
COMMUNICATIONS IN COMPUTATIONAL PHYSICS
Vol. 5, No. 2-4, pp. 242-272

Commun. Comput. Phys.
February 2009

REVIEW ARTICLE

Fast Numerical Methods for Stochastic Computations:

A Review

Dongbin Xiu∗

Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA.

Received 18 January 2008; Accepted (in revised version) 20 May 2008

Available online 1 August 2008

Abstract. This paper presents a review of the current state-of-the-art of numerical
methods for stochastic computations. The focus is on efficient high-order methods
suitable for practical applications, with a particular emphasis on those based on gen-
eralized polynomial chaos (gPC) methodology. The framework of gPC is reviewed,
along with its Galerkin and collocation approaches for solving stochastic equations.
Properties of these methods are summarized by using results from literature. This pa-
per also attempts to present the gPC based methods in a unified framework based on
an extension of the classical spectral methods into multi-dimensional random spaces.

AMS subject classifications: 41A10, 60H35, 65C30, 65C50

Key words: Stochastic differential equations, generalized polynomial chaos, uncertainty quantifi-
cation, spectral methods.

Contents

1 Introduction 243
2 Formulations 249

3 Generalized polynomial chaos 251
4 Stochastic Galerkin method 255

5 Stochastic collocation methods 259

6 General discussions 263
7 Random domain problem 266

8 Summary 267

∗Corresponding author. Email address: dxiu@math.purdue.edu (D. Xiu)

http://www.global-sci.com/ 242 c©2009 Global-Science Press



D. Xiu / Commun. Comput. Phys., 5 (2009), pp. 242-272 243

1 Introduction

The purpose of this paper is to present an overview of the recent development of nu-
merical methods for stochastic computations, with a focus on fast algorithms suitable for
large-scale complex problems. This field has received an increasing amount of attention
recently and is developing at a fast pace with new results emerging as the paper is un-
der writing. Therefore this paper is not an attempt to present an exhaustive review of
all available results, which is a goal almost impossible to achieve. The focus is rather on
the popular methods based generalized polynomial chaos (gPC) methodology. We will
present the framework and properties of the methods by using (almost) exclusively pub-
lished work and demonstrate that the methods can be considered as a natural extension
of deterministic spectral methods into random spaces.

1.1 Uncertainty quantification

The ultimate objective of numerical simulations is to predict physical events or the be-
haviors of engineered systems. Extensive efforts have been devoted to the development
of accurate numerical algorithms so that simulation predictions are reliable in the sense
that numerical errors are well under control and understood. This has been the primary
goal of numerical analysis, which remains an active research branch. What has been con-
sidered much less in the classical numerical analysis is the understanding of impacts of
errors, or uncertainty, in “data” such as parameter values, initial and boundary condi-
tions.

The goal of uncertainty quantification (UQ) is to investigate the impact of such errors
in data and subsequently to provide more reliable predictions for practical problems.
This topic has received an increasing amount of attention in the past years, especially in
the context of complex systems where mathematical models can serve only as simplified
and reduced representations of the true physics. Although many models have been suc-
cessful in revealing quantitative connections between predictions and observations, their
usage is constrained by our ability of assigning accurate numerical values to various pa-
rameters in the governing equations. Uncertainty represents such variability in data and
is ubiquitous because of our incomplete knowledge of the underlying physics and/or
inevitable measurement errors. Hence in order to fully understand simulation results
and subsequently the true physics, it is imperative to incorporate uncertainty from the
beginning of the simulations and not as an afterthought.

1.1.1 Burgers’ equation: An illustrative example

Instead of engaging in an extensive discussion on the significance of UQ, which there are
many, let us demonstrate the impact of uncertainty via a simple example of the viscous
Burgers’ equation, {

ut+uux =νuxx, x∈ [−1,1],
u(−1)=1, u(1)=−1,

(1.1)
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Figure 1: Stochastic solutions of Burgers’ equation (1.1) with u(−1,t)=1+δ where δ is a uniformly distributed
random variable in (0,0.1) and ν = 0.05. The solid line is the average steady-state solution, with the dotted
lines denoting the bounds of the random solutions. The dashed line is the standard deviation of the solution.
(Details are in [94].)

where u is the solution field and ν>0 is the viscosity. This is a well-known nonlinear par-
tial differential equation (PDE) for which extensive results exist. The presence of viscosity
smooths out the shock discontinuity which will develop otherwise. Thus, the solution
has a transition layer, which is a region of rapid variation and extends over a distance
O(ν) as ν ↓ 0. The location of the transition layer z, defined as the zero of the solution
profile u(t,z) = 0, is at zero when the solution reaches steady-state. If a small amount
of (positive) uncertainty exists in the value of the left boundary condition (possibly due
some bias measurement or estimation errors), i.e.,

u(−1)=1+δ,

where 0<δ≪1, then the location of the transition can change significantly. For example,
if δ is a uniformly distributed random variable in the range of (0,0.1), then the average
steady-state solution with ν = 0.05 is the solid line in Fig. 1. It is clear that a small un-
certainty of 10% can cause significant changes in the final steady-state solution whose
average location is approximated at z ≈ 0.8, resulting in an O(1) difference from the
solution with idealized boundary condition containing no uncertainty. (Details of the
computations can be found in [94].)

The Burgers’ equation example demonstrates that for some problems, especially the
nonlinear ones, small uncertainty in data may cause non-negligible changes in the sys-
tem output. Such changes can not be captured by increasing resolution of the classical
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numerical algorithms, if the uncertainty is not incorporated at the beginning of the com-
putations.

1.2 Overview of techniques

The importance of understanding uncertainty has been realized by many for a long time,
in disciplines such as civil engineering, hydrology, control, etc. Subsequently many meth-
ods have been devised to tackle the issue. Due to the “uncertain” nature of the uncer-
tainty, the most dominant approach is to treat data uncertainty as random variables or
random processes and recast the original deterministic systems as stochastic systems.

We remark that this type of stochastic systems are different from the classical “stochas-
tic differential equations” (SDE) where the random inputs are some idealized processes
such as Wiener processes, Poisson processes, etc., and tools such as stochastic calculus
have been developed extensively and are still under active research; see, e.g., [21, 37, 39,
58].

