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We present a semi-Lagrangian method for integrating the three-dimensional
incompressible Navier–Stokes equations. We develop stable schemes of second-
order accuracy in time and spectral accuracy in space. Specifically, we employ
a spectral element (Jacobi) expansion in one direction and Fourier collocation
in the other two directions. We demonstrate exponential convergence for this
method, and investigate the non-monotonic behavior of the temporal error for
an exact three-dimensional solution. We also present direct numerical simula-
tions of a turbulent channel-flow, and demonstrate the stability of this approach
even for marginal resolution unlike its Eulerian counterpart.
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1. INTRODUCTION

High-order methods, especially spectral methods, are particularly effective
in direct numerical simulations (DNS) of turbulent flows. However, most
Navier–Stokes implementations involve semi-implicit time integration that
requires unreasonable small time step sizes. For example, for a flow corre-
sponding to Reynolds number of 10, 000, the maximum allowable time
step can be at least one order of magnitude smaller than the temporal
Kolmogorov scale [21]. It can be projected that in high Reynolds number
DNS there is an uneven distribution of resolution in space and time, with the
smallest spatial scale approximately matched but with the temporal scale
over-resolved by several orders of magnitude. This inefficiency of currently
employed semi-implicit schemes for DNS of inhomogeneous turbulence has
been recognized before, and attempts have been made to employ fully implicit
schemes [3]. However, this requires Newton iterations and non-symmetric
solvers that render the overall approach inefficient.



Progress can be made by employing semi-Lagrangian time-discretiza-
tion, which could increase significantly the maximum allowable time step
while maintaining the efficiency of symmetric solvers. This approach has
been introduced in the beginning of the 1980s [17], and the basic idea is to
discretize the Lagrangian derivative of the solution in time instead of the
Eulerian derivative. The work here is an extension of the semi-Lagrangian
scheme proposed in [21] but formulated in the context of simulating
turbulent flows.

The semi-Lagrangian method depends strongly on the spatial discre-
tization. Specifically, its accuracy is particularly sensitive to the method of
backward-integration of the characteristic equation as well as the inter-
polation scheme to evaluate the solution at departure points. This has been
shown by Falcone and Ferretti [5] who conducted a rigorous analysis of
the stability and convergence properties of semi-Lagrangian schemes for
advection-diffusion equations. It has also been shown that the simplest
semi-Lagrangian scheme with linear interpolation is equivalent to the clas-
sical first-order upwinding scheme [15], which is excessively dissipative
(see [17] and [18]). A popular and effective choice for interpolation
methods in previous works has been the cubic spline methods [10]; see also
[2]. The idea of introducing high order characteristic methods has first
been presented in [4] and it has been extended into the spectral frame in
[9, 7].

An intriguing finding is that the error of semi-Lagrangian schemes in
solving advection-diffusion equations decreases as the time step increases in
a certain range of parameters, and this has initially led to some erroneous
justifications [13, 14]. The analysis in [5] showed that the overall error of
the semi-Lagrangian method is indeed not monotonic with respect to time
step Dt, and, in particular, it has the form

O 1Dtk+Dx
P+1

Dt
2

where k refers to the order of backward time integration and P to the
(spatial) interpolation order; similar conclusions had been reached earlier in
[12]. Another interesting result was obtained by Giraldo [6], who combined
the semi-Lagrangian approach with a spectral element discretization for the
advection-diffusion equation. He found that for polynomial order P \ 4
the combined scheme exhibits neither dissipation nor dispersion errors.

The extension of the semi-Lagrangian method to the solution of Navier–
Stokes equations was presented in the pioneering work of Pironneau (1982)
[16]. He demonstrated nonlinear stability of the method even as the vis-
cosity approaches zero. He also obtained suboptimal error estimates, which
were improved later by Süli (1988) [19]. Most of the previous analysis and
numerical implementations in CFD applications have employed the Taylor–
Hood finite element and are first-order in time. In a more recent paper [1],
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an error analysis was conducted for the fractional-step method for incom-
pressible Navier–Stokes equations. In particular, the pressure-correction
version of the fractional scheme with first-order time-stepping was analyzed
and an extension to second-order was proposed but not analyzed.

