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ABSTRACT
Building of atlases representing average and variability

of a population of images or of segmented objects is a key
topic in application areas like brain mapping, deformable ob-
ject segmentation and object classification. Recent develop-
ments in image averaging, i.e. constructing an image which is
central within the population, focus on unbiased atlas build-
ing with nonlinear deformations. Groupwise nonlinear image
averaging creates images which appear sharper than linear re-
sults. However, volumetric atlases do not explicitely carry a
notion of statistics of embedded shapes. This paper compares
population-based linear and non-linear image averaging on
3D objects segmented from each image and compares voxel-
based versus surface-based representations. Preliminary re-
sults suggest improved locality of group average differences
for the nonlinear scheme, which might lead to increased sig-
nificance for hypothesis testing. Results from a clinical MRI
study with sets of subcortical structures of children scanned
at two years with follow-up at four years are shown.

1. INTRODUCTION

The construction of brain atlases is central to the understand-
ing of the variabilities of brain anatomy. Most research has
been directed towards the development of 3D brain atlases us-
ing image mapping algorithms [1, 2] that can map and trans-
form a single brain atlas onto a population. In this para-
digm the atlas serves as a deformable template and the nonlin-
ear transformations encode the variability of the population.
Most recent work [3, 4] of nonlinear unbiased atlas build-
ing avoids the bias introduced by template selection. Further,
pairwise deformations are replaced by simultaneous group-
wise estimations of the unbiased atlas and the transformations
[5, 6, 7].

Voxel atlases, represented as the average image and the
set of nonlinear deformation fields, do not directly encode sta-
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tistical properties of individual anatomical shapes. Standard
shape statistics methods are mostly linear schemes to calcu-
late average shapes and major modes of variation, such as
PDM [8] and SPHARM [9]. This Euclidean framework has
to be replaced by a nonlinear Riemannian space framework
when applied to nonlinear medial shape models [10]. But sta-
tistical shape properties derived from nonlinear deformation
fields of atlases have not been sufficiently studied.

The difference between linear and nonlinear voxel-based
atlas building schemes clearly showed improved sharpness of
the nonlinear method [6]. However, its advantage for statisti-
cal analysis of shapes and hypothesis testing between groups
has not yet been sufficiently explored.

This paper describes work in progress that explores statis-
tical properties of shape populations averaged via nonlinear
deformations obtained by unbiased atlas building. Prelimi-
nary results are shown as comparison of shape averaging via
linear and nonlinear deformations, and as exploration of the
potentials of nonlinear schemes in group discrimination and
localization of population differences.

2. EXPERIMENTAL DESIGN

In order to compare group differences of linear v.s. nonlin-
ear shape averages, our shape analysis methods can be di-
vided into four steps. First, 3D affine transformation and
nonlinear unbiased groupwise registration[4] are applied to
two groups of MRI brain images, respectively. Information
of all transformations are retained. Second, binary voxel rep-
resentation of subcortical structures are extracted from the
same two sets of brain images, using semi-automatic user-
supervised segmentation. Applying the corresponding trans-
formations to these binary segmentations and averaging result
in linear and nonlinear average images. Third, parameterized
surface representations of anatomical brain structures are es-
tablished based on the binary segmentations in step two. Lin-
ear and nonlinear shape averages are derived by applying the
affine transformations and the 3D deformation fields to sur-
face points followed by averaging the resulting transformed
objects. Finally, group differences are studied by both volu-
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metric and surface comparison.

Fig. 1. Linear and nonlinear construction framework applied
to MRI brain images.

The construction framework depicted in Figure1 produces
affine transformations {fi}N

i=1 such that fi : Ii → IAff
i , where

{Ii}N
i=1 are a population of N individual MRI images and

{IAff
i }N

i=1 are their corresponding affinely-transformed coun-
terparts. Nonlinear diffeomorphic mappings hi : Ω → Ωi

are then estimated to deform each IAff
i into an unbiased atlas

IAtlas[4, 6], where Ω ⊂ R3 and Ωi ⊂ R3 are the coordi-
nate systems of IAtlas and IAff

i respectively. Since each hi is a
diffeomorphism[4], its inverse h−1

i : Ωi → Ω exists and can
be calculated.