1.2.1 Monte Carlo and sampling based methods

One of the most commonly used methods is Monte Carlo sampling (MCS), or one of
its variants. In MCS, one generates (independent) realizations of random inputs based
on their prescribed probability distribution. For each realization the data is fixed and
the problem becomes deterministic. Upon solving the deterministic realizations of the
problem, one collects an ensemble of solutions, i.e., realizations of the random solutions.
From this ensemble, statistical information can be extracted, e.g., mean, variance, etc. Al-
though MCS is straightforward to apply as it only requires repetitive executions of deter-
ministic simulations, typically a large number of executions are needed, for the solution
statistics converge relatively slowly. For example, the mean value typically converges as
1/

√
K where K is the number of realizations (e.g., [17]). The need for large number of

realizations for accurate results can incur excessive computational burden, especially for
systems that are already computationally intensive in their deterministic settings.

Techniques have been developed to accelerate the convergence of the brute-force
MCS, e.g., Latin hypercube sampling (cf. [50, 74]), quasi Monte Carlo (cf. [18, 54, 55]),
to name a few. However, additional restrictions are posed based on the design of these
methods, and their applicability is often limited.

1.2.2 Perturbation methods

The most popular non-sampling methods is perturbation methods, where random fields
are expanded via Taylor series around their mean and truncated at certain order. Typi-
cally, at most second-order expansion is employed because the resulting system of equa-
tions becomes extremely complicated beyond second-order. This approach has been used
extensively in various engineering fields [38, 47, 48]. An inherent limitation of pertur-
bation methods is that the magnitude of uncertainties, both at the inputs and outputs,
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Table 1: The mean location of the transition layer (z̄) and its standard deviation (σz) by Monte Carlo simulations.
n is the number of realizations, δ∼U(0,0.1) and ν=0.05. Also shown are the converged gPC solutions.

n=100 n=1,000 n=2,000 n=5,000 n=10,000 gPC
z̄ 0.819 0.814 0.815 0.814 0.814 0.814
σz 0.387 0.418 0.417 0.417 0.414 0.414

cannot be too large (typically less than 10%), and the methods do not perform well oth-
erwise.

1.2.3 Moment equations

In this approach one attempts to compute the moments of the random solution directly.
The unknowns are the moments of the solution and their equations are derived by taking
averages of the original stochastic governing equations. For example, the mean field is
determined by the mean of the governing equations. The difficulty lies in the fact that
the derivation of a moment almost always, except in some rare occasions, requires the
information of higher moments. This brings out the so-called “closure” problem, which
is often dealt with by utilizing some ad hoc arguments on the properties of the higher
moments. More detailed presentations of the moment equation approach, in the context
of hydrology, can be found in [105].

1.2.4 Operator based methods

These kinds of approaches are based on manipulation of the stochastic operators in the
governing equations. They include Neumann expansion, which expresses the inverse of
the stochastic operator in a Neumann series [69, 104], and the weighted integral method
[14,15]. Similar to perturbation methods, these operator based methods are also restricted
to small uncertainties. Their applicability is often strongly dependent on the underlying
operator and is typically limited to static problems.

1.2.5 Generalized polynomial chaos (gPC)

A recently developed method, generalized polynomial chaos (gPC) [91], a generalization
of the classical polynomial chaos [29], has become one of the most widely used methods.
With gPC, stochastic solutions are expressed as orthogonal polynomials of the input ran-
dom parameters, and different types of orthogonal polynomials can be chosen to achieve
better convergence. It is essentially a spectral representation in random space, and ex-
hibits fast convergence when the solution depends smoothly on the random parameters.
GPC based methods will be the focus of this paper.

1.2.6 Burgers’ equation revisited

Let us return to the viscous Burgers’ example (1.1), with the same parameter settings that
produced the Fig. 1. Let us examine the location of the averaged transition layer and the
standard deviation of the solution at this location, obtained by different methods. Table
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Table 2: The mean location of the transition layer (z̄) and its standard deviation (σz) obtained by perturbation
methods. k is the order of the perturbation expansion, δ∼U(0,0.1) and ν=0.05. Also shown are the converged
gPC solutions.

k=1 k=2 k=3 k=4 gPC
z̄ 0.823 0.824 0.824 0.824 0.814
σz 0.349 0.349 0.328 0.328 0.414

1 shows the results by Monte Carlo simulations, and Table 2 by a perturbation method
at different orders. The converged solutions by gPC (up to three significant digits) are
obtained by a fourth-order expansion and are tabulated for comparison. It can be seen
that the MCS achieves same accuracy with O(104) realizations. On the other hand, the
computational cost of the fourth-order gPC is approximately equivalent to five determin-
istic simulations. The perturbation methods have similar low computational cost as that
of gPC. However, the accuracy of the perturbation methods is much less desirable, as
shown in Table 2. In fact, by increasing the perturbation orders, no clear convergence can
be observed. This is caused by the relatively large uncertainty at the output, which can
be as high as 40%, even though the input uncertainty is small.

This example demonstrates the accuracy and efficiency of gPC method. It should be
remarked that although gPC shows significant advantage here, the conclusion can not
be trivially generalized to other problems, as the strength and weakness of gPC, or any
methods for this matter, are problem dependent.

1.3 Development of gPC

The development of gPC started with the seminal work on PC (polynomial chaos) by
R. Ghanem and co-workers. Inspired by the theory of Wiener-Hermite homogeneous
chaos ( [85]), Ghanem employed Hermite polynomials as orthogonal basis to represent
random processes and applied the technique to solutions of many engineering problems
with success, cf., [25–27, 73]. An overview can be found in [29].

The use of Hermite polynomials, albeit mathematically sound, presents difficulties in
some applications, particularly in term of convergence and probability approximations
for non-Gaussian problems [12, 59]. Subsequently, the generalized polynomial chaos
(gPC) was proposed in [91] to alleviate the difficulty. In gPC, different kinds of orthogo-
nal polynomials are chosen as basis depending on the probability distribution of random
inputs. Optimal convergence can be achieved by choosing the proper basis. In a series of
paper, the strength of gPC is demonstrated for a variety of PDEs [90, 92].

The work of gPC was further generalized by not requiring the basis polynomials to
be globally smooth. In fact in principle any set of complete basis can be a viable choice,
just like in finite element method, depending on the given problem. Such generalization
includes the piecewise polynomial basis [5, 66], wavelet basis [42, 43], and multi-element
gPC [80, 82].

When applied to differential equations with random inputs, the quantities to be solved
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are the expansion coefficients of the gPC expansion. A typical approach is to conduct a
Galerkin projection to minimize the error of the finite-order gPC expansion, and the re-
sulting set of equations for the expansion coefficients are deterministic and can be solved
via conventional numerical techniques. This is the stochastic Galerkin approach and has
been applied from the early work of PC and proved to be effective. However, stochas-
tic Galerkin (SG) procedure can be challenging when the governing stochastic equations
take complicated forms. In this case, the derivation of explicit equations for the gPC
coefficients can be very difficult, sometime even impossible.