In this paper, we present a semi-Lagrangian method for simulating
three-dimensional incompressible turbulent flows specifically in channel
domains, extending the work in [21]. In particular, we apply a Jacobi-
based spectral element discretization along the inhomogeneous direction
[8] and Fourier collocation along the other two homogeneous directions,
similar to [20]. We study in detail the dependence of the overall accuracy
upon the time step for an exact solution of the three-dimensional Navier–
Stokes equations. We then present results from a DNS of turbulence for
483 resolution that demonstrate the effectiveness of the method.

2. FORMULATION

2.1. Advection-Diffusion Equation

Let us first consider an advection-diffusion equation written in Eulerian
form

“f

“t
+u ·Nf=nN2f (1)

and in semi-Lagrangian form

df
dt
=nN2f (2)

Unlike Lagrangian formulations, in the semi-Lagrangian formulation the
computational mesh is fixed. At each time step, a discrete set of particles
arriving at the grid points is tracked backwards over a single time step
along its characteristic line up to its departure points. The solution values
at the departure points are then obtained by interpolation. For example,
the second-order Crank–Nicolson scheme for the above equation is

fn+1−fnd
Dt

=nN2 1f
n+1+fnd
2
2 , (3)

dx
dt
=u(x, t), xn+1=x(tn+1)=xa (4)

Here fnd denotes the value of f at the departure points xd at time level n,
and xa is the position of the arrival points which coincide with the grid
points. The characteristic Eq. (4) is solved backward, i.e., we solve for the
departure point at time level n, xnd, with the initial condition xn+1=xa.
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The departure points do not coincide with the grid points, and thus
a search-interpolation procedure is needed. Also, the overall accuracy and
efficiency of the semi-Lagrangian method depends critically on both the
accuracy of backward integration as well as the accuracy of the interpolation
method. In the following, we provide some details on how to implement
both algorithms.

2.2. Backward Integration

We solve Eq. (4) for one single time step in order to obtain xd=x(tn)
by the explicit second-order mid-point rule

x̂=xa−
Dt
2
u(xa, tn), (5)

xd=xa−Dt u 1 x̂, tn+
Dt
2
2 (6)

By defining

a — xa−xd

we can re-write the explicit mid-point rule as

a=Dt u 1xa−
Dt
2
u(xa, tn), tn+

Dt
2
2 (7)

Similarly, we employ implicit integration for Eq. (4) setting

x̂=xa−
Dt
2
u 1 x̂, tn+Dt

2
2

to arrive at the implicit mid-point rule

a=Dt u 1xa−
a

2
, tn+

Dt
2
2 (8)

This is the backward-integration algorithm used in most of previous
semi-Lagrangian schemes. Although the explicit and implicit schemes are
formally of second-order, a small accuracy improvement has been reported
for the implicit scheme. Equation (8) has to be solved iteratively, but numeri-
cal experiments show that only a few iterations are needed for convergence
(typically around five). For an advection-diffusion equation with the
velocity field known analytically, the additional cost associated with the
iterations is negligible. However, for a velocity field known only in numer-
ical form, the iteration process is costly because each substep requires a
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search-interpolation procedure. Our numerical results show that the two
methods give almost identical results in practice, and for more general
problems, especially for Navier–Stokes equations, the explicit method is
preferred.

2.3. Search-Interpolation Procedure

We consider a three-dimensional channel domain with spectral ele-
ments/hp along the inhomogeneous direction and Fourier collocation
along the two homogeneous directions (streamwise and spanwise). In its
current implementation, we first locate in which spectral element the depar-
ture point resides and perform interpolation in modal space along all
three-directions. This involves the entire Fourier expansions which is com-
putationally expensive. Currently, we are working on an implementation
that employs a more localized interpolation in the Fourier directions to
reduce that cost.

2.4. Incompressible Navier–Stokes Equations

We consider the incompressible Navier–Stokes equations in Lagrangian
form

du
dt
=−Np+nN2u, N · u=0 (9)

We employ a stiffly-stable scheme to discretize the above equations [8].
A second-order time-discretization corresponds to

3
2 u
n+1−2und+

1
2 u
n−1
d

Dt
=(−Np+nN2u)n+1 (10)

where und is the velocity u at the departure point xnd at time level tn, and
un−1d is the velocity at the departure point xn−1d at time level tn−1. The
departure point xnd is obtained by solving

dx
dt
=un+1/2(x, t), x(tn+1)=xa

and also

un+1/2=3/2un−1/2un−1

The point xn−1d is obtained by solving

dx
dt
=un(x, t), x(tn+1)=xa
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By using the above characteristic equations, the resulting scheme is second-
order accurate in time.

