allows combining image-derived
features with subject scores, e.g. motor, language, or cog-
nitive scores. This enables us to link physical longitudinal
brain changes with underlining brain performance or func-
tions, which open a new research direction to our future

work. Indeed, new analytic methods to study brain growth
trajectories in healthy and patient populations as well as the
longitudinal relationship between physical and functional
features will have excellent potential to contribute to a better
understanding of origin, timing and nature of morphologic
differences in neurodevelopmental disorders.
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