Very recently, there is a surge of interests in high-order stochastic collocation (SC)
approach, following the work of [89]. This is in some way a re-discovery of the old tech-
nique of “deterministic sampling method”, which has been used as a numerical integra-
tion method in lower dimensions for a long time. Earlier work of stochastic collocation
methods includes [52,77] and uses tensor products of one-dimensional quadrature points
as “sampling pints”. Although it was shown that this approach can achieve high orders,
see [4], its applicability is restricted to smaller number of random variables as the number
of sampling points grows exponentially fast otherwise. The work of [89] introduced the
“sparse grid” technique from multivariate interpolation analysis and can significantly
reduce the number of sampling points in higher random dimensions. In this way SC
combines the advantages of both Monte Carlo sampling and gPC-Galerkin method. The
implementation of a SC algorithm is similar to that of MCS, i.e., only repetitive realiza-
tions of a deterministic solver is required; and by choosing a proper set of sampling points
such as the sparse grid, it retains the high accuracy and fast convergence of gPC Galerkin
approach. In the original high-order stochastic collocation formulation, the basis func-
tions are Lagrange polynomials defined by the nodes, either sparse grid [89] or tensor
grid [4]. A more practical “pseudo-spectral” approach that can recast the collocation so-
lutions in terms of the gPC polynomial basis was proposed in [86]. The pseudo-spectral
gPC method is easier to manipulate in practice than the Lagrange interpolation approach.

The major challenge in stochastic computations is high dimensionality, i.e., how to
deal with the large number of random variables. One approach to alleviate the computa-
tional cost is to use adaptivity. The current work includes adaptive choice of polynomial
basis [19, 79], adaptive element selection in multi-element gPC [80], and adaptive sparse
grid collocation [20, 78].

1.4 Outline

The paper is organized as follows. In Section 2, the probabilistic formulation of a deter-
ministic system with random inputs is discussed in a general setting. The gPC framework
is presented in Section 3. Its Galerkin application is discussed in Section 4 and colloca-
tion application in Section 5, where examples and details of the approaches are presented.
Discussions on some general properties of Galerkin versus collocation and more recent
advances are in Section 6. A brief review on how to deal problems with random geometry
is included in Section 7, before we conclude the paper.
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2 Formulations

In this section, we present the mathematical framework of the kind of stochastic com-
putations we are interested in. For notational convenience, the exposition is restricted
to boundary value problems. The framework is nevertheless applicable to general time
dependent problems.

2.1 Governing equations

Let D⊂R
d, d=1,2,3, be a fixed physical domain with boundary ∂D, and x =(x1,··· ,xd)

be the coordinates. Let us consider a partial differential equations (PDE),

L(x,u;y)=0, in D,
B(x,u;y)=0, on ∂D,

(2.1)

where L is a differential operator and B is a boundary operator. The operator B can take
various forms on different boundary segments, e.g., B,I, where I is the identity operator,
on Dirichlet segments and B,n·∇ on Neumann segments whose outward unit normal
vector is n. Here y =(y1,··· ,yN)∈R

N ,N≥ 1, are parameters of interests. We assume that
these parameters (y1,··· ,yN) are mutually independent of each other. In another word,
there may exist additional parameters that either are functions of y, or are not of our
interests in studying. Note in practice one may also be interested a set of quantities

g=(g1,··· ,gK)∈R
K =G(u), (2.2)

called observables here, that are functions of the solution u of (2.1), in addition to the
solution itself.

2.2 Probabilistic framework

In what follows, we will adopt a probabilistic framework and model y = (y1,··· ,yN) as
a N-variate random vector with independent components in a properly defined prob-
ability space (Ω,A,P), whose event space is Ω and is equipped with σ-algebra A and
probability measure P . The following exposition will primarily focus on continuous ran-
dom variables, although the framework works equally well for discrete random variables
(see [91]).

Let ρi :Γi→R
+ be the probability density function (PDF) of the random variable yi(ω),

ω∈Ω, whose image is Γi ,yi(Ω)⊂R for i=1,··· ,N. Then

ρ(y)=
N

∏
i=1

ρi(yi), (2.3)

is the joint probability density of the random vector y=(y1,··· ,yN) with the support

Γ,
N

∏
i=1

Γi⊂R
N . (2.4)
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This allows us to conduct numerical formulations in the finite dimensional (N-dimensional)
random space Γ, in replacement of the infinite dimensional space Ω. And the governing
equation (4.7) should be valid for all y∈Γ. Naturally, we seek a solution u(x,y) :D̄×Γ→R

such that (2.1) is satisfied for all x∈ D̄ and y∈Γ.

Finally, it is convenient to consider “standard” random variables, similar to the stan-
dard elements in FEM, and this can always be achieved by proper scaling. To this end,
there are three kinds of supports Γi for the random variables yi,i=1,··· ,N, i.e., the bounded
support in (−1,1) (occasionally (0,1) is employed), the half space (0,+∞), and the whole
space (−∞,+∞). If all random variables yi have the same support, which is not required
but often assumed in practice, then the finite dimensional probability space Γ is

hypercube: (−1,1)N , (0,+∞)N , or R
N, (2.5)

respectively.

2.3 Parameterizing random inputs

One of the most important step before carrying out numerical simulations of stochastic
systems such as (2.1), regardless the form of numerical methods, is to properly identify
the random variables y so that the input data uncertainty is accurately modeled.

The key issue is to parameterize the input uncertainty by a set of finite number (N) indepen-
dent random variables.

This task is often easy to accomplish when the uncertainty inputs are the physical pa-
rameters of the system, for example, reaction constants of a bio-chemical network. In this
case it is relatively straightforward to identify the independent parameters and model
them as random variables with proper distribution based on measurements, experience,
or intuition.