Specifically, for computational convenience we use the following three
substeps to solve Eq. (10)

û−2und+
1
2 u
n−1
d

Dt
=0, (11)

û̂− û
Dt
=−Npn+1, (12)

3
2 u
n+1− û̂
Dt

=nN2un+1 (13)

The discrete divergence-free condition results in a consistent Poisson
equation for the pressure, i.e.

N2pn+1=
1
Dt

N · û

with accurate pressure boundary conditions of the form [8]

“p
“n
=−n · [û+N×wn+1]

where n is the unit normal, and w is the vorticity.

3. NUMERICAL RESULTS

3.1. Convergence Rate

We first present results from comparisons with an exact three-dimen-
sional solution to the incompressible Navier–Stokes equations, given by

u=sin(mx) cos(ly) cos(nz) e−t/Re

v=−
m+n
l

cos(mx) sin(ly) cos(nz) e−t/Re

w=cos(mx) cos(ly) sin(nz) e−t/Re

where Re is the Reynolds number and m, l, n define the wavenumbers
along the three directions. We determine the pressure p(x, y, z, t) from
the Navier–Stokes equations (assuming that no forcing is applied in the
y-direction, i.e., fy=0) to be
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p(x, y, z, t)=−
m+n
l2Re

(m2+l2+n2−1) cos(mx) cos(ly) cos(nz) e−t/Re

+
m(m+n)
4l2

sin2(mx) cos(2ly) cos2(nz) e−2t/Re

+
(m+n)2

4l2
cos2(mx) cos(2ly) cos2(nz) e−2t/Re

+
n(m+n)
4l2

cos2(mx) cos(2ly) sin2(nz) e−2t/Re

With this expression for pressure we can now evaluate the extra forces
along the two other directions fx and fz, which are computed so that the
above is an exact Navier–Stokes solution. The domain used was a cube of
size 2p3.

We first tested that exponential convergence is realized with errors
almost identical to the Eulerian approach. In Fig. 1 we plot the L2 error for
all three components of velocity for wavenumbers m=l=n=1. Only one
element was used along the y-direction for this solution, with P denoting the
Jacobi polynomial order. Similar results hold for a multi-element discre-
tization. Also, the number of collocation points along the two Fourier
directions is set to M=N=P for this case. The Reynolds number was set
to Re=1 and the final time of integration was T=1.

The non-monotonic behavior of the temporal error obtained by the
theoretical analysis for advection-diffusion equations is

O 1Dt2+Ds
P+1

Dt
2

P
7 8 9 10 11 12 13 14 15

10-8

10-7

10-6

10-5

10-4

L
L
L

2

2

2

(u)
(v)
(w)

Fig. 1. Errors versus polynomial order for the exact three-dimensional solution (Re=1).
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Fig. 2. Errors versus time step for the exact three-dimensional solution; resolution P=6=
M=N. (Re=1).

where Ds is an equivalent grid spacing. This behavior is realized in our
computations of the exact Navier–Stokes solutions, as shown in Fig. 2. We
note that the u and w velocity components correspond to identical curves
but the normal velocity component v exhibits a different behavior. This
different behavior can be attributed to the fractional stepping scheme and
it is similar to the Eulerian approach. If we increase the resolution along
the y-direction only from P=6 to P=8 (Fig. 3), we observe a large
reduction in the error for all components but also a different qualitative
trend. This is consistent with the aforementioned error estimate and the
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Fig. 3. Errors versus time step for the exact three-dimensional solution; resolution P=8 and
M=N=6. (Re=1).
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Fig. 4. Comparison of Eulerian (EU) and semi-Lagrangian schemes (SL). Errors versus time
step for the exact three-dimensional solution; resolution P=M=N=12. (Re=1).

fact that exponential convergence is achieved. The results in both plots
suggest that both error terms are comparable for this resolution.