In this study, two groups of 5 cases are selected over Time1
(2 years of age) and Time2 (4 years of age) from our autism
study database. The above framework was then applied to
obtain the linear affine transformations {fi}N

i=1 and nonlinear
deformation {h−1

i }N
i=1, where N = 5.

Voxel-based and surface-based representations of subcor-
tical structures of all the MRI images were obtained by seg-
mentation and parameterized surface extraction. The same
framework in Figure 1 can then be applied to these two repre-
sentations based on their inherent relationships with the MRI
images. We started with gray-level MRI image deformations
to obtain {fi}N

i=1 and {h−1
i }N

i=1, and then applied them to bi-
nary voxel and surface segmentations. Thus we can study
shape variability and group differences in different aspects
and make comparison, which will be illustrate in the follow-
ing sections.

3. VOXEL-BASED REPRESENTATION AND
PROCESSING

In this section we describe how to obtain linear and nonlin-
ear shape probability maps. Anatomical structures were first
segmented from MRI data using user-supervised segmenta-
tion by geodesic snakes and then represented as binary voxel
representations. Each of the N MRI data Ii corresponds to T
binary segmentations {Bij}T

j=1 of T brain structures.
Each of the NxT segmentations Bij were affinely trans-

formed into BAff
ij by fi using trilinear interpolation, respec-

tively. Averaging BAff
ij over i gives us population probability

maps for affine transformations, as shown in Figure2 (a). We
then continued to deform BAff

ij into Bdef
ij using the deformation

field h−1
i . Averaging Bdef

ij over i gives us population proba-
bility maps after nonlinear deformations, as shown in Figure2
(b).

Fig. 2. Coronal view of combined objects illustrating ven-
tricles, caudates, and amygdalae. Left: Probability map of
linearly transformed segmentations of subcortical brain struc-
tures. Right: Probability map of nonlinearly deformed seg-
mentations.

The result in Figure 2 shows that linear averaging of voxel
objects creates blurry probability maps, whereas nonlinear av-
erages appear sharper.

4. SURFACE-BASED REPRESENTATION AND
PROCESSING

Voxel-based image averaging does not result in an explicit
representation of average objects and does not know a mech-
anism to express object variability rather than fuzziness of
the boundary. In this section, we therefore apply the set of
linear and nonlinear transformations to object surface repre-
sentations.

After voxel segmentation, shapes were processed by an
analysis pipeline that includes surface extraction and parame-
trization using spherical harmonics[11, 9]. This parametric
boundary description is called SPHARM. Using a uniform
icosahedral subdivision of the spherical parametrization gives
us Point Distribution Models (PDM). PDM point correspon-



dence over the whole population is defined by surface points
with equivalent surface parameterizations.

In our study, each of the MRI images Ii has T bound-
ary models {Sij}T

i=1, while each shape Sij has M = 1442
boundary points {Pijk}M

k=1 derived from the SPHARM de-
scriptor. {Pijk}N

i=1 are corresponding points from parame-
trization, which means point k of shape j corresponds to each
other invariant to i. In this surface averaging process, original
surface correspondences are propagated through all stages of
deformations and can be used for object averaging.

The affine transformations fi were applied to the points
{{Pijk}M

k=1}T
j=1 individually. Grouping all the M mean points

P̄ Aff
jk = 1

N

∑N
i=1 P Aff

ijk gives us a linear shape average S̄j of
structure j. Similarly, nonlinear deformation fields were ap-
plied to all NxTxM points accordingly, and a nonlinear shape
average S̄def was obtained.

Fig. 3. Top: Colormap of values of standard-deviation of sur-
face points ploted on average shapes. Top left: Colormap
of STDs of linearly transformed surface points. Top right:
Colormap of STDs of nonlinearly deformed surface points.
Bottom: Histograms of STDs correspond to the shape above.
Putamen is chosen as an illustration example.

Similarly to a representation of a fuzzy boundary in voxel-
based processing as a measure of ”sharpness” of the popula-
tion model, we can also express the variability of a population
of averaged surface objects. Standard-deviation at each sur-
face point is calculated, as shown in Figure 3.