It is less obvious when the random inputs include continuous random processes, e.g.,
boundary conditions along a segment of the boundary, initial condition in the compu-
tational domain. For Gaussian processes, the parameterization is relatively easier as
Gaussian processes can be completely determined by their first two moments – mean
and covariance. The most popular methods include spectral series [103] and Karhunen-
Loève (KL) expansion [49], or in a slightly more general framework in term of orthogo-
nal series [106]. These methods seek to represent a Gaussian process by a linear series of
Gaussian random variables, where the expansion coefficients are determined by match-
ing the spectrum (as in the spectral series [103]) or the covariance function (as in the KL
expansion [49]) of the underlying process. The number of expansion terms is determined
by controlling the errors of the series. In principle the error diminishes as the number
of terms is increased. However, each term introduces an independent random variable
(Gaussian) and hence an additional dimension of Γ⊂R

N . Therefore in practice the num-
ber of random variables is to be minimized. Convergence properties for the KL expansion
was examined numerically in [35] and more rigorously in [67].
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For non-Gaussian processes things are much more involved, as the two quantities,
mean and covariance, are far from sufficient to completely specify a given process. Many
techniques have been investigated, with most seeking to match (numerically) mean, co-
variance, and marginal distributions at some given physical locations. This remains an
active research, see, for example, [32, 60, 61, 63, 70, 102].

The independence requirement in the parameterization of input random processes
is essential in stochastic computations as mathematically it allows us to define the sub-
sequent functional spaces via tensor product rule. This is a rather general requirement
for practically all numerical methods – for example, any sampling methods would em-
ploy a pseudo random number generator which generates independent series of random
numbers. It should be noted that it is possible to construct multi-dimensional functional
spaces based on finite number of dependent random variables [72]. However, such a con-
struction does not, in its current form, allow straightforward numerical implementations.

A very common approach for non-Gaussian processes is to employ the Karhunen-
Loève expansion and further assume the resulting set of uncorrelated random variables
are mutually independent. The reconstructed process obviously can not match the given
process from distribution point of view, but it does retain its approximation of the mean
and covariance functions. This approach is often adopted when the focus is on the en-
suing numerical procedure and not on the parameterization of the input processes. We
remark that it is possible to transform a set of dependent random variables into inde-
pendent ones, via, for example, the Rosenblatt transformation [62]. Such procedures,
however, are of little practical use as they usually require the knowledge of all the joint
distribution functions among all the random variables at all the physical locations.

In this paper, we will assume that the random inputs are already characterized by a set
of mutually independent random variables via a given procedure and with satisfactory
accuracy and focus on the following numerical approach for (2.1).

3 Generalized polynomial chaos

In the finite dimensional random space Γ defined in (2.4), the gPC expansion seeks to
approximate a random function via orthogonal polynomials of random variables.

3.1 Univariate gPC basis

Let us define one-dimensional orthogonal polynomial spaces with respect to the measure
ρi(yi)dy in Γi,

W i,di ≡
{

v : Γi →R : v∈span{φm(yi)}di
m=0

}
, i=1,··· ,N, (3.1)

where {φm(yi)} are a set of orthogonal polynomials satisfying the orthogonality condi-
tions ∫

Γi

ρi(yi)φm(yi)φn(yi)dyi =h2
mδmn, (3.2)
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Table 3: Correspondence between the type of gPC polynomial basis and probability distribution (N ≥ 0 is a
finite integer).

Distribution gPC basis polynomials Support

Continuous Gaussian Hermite (−∞,∞)
Gamma Laguerre [0,∞)

Beta Jacobi [a,b]
Uniform Legendre [a,b]

Discrete Poisson Charlier {0,1,2,···}
Binomial Krawtchouk {0,1,··· ,N}

Negative Binomial Meixner {0,1,2,···}
Hypergeometric Hahn {0,1,··· ,N}

where δmn is the Kronecker delta function and

h2
m =

∫

Γi

ρiφ
2
mdyi

is normalization factor. With proper scaling, one can always normalize the bases such
that h2

m ≡1,∀m, and this shall be adopted throughout this paper.

The probability density function ρi(yi) in the above orthogonality relation (3.2) serves
as a role of integration weight, which in turn defines the type of orthogonal polynomials
{φn}. For example, if yi is a uniformly distributed random variable in (−1,1), its PDF is a
constant and (3.2) defines Legendre polynomials. For Gaussian distributed random vari-
able yi, its PDF defines Hermite polynomials and this is the classical polynomial chaos
method [29]. In fact, for most well known probability distribution, there exists a corre-
sponding known orthogonal polynomials. The well known correspondences are listed in
Table 3. (See [90, 91] for more detailed discussions.)

The correspondence between the probability distribution of random variables and the
type of orthogonal polynomials offers an efficient means of representing general random
variables. Fig. 2 shows an example of approximating a uniform random variable. With
Hermite polynomials, the uniform distribution can be approximated more accurately by
using higher-order polynomials, although Gibb’s oscillations are clearly visible. If one
employs the corresponding gPC basis — the Legendre polynomials in this case — then
the first order polynomials can represent this distribution exactly.

3.2 Multivariate gPC basis

The corresponding N-variate orthogonal polynomial space in Γ is defined as

WP
N ≡

⊗

|d|≤P

W i,di , (3.3)
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Figure 2: gPC approximation of a uniform random distribution by Hermite basis. (Legendre basis can represent
the distribution exactly with first-order.)

where the tensor product is over all possible combinations of the multi-index d =
(d1,··· ,dN)∈N

N
0 satisfying |d|=∑

N
i=1di≤P. Thus, WP

N is the space of N-variate orthonor-
mal polynomials of total degree at most P. Let {Φm(y)} be the N-variate orthonormal
polynomials from WP

N . They are constructed as products of a sequence of univariate
polynomials in each directions of yi,i=1,··· ,N, i.e.,

Φm(y)=φm1
(y1)···φmN

(yN), m1+···+mN ≤P, (3.4)

where mi is the order of the univariate polynomials of φ(yi) in the yi direction for 1≤i≤N.
Obviously, we have

E[Φm(y)Φn(y)],
∫

Φm(y)Φn(y)ρ(y)dy=δmn , ∀1≤m,n≤dim(WP
N), (3.5)

where E is the expectation operator and δmn is again the Kronecker delta function. The
number of basis functions is

dim(WP
N)=

(
N+P

N

)
. (3.6)

It should be noted that sometimes the full tensor product polynomial space where the
polynomial order in each dimension is at most P is also employed. This is done pri-
marily for the convenience of analysis (for example, [5]), and is not desirable in practical
computations as the number of basis functions is (P+1)N and grows too fast in large
dimensions N. From now on we will focus on the space (3.3), which is used in most
stochastic computations with gPC, cf. [29, 90, 92].
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3.3 GPC approximation

The Pth-order, gPC approximations of the solution u(x,y) of (2.1) can be obtained by
projecting u onto the space WP