At higher resolution, the first term in the error dominates and this
behavior is similar to the one obtained in the Eulerian approach. A com-
parison of the two approaches is shown in Fig. 4; for the semi-Lagrangian
scheme the L2 error is slightly larger compared to the Eulerian scheme.
We also see from Fig. 4 that a second-order time-accuracy is obtained.
In Fig. 5 we plot the errors for Reynolds number Re=106 and final time
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Fig. 5. Reynolds number Re=106. Errors versus time step for the exact three-dimensional
solution; resolution P=M=N=12.
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of integration T=1. We see that the same non-monotonic behavior is
obtained as in the low Reynolds number case Re=1 studied in the previous
figures.

3.2. DNS of Turbulent Channel-Flow

Here we perform direct numerical simulations of turbulent channel-
flow in a periodic domain (in x- and z-directions) of size (x, y, z):2p×
2×2p. The Reynolds number based on the half-channel width and the
wall shear velocity is Reg=116. We interpolated an initial turbulent 643
field to a 483 field and ran the simulation for several eddy turn-over times
(50 convective units) with the de-aliased Eulerian code. We note here that
the corresponding Eulerian simulation without de-aliasing was unstable
even at very small time steps. We then collected statistics for T=5 and
T=20 convective units for the Eulerian simulation; a time step of
Dt=1/200 was employed. The semi-Lagrangian simulation was performed
with time step Dt=1/20, and statistics were gathered for total time T=20
convective units. Of course, no de-aliasing is required in this case. In
wall units the time step used in the semi-Lagrangian method is Dt+=
Dt · u2y/n=0.2645, which is smaller than the Kolmogorov time scale; uy is
the wall shear velocity. The Kolmogorov scale was estimated at y+=5 to
be y+K=`u

4
y/(En) % 0.33 using an approximate value for the dissipation

rate E % 0.10 [11]. We note here that the time Kolmogorov scale in [3]
was overestimated; the value of 2.4 (in wall units) reported would corre-
spond to a value of dissipation rate of E % 0.002 compared to about 0.16 at
the wall [11].
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Fig. 6. Profile of mean velocity from the 483 DNS. The solid line corresponds to the
Eulerian simulation and the dash line to the semi-Lagrangian simulation. Reynolds number
Rg=116.
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Fig. 7. Comparison of turbulence intensities from the 483 DNS. The solid line corresponds
to the Eulerian simulation and the dash line to the semi-Lagrangian simulation. Reynolds
number Rg=116.

A comparison of the mean velocity profile is shown in Fig. 6; no sig-
nificant differences are observed despite the very large time step employed
in the semi-Lagrangian simulation. However, some differences are present
in Fig. 7, where we plot the rms values of all three velocity components
for both approaches. The more pronounced differences correspond to the
streamwise turbulent intensity, which may be associated with time-averaging
errors. To evaluate this we compare these profiles obtained by averaging
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Fig. 8. Comparison of turbulence intensities from the Eulerian 483 DNS. The solid line
corresponds to averaging over T=20 and the dash line to averaging over T=5; Reynolds
number Rg=116.
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also over T=5 and we, indeed, obtain noticeable differences as shown in
Fig. 8.

4. SUMMARY

We have developed a spectral semi-Lagrangian algorithm for simulat-
ing turbulent channel flow, and have demonstrated its accuracy and its
stability. The overall error is comparable to the Eulerian scheme but the
stability is greatly enhanced. However, in its current implementation the
method employs global interpolation, which makes it computationally very
expensive. Specifically, the method is approximately ten times slower than
the Eulerian method for the 483 simulation presented, so with the gain
factor of ten (for the semi-Lagrangian) in the time step, the overall simula-
tion cost is the same for both methods. Better local interpolation proce-
dures need to be implemented that do not compromise accuracy while
providing a speed-up factor that will make this method more efficient than
the Eulerian approach for DNS of turbulence. This has been done in the
context of fully three-dimensional geometries, where hexahedra and tetra-
hedra spectral/hp elements form a natural framework for local Lagrangian
interpolation [21]. In that case a speed-up factor of about five (on average)
was achieved in favor of the semi-Lagrangian method. A similar domain
decomposition scheme should also be adopted for the channel geometry;
we will report such work as well as practical high Reynolds number DNS
in future publications.
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