In Figure 3, we see that the shape on the right depicts more
blue region, which implies variability of linearly transformed
surface corresponding points is in generally smaller; while on
the left the image is more with green and red color, which im-
plies bigger variability for nonlinearly deformed surface cor-
responding points. While we gain intuitions by looking at the
colormap of the STDs, the corresponding histogram and the

table of statistical data are shown in Figure 3 and Table 1.

Standard deviation statistics of putamen at Time1:
Affine Nonlinear

Mean 1.6816 1.1261
50 percentile 0.3311 0.1807
85 percentile 0.3759 0.2141

Table 1. Statistical data of the two histograms of standard de-
viation shown in Figure 3. The data shows smaller variability
of surface points in the nonlinear case.

5. GROUP DIFFERENCE ANALYSIS

In this section we compares voxel-based and surface-based
representations and explores group differences obtained via
linear and nonlinear shape averaging.

5.1. Volumetric Analysis Between Groups

The result in Figure2 shows that nonlinear averages of voxel
objects appear sharper than averages done in a linear scheme.
In order to assess linear and nonlinear methods in group dif-
ference comparison, we compute probabilistic distance be-
tween two groups Time1 v.s. Time2 by the following prob-
ability overlap measure[12]:

POV (A,B) = 1−
∫ |PA − PB |

2
∫

PAB

Probabilistic distance: Time1 v.s. Time2
L. Caud R. Caud L. Put R. Puta

Affine 0.85391 0.92314 0.79608 0.89028
Nonlinear 0.88659 0.92457 0.83059 0.85069

Table 2. Distances between probability maps of Time1 and
Time2 , as shown in Figure2. Caudate and Putamen are cho-
sen as illustration examples.

As shown in table 2, distances of affine and nonlinear
probability maps are very close. By looking at these num-
bers of global probabilistic measurement, it is difficult to gain
information of localization or intuitive conception. Volumet-
ric analysis seems inefficient to address our problem of group
comparison by different approaches, which motivates analy-
sis via an explicit object representation.

5.2. Shape Mean Difference Analysis Between Groups

With the goal of exploring whether the nonlinear scheme shows
potentials to improve group discrimination, we compares the
differences between group means calculated by both linear
and nonlinear averaging.



We applied the processing described in section 4 to two
populations over two time points, respectively, and we obtain
for each time point the surface-based group mean after affine
registrations and that after nonlinear deformations. Compar-
ing the group mean differences over time gives results on the
left and middle in Figure 4. On the other hand, the voxel-
based scheme described in section 3 gives us linear and non-
linear probability maps, out of which we applied thresholding
and surface extraction to obtain the surfaces of average voxel
objects. Comparing them over time gives the result on the
right in Figure 4.

Fig. 4. Groupwise average model comparison shown for cau-
date and putamen. Left column: mean difference between
Time1 and Time2 after affine transformation. Middle: mean
difference between Time1 and Time2 after nonlinear diffeo-
morphic deformation. Right column: difference of boundary
models extracted from threshold of Time1 and Time2 proba-
bility maps.

Figure 4 illustrates the mean shape difference color-coded
on the surface. The illustrations suggest that mean differences
are more distributed for the affine registrations and more con-
centrated at specific regions for nonlinear. The average sur-
face after nonlinear deformation (middle) and surface of av-
erage voxel object (right) appear similar, as both represent
objects obtained by nonlinear averaging but using a surface-
based versus voxel-based processing.

The above preliminary results are very interesting and sug-
gested improved locality of group average differences for the
nonlinear scheme, which intrigues our continuing work of hy-
pothesis testing.

6. DISCUSSION

In order to gain insights into the potential of a nonlinear scheme
in improving localization of group differences, this paper dis-
cusses the comparison of group mean differences of voxel-
based and surface-based objects via linear and nonlinear av-
eraging. We started with two populations represented as MRI
images and its unbiased atlases, then applied the affine regis-
trations and nonlinear diffeomorphic deformations to binary
voxel and surface segmentations of subcortical structures, and
studied the population mean differences. We make use of the
notion of statistics of the embedded shapes to study the prop-
erties of nonlinear atlas deformation fields, and explore its po-

tentials in group discrimination. Our findings suggest better
localization of group mean differences for nonlinear schemes
and they provide ample motivation for the future shape differ-
ence hypothesis testing in the non-linear deformation setting.
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