N , i.e., ∀x∈D,

P
P
Nu,uP

N(x,y)=
M

∑
m=1

ûm(x)Φm(y), M=

(
N+P

N

)
, (3.7)

where P
P
N denotes the orthogonal projection operator from L2

ρ(Γ) onto WP
N and {ûm} are

the Fourier coefficients defined as

ûm(x)=
∫

u(x,y)Φm(y)ρ(y)dy=E[u(x,y)Φm (y)], 1≤m≤M. (3.8)

The classical approximation theory guarantees that this is the best approximation in PP
N ,

the linear polynomial space of N-variate polynomials of degree up to P, i.e., for any x∈D
and u∈L2

ρ(Γ),

‖u−P
P
Nu‖L2

ρ(Γ) = inf
Ψ∈PP

N

‖u−Ψ‖L2
ρ(Γ). (3.9)

The error of this finite-order projection can be defined as

ǫG(x),‖u−P
P
Nu‖L2

ρ(Γ)

=
(

E[(u(x,y)−uP
N(x,y))2]

)1/2
, ∀x∈D, (3.10)

and will converge to zero as the order of approximation P is increased.

3.4 Statistical information

When a sufficiently accurate gPC approximation (3.7) is available, one has in fact an an-
alytical representation of u in term of the random inputs y. Therefore, practically all sta-
tistical information can be retrieved in a straightforward manner. For example, the mean
solution is

E[u]≈E[uP
N ]=

∫ ( M

∑
m=1

ûmΦm(y)

)
ρ(y)dy= û1, (3.11)

following the orthogonality (3.5). The second-moment, i.e., the covariance function, can be
estimated by

Ruu(x1,x2),E[(u(x1,y)−E[u(x1,y)])(u(x2,y)−E[u(x2,y)])]

≈E

[(
uP

N(x1,y)−E[uP
N(x1,y)]

)(
uP

N(x2,y)−E[uP
N(x2,y)]

)]

=
M

∑
m=2

[ûm(x1)ûm(x2)]. (3.12)
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The variance of the solution can be obviously approximated as

Var(u(x))=E

[
(u(x,y)−E[u(x,y))2

]
≈

M

∑
m=2

[
û2

m(x)
]
. (3.13)

Other statistical quantities such as sensitivity coefficients can also be evaluated. For ex-
ample, the global sensitivity coefficients can be approximated as

Sj(x),E

[
∂u

∂yj

]
≈

M

∑
m=1

(
ûm(x)

∫
∂Φm(y)

∂yj
ρ(y)dy

)
, j=1,··· ,N, (3.14)

where the integrals of the derivatives of the orthogonal polynomials can be readily eval-
uated analytically prior to any computations.

4 Stochastic Galerkin method

The key in using the gPC expansion (3.7) is to evaluate the expansion coefficients {ûm}.
To this end the definition (3.8) is of little use as it involves the unknown solution u(x,y),
and one needs to devise alternative strategies to estimate these coefficients.

4.1 Formulation

A typical approach to obtain gPC solution in the form of (3.7) is to employ a stochastic
Galerkin approach. Here we again seek an approximate gPC solution in the form of

vP
N(x,y)=

M

∑
m=1

v̂m(x)Φm(y), M=

(
N+P

N

)
. (4.1)

The expansion coefficients {v̂m} are obtained by satisfying (2.1) in the following weak
form, for all w(y)∈WP

N ,

∫
L(x,vP

N ;y)w(y)ρ(y)dy=0, in D,
∫

B(x,vP
N ;y)w(y)ρ(y)dy=0, on ∂D.

(4.2)

The resulting equations are a set of (coupled) deterministic PDEs for {v̂m}, and standard
numerical techniques can be applied. Such a Galerkin procedure has been used exten-
sively in the literature [5, 19, 29, 42, 90–92]. However, one should keep in mind that when
the governing equation (2.1) takes a complicated form, the derivation of Galerkin equa-
tions for {v̂m} via (4.2) can become highly nontrivial, sometimes impossible.
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4.2 Examples of gPC Galerkin

Here we demonstrate the details of the gPC Galerkin method by two illustrative exam-
ples.

4.2.1 Ordinary differential equation

Let us consider an ordinary differential equation

du(t)

dt
=−α(y)u, t>0,

u(0)=u0,
(4.3)

where the decay rate coefficient α is assumed to be a random variable with certain distri-
bution, and u0 is the initial condition.

By applying the generalized polynomial chaos expansion (3.7) to the solution u and
the random parameter α

u(t,y)=
M

∑
i=1

v̂i(t)Φi(y), α(y)=
M

∑
i=1

α̂iΦi(y) (4.4)

and substituting the expansions into the governing equation, we obtain

M

∑
i=1

dv̂i(t)

dt
Φi =−

M

∑
i=1

M

∑
j=1

ΦiΦjα̂iv̂j(t). (4.5)

A Galerkin projection onto each polynomial basis results in a set of coupled ordinary
differential equations for each expansion coefficients:

dv̂k(t)

dt
=

M

∑
i=1

M

∑
j=1

eijk α̂iv̂j(t), k=1,··· ,M, (4.6)

where eijk =E[ΦiΦjΦk]. This is a system of couple ODEs and standard integration tech-
niques such as Runge-Kutta schemes can be employed. This is the first example consid-
ered in [91], where exponentially fast convergence of gPC Galerkin was reported and the
impact on accuracy with non-optimal gPC basis was studied.

4.2.2 Stochastic diffusion equation

Let us consider a time-dependent stochastic diffusion equation

∂u(t,x,y)

∂t
=∇x ·(κ(x,y)∇xu(t,x,y))+ f (t,x,y), x∈D, t∈ (0,T];

u(0,x,y)=u0(x,y), u(t,·,y)|∂D =0,
(4.7)
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and its steady-state counterpart

−∇x ·(κ(x,y)∇xu(x,y))= f (x,y), x∈D; u(·,y)|∂D =0. (4.8)

We assume that the random diffusivity field takes a form

κ(x,y)= κ̂0(x)+
N

∑
i=1

κ̂i(x)yi, (4.9)

where {κ̂i(x)}N
i=0 are fixed functions with κ̂0(x)> 0,∀x, obtained by following some pa-

rameterization procedure (e.g., the KL expansion) of the random diffusivity field. Alter-
natively (4.9) can be written as

κ(x,y)=
N

∑
i=0

κ̂i(x)yi, (4.10)

where y0 =1. For well posedness we require

κ(x,y)≥κmin >0, ∀x,y. (4.11)

Such a requirement obviously excludes random vector y which can take negative values
with non-zero probability, e.g., Gaussian distribution.

Upon substituting (4.9) and the gPC approximation (4.1) into the governing equation
(4.7) and projecting the resulting equation onto the subspace spanned by the first M gPC
basis polynomials, we obtain for all k=1,··· ,M,

∂v̂k

∂t
(t,x)=

N

∑
i=0

M

∑
j=1

∇x ·(κ̂i(x)∇x v̂j)eijk+ f̂k(t,x)

=
M

∑
j=1

∇x ·
(
ajk(x)∇x v̂j

)
+ f̂k(t,x), (4.12)

where

eijk =E[yiΦjΦk]=
∫

yiΦj(y)Φk(y)ρ(y)dy, 0≤ i≤N, 1≤ j,k≤M,

ajk(x)=
N

∑
i=0

κ̂i(x)eijk, 1≤ j,k≤M. (4.13)

Let us denote v = (v̂1,··· ,v̂M)T, f = ( f̂1,··· , f̂M)T and A(x) = (ajk)1≤j,k≤M. By definition,

A=AT is symmetric. The gPC Galerkin equations (4.12) can be written as

∂v

∂t
(t,x)=∇x ·[A(x)∇xv]+f, (t,x)∈ (0,T]×D,

v(0,x)=v0(x), v|∂D =0.
(4.14)
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Figure 3: Monte Carlo (MC) simulations and gPC with Hermite basis (HC) solutions of the mean velocities
along the centerline of the incompressible channel flow; Left: horizontal velocity component, Right: vertical
velocity component. (Details are in [92].)

This is a coupled system of diffusion equations, where v0(x) is the gPC expansion coeffi-
cient vector of the initial condition of (4.7)

Similarly, by removing the time variable t from the above discussion, we find that the
gPC Galerkin approximation to (4.8) is:

−∇x ·[A(x)∇xv]= f, x∈D; v|∂D =0. (4.15)

This is a coupled system of elliptic equations.

4.2.3 Stochastic Navier-Stokes equations

While applications of the stochastic Galerkin method are abundant, we here illustrate its
advantage via an nonlinear system of equations – the incompressible stochastic Navier-
Stokes equations,

∇x ·v(t,x,y)=0,

∂v

∂t
(t,x,y)+(v·∇x)v=−∇x p+ν∇2

xv,
(4.16)

where v is the velocity vector field, p is the pressure field and ν is the viscosity.
The first numerical studies can be found in [41,44], in the context of classical Hermite

PC; and in [92] in the context of gPC. In [92], detailed numerical convergence studies were
conducted via a pressure driven channel flow problem. The channel is of nondimensional
length 10 and height 2 and with random boundary conditions at the bottom wall which
are characterized by a four-dimensional random vector, i.e., y∈R

4. Fig. 3 shows the av-
erage velocity profiles along the center line of the channel at steady-state. Here “HC”
stands for gPC with Hermite-chaos basis, as the random boundary condition is modeled
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as a Gaussian process, and “MC” is Monte Carlo results with different numbers of re-
alizations. One clearly observes the convergence of MC results towards the converged
(at order P = 3) gPC solution, as the number of MC realizations is increased. The gPC
solution requires only M = 35 coupled Navier-Stokes systems and achieves significant
computational speed-up compared to MC. More details of the computations including
other types of random boundary conditions as well as numerical formulations can be
found in [92].

5 Stochastic collocation methods

In collocation methods one seeks to satisfy the governing equation (2.1) at a discrete set of
points, called “nodes”, in the corresponding random space. From this point of view, all
classical sampling methods like Monte Carlo sampling are collocation methods. How-
ever our focus here is on the approaches that utilize polynomial approximation theory
to strategically locate the nodes to gain accuracy. Therefore the traditional sampling ap-
proaches based on random or quasi-random nodes are not discussed. Two of the major
approaches of high-order stochastic collocation methods are the Lagrange interpolation
approach, first presented in [89] and later (independently) in [4], and the pseudo-spectral
gPC approach from [86].

5.1 Lagrange interpolation approach

Let ΘN ={y(i)}Q
i=1 ∈Γ be a set of (prescribed) nodes in the N-dimensional random space

Γ, where Q is the number of nodes. A Lagrange interpolation of the solution u(x,y) of
(2.1) can be written as

Iu(x,y)=
Q

∑
k=1

ũk(x)Lk(y), ∀x∈D, (5.1)

where
Li(y(j))=δij, 1≤ i, j≤Q, (5.2)

are the Lagrange polynomials and

ũk(x),u(x,y(k)), 1≤ k≤Q, (5.3)

is the value of the solution u at the given node y(k)∈ΘN .
By requiring (2.1) to be satisfied at each of the nodes, we immediately obtain: ∀k =

1,··· ,Q,

L
(

x,ũk;y(k)
)

=0, in D,

B
(

x,ũk;y(k)
)

=0, on ∂D.
(5.4)

Thus, the stochastic collocation method is equivalent to solving Q deterministic problems
(2.1) with “realizations” of the random vector y(k) for k=1,··· ,Q. A significant advantage
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is that existing deterministic solvers can be readily applied. This is in direct contrast to the
stochastic Galerkin approaches, where the resulting expanded equations are in general
coupled.

Once the Lagrange interpolation form of the solution (5.1) is obtained, the statistics of
random solution can be evaluated, e.g.,

E[u(x,y]≈E[Iu(x,y)]=
Q

∑
k=1

ũ(x)
∫

Lk(y)ρ(y)dy. (5.5)

Here the quantities
∫

Lk(y)ρ(y)dy serve as a role of weights in the discrete sum.
Although the method is conceptually straightforward and easy to implement, in prac-

tice the selection of nodes is a nontrivial problem. This is especially true in multiple
dimensional spaces, for many theoretical aspects of Lagrange interpolation are unclear.
Although in engineering applications there are some “rules” on how to choose the nodes,
most of them are ad hoc and have no control over the interpolation errors. Furthermore,
manipulation of multivariate Lagrange polynomials is not straightforward. Hence the
formula (5.5) is of little use, as the weights in the discrete sum are not readily available.
Most, if not all, stochastic collocation methods utilizing this approach (including those
of [4,89]) thus choose the nodes to be a set of cubature points. In this way when integrals
are replaced by a discrete sum like (5.5) the weights are explicitly known, thus avoid-
ing explicit evaluations of the Lagrange polynomials. To this end, the method becomes
nothing but a “deterministic” sampling scheme.

5.2 Pseudo-spectral approach: Discrete expansion

To avoid the cumbersomeness of manipulating Lagrange polynomials, a pseudo-spectral
collocation approach is proposed in [86] that allows one to reconstruct a gPC representa-
tion of the solution of (2.1). In this approach, we again seek an approximate solution in
the form of gPC expansion, similar to (3.7), i.e., for any x∈D,

I
P
Nu,wP

N(x,y)=
M

∑
m=1

ŵm(x)Φm(y), M=

(
N+P

N

)
, (5.6)

where I
P
N is another projector from L2

ρ(Γ) to WP
N and the expansion coefficients are deter-

mined as

ŵm(x)=
Q

∑
j=1

u(x,y(j))Φm(y(j))α(j), m=1,··· ,M. (5.7)

where {y(j),α(j)}Q
j=1 are a set of nodes and weights, and u(x,y(j)) is again the deterministic

solution of (2.1) with fixed y(j). The choice of the nodes and weights should be made such
that

UQ[ f ],
Q

∑
j=1

f (y(j))α(j) (5.8)
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is an approximation to the integral

I [ f ],
∫

f (y)ρ(y)dy=E[ f (y)] (5.9)

for sufficiently smooth functions f (y), i.e.,

UQ[ f ]≈I [ f ]. (5.10)

With such a choice of the nodal set, (5.7) approximates (3.8). Subsequently I
P
Nu of (5.6) be-

comes an approximation of the exact gPC expansion P
P
Nu of (3.7). The difference between

the two,

ǫQ ,

∥∥∥I
P
Nu−P

P
Nu
∥∥∥

L2
ρ(Γ)

=

(
E

[
(I

P
N−P

P
N)u

]2
)1/2

, (5.11)

is caused by the integration error from (5.10) and is termed as “aliasing error” in [86],
following the similar terminology from the classical deterministic spectral methods. (cf.
[7, 30]).

The pseudo-spectral gPC method also requires only repetitive deterministic solutions
with fixed “realizations” of the random inputs. The evaluation of the gPC coefficients
(5.7) and the reconstruction of the gPC expansion (5.6) do not require additional solu-
tions of the original system and can be considered as post-process procedures. Once the
approximate gPC expansion (5.6) is available, we again have an analytical expression of
the solution in term of the random inputs and solution statistics can be readily obtained,
as discussed in Section 3.4. In this respect the pseudo-spectral approach is more advan-
tageous than the Lagrange interpolation approach. The evaluations of the approximate
gPC expansion coefficients (5.7) are completely independent. And one can choose to com-
pute only a few coefficients that are important for a given problem without evaluating
the other coefficients. This is in contrast to the gPC Galerkin method, where all the gPC
coefficients are coupled and solved simultaneously. However, it should be noted that in
the pseudo-spectral gPC method the existence of the aliasing error (5.11) can become a
dominant source of errors in multi-dimensional random spaces. For more detailed dis-
cussions on pseudo-spectral gPC method and its error estimate, see [86].

5.3 Points selection

The selection of nodes is the key ingredient in all stochastic collocation methods. In both
Lagrange interpolation and pseudo-spectral gPC methods, it is essential that the nodal
set is a good cubature rule such that multiple integrals can be well approximated by a
weighted discrete sum in the form of (5.5) or (5.10).

The point selection is straightforward in one-dimensional space (N=1), where numer-
ous studies exist, and the optimal choice is usually the Gauss quadratures. The challenge
is in multi-dimensional spaces with N >1, especially for large dimensions N≫1.
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Figure 4: Two-dimensional (N = 2) nodes based on the same one-dimensional grids. Left: Sparse grids. The
total number of points is 145. Right: Tensor product grids. The total number of nodes is 1,089.

5.3.1 Tensor products

One choice is to use the tensor product of the one-dimensional nodes, e.g., Gauss quadra-
tures. In this way the properties of one-dimensional interpolation and integration can be
easily generalized. This approach has been used in the early work of deterministic sam-
pling and collocation methods [52, 77], and its errors are analyzed in a recent work [4].
The problem for this approach is that the total number of points grows quickly in high di-
mensional random spaces. If one uses q points in each dimension, then the total number
of points in a N-dimensional space is Q = qN . For a (very) modest approximation with
three points (q=3) in each dimension, Q=3N≫1 for N≫1 (e.g., for N=10, 310∼6×104).
Because of the rapid growth of the number of nodes in high dimensions, the tensor prod-
uct approach is mostly used at lower dimensions, e.g., N≤5.

5.3.2 Sparse grids

Sparse grids were first proposed in [71], and it has been studied in the context of multi-
variate integration and interpolation ever since ( [6,56,57]). In [89] sparse grids were first
introduced as an effective choice for high order stochastic collocation methods, and are
now widely used.

The sparse grids, based on the Smolyak algorithm [71], are a subset of the full tensor
product grids. The subset is chosen strategically in such a way that the approximation
properties for N=1 are preserved for N>1 as much as possible. Fig. 4 shows the compar-
ison of two-dimensional grids based the same one-dimensional nodes. It is clear that the
sparse grids consist of much less number of nodes than that of the full tensor grids. As a
result one can conduct stochastic collocation computations in much higher dimensional
random spaces. For example, the first sparse grids stochastic collocation computations
in [89] went to as high as N =50 random spaces.
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5.3.3 Cubature rules

Cubature rules are designed to compute multiple integrals by discrete weighted sum, as
in (5.10). This has been, and still is, an active research field. See [13, 33] for extensive
reviews. Cubature rules are usually characterized by “degree”. That is, a rule of degree
m indicates (5.10) is exact when the integrand is any multivariate polynomials of degree
at most m but not m+1. Most cubature rules have a fixed degree and, unlike the sparse
grids, the integration accuracy can not be systematically refined. A large collection of
cubature rules are available, and they can be good candidates in stochastic collocation
computations.

It is worthwhile to point out two particular sets of low-degree cubature rules. One is
a set of degree-two rules, which integrate up to second-degree multivariate polynomials
exactly. The rules consist of (N+1) equally weighted nodes in N-dimensional space,
and the number of nodes is proved to be minimal. The other is a set of degree-three
rules and require only 2N equally weighted nodes. These rules were first discussed in
[75], for integrals in hypercube with constant integration weights, or uniform probability
distribution in the context of stochastic computations. Later they were generalized to
arbitrary integration domains with arbitrary probability distributions [87]. Due to the
extremely small number of nodes, these rules can be highly efficient particularly for large
scale problems. Although the integration degrees are relatively low, the results in many
instances are surprisingly accurate.

6 General discussions

Since the first introduction of polynomial chaos by R. Ghanem in 1990’s ( [29]), and par-
ticularly the generalization to gPC ( [91]), the field of stochastic computations has under-
gone tremendous growth, with numerous analysis and applications. Although the expo-
sition of gPC here is in the context of boundary value problems (2.1), and the examples are
for linear problems, the gPC framework can be readily applied to complex problems in-
cluding the time-dependent and nonlinear ones, for example, Burgers’ equation [34, 94],
fluid dynamics [40, 41, 44, 46, 92], flow-structure interactions [96], hyperbolic problems
[11,31], material deformation [1,2], natural convection [20], Bayesian analysis for inverse
problems [51, 83], multibody dynamics [64, 65], biological problems [23, 99], acoustic and
electromagnetic scattering [9, 10, 97], multiscale computations [3, 68, 88, 95, 100], model
construction and reduction [16, 24, 28], etc.

6.1 Galerkin or collocation?

While the gPC expansion (3.7) provides a solid framework for stochastic computations,
a question often asked is whether one should use the Galerkin method or the collocation
method to solve for the expansion coefficients.

The advantage of stochastic collocation is clear – it requires only repetitive execu-
tions of existing deterministic solvers. Stochastic collocation methods has become very
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popular after the introduction of high-order methods by using the sparse grids and cuba-
ture in higher dimensional random spaces [89]. Moreover, in addition to solution statis-
tics, one can construct a similar gPC expansion like that of the Galerkin method via the
pseudo-spectral approach without incurring more computations [86]. The applicability
of stochastic collocations is not affected by the complexity or nonlinearity of the original
problem, so long as one can develop a reliable deterministic solver.

The stochastic Galerkin method, on the other hand, is relatively more cumbersome to
implement, primarily due to the fact that the equations for the expansion coefficients are
almost always coupled. Hence new codes need to be developed to deal with the larger
and coupled system of equations. Furthermore, when the original problem (2.1) takes
highly complex form, the explicit derivation of the gPC equations may not be possible.

However, an important issue to keep in mind is that at the exact same accuracy
(usually measured in term of the degree of gPC expansion), all of the existing colloca-
tion methods requires solutions of (much) larger number of equations than that of gPC
Galerkin, especially for higher dimensional random spaces. Furthermore, the aliasing er-
rors in stochastic collocation can be significant, especially, again, for higher dimensional
random spaces [86]. This indicates that the gPC Galerkin method offers the most accu-
rate solutions involving least number of equations in multi-dimensional random spaces,
even though the equations are coupled.

The exact cost comparison between Galerkin and collocation depends on many fac-
tors including error analysis for the chosen collocation scheme which is largely unknown
for many nodal sets and even coding efforts involved in developing a Galerkin code.
However it is fair to state that for large-scale simulations where a single deterministic
computation is already time consuming, the gPC Galerkin method should be preferred
(because of the less number of equations) whenever (1) the coupling of gPC Galerkin
equations does not incur much additional computational cost, for example, for Navier-
Stokes equations with random boundary/initial conditions the evaluations of the cou-
pling terms are negligible ( [92]); or, (2) efficient solvers can be developed to effectively
decouple the gPC system. For example, Galerkin methods for stochastic diffusion equa-
tion has been widely studied, see, for example, [5, 19, 36, 53, 90]. It has been shown that
the Galerkin system of equations can be decoupled for both steady diffusion [90] and
unsteady diffusion [93], and the technique was analyzed rigorously in [98].

Finally we remark the theory of the gPC Galerkin method for hyperbolic equations is
much less developed. One important issue is the correspondence between the character-
istics of the Galerkin system and those of the original equations. This was studied for a
linear wave equation in [31], but much more is still unknown.

6.2 Multi-element basis

In this paper we have focused on gPC basis that are global orthogonal polynomials.
In practice the basis does not need to be globally smooth. In fact when the stochas-
tic solutions exhibit discontinuity in random space, gPC basis of piecewise polynomials
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should be used to avoid accuracy lost. Such approaches include piecewise polynomial
basis [5, 66], wavelet basis [42, 43], and multi-element gPC [80, 82]. When the basis is
partitioned properly, gPC approximation can be highly accurate because the Gibb’s os-
cillations are eliminated. The challenge is that for many problems, especially dynamical
problems, the location of discontinuity in random space is not known a priori. Another
potential issue is that whenever the random space is partitioned into elements in cer-
tain dimension, the construction of elements in the whole multi-dimensional space is
inevitably through tensor product. Hence the number of elements can be too large. Com-
bined with the gPC solution, Galerkin or collocation, inside each element, this can make
computations prohibitively time consuming. This issue has been addressed in [80], where
adaptive element selection is employed to reduce the total number of elements.

6.3 Long-term integration

Despite the success of PC and gPC in a large variety types of stochastic computations,
it has long been recognized that gPC expansion may suffer accuracy loss for problems
involving long-term integration. The problem is most noticeable when a stochastic solu-
tion takes a form of cos(α(y)t), or any other oscillating functions, where α(y) represents a
random frequency. In such cases when time t increases the convergence of a finite-order
gPC expansion can not be retained for long. This is, however, not an inherent deficiency
of gPC expansion. It is rather a result of the classical approximation theory. When a
polynomial expansion in term of y is employed, as in gPC, the time variable t in such
cases serves a role of “wavenumber”. A well-known approximation theory states that
the larger the “wavenumber” the more basis functions one needs to employ in order to
keep a given accuracy (see, for example, [30]). Hence for a fixed accuracy requirement, in
such stochastic computations one needs higher and higher order gPC expansions as time
evolves. The convergence of gPC for such functions was discussed in [31, 81]. One typ-
ical application when the convergence issue may rise is wave propagation with random
wave speed. For this problem the convergence of gPC Galerkin is proved and the result
clearly shows that the approximation error is proportional to the time variable [31]. Note
that such difficulty may very well occur in spatial domain, where a long spatial range x
plays a similar role as t in the above example.

The problem of approximating functions with large wavenumber has been long
standing. In stochastic computations, it is not clear if there is a better general-purpose
alternative other than, albeit undesirable, to increase the resolution (e.g., order) of gPC
expansions.

6.4 Curse of dimensionality

The dimensionality of the random space of the system (2.1) can be as large as possi-
ble, depending on the number of independent random variables involved in parame-
terizing the random inputs. It is not uncommon in engineering practices to encounter
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problems involving O(100) number of independent random variables. Subsequently the
computational cost of stochastic computations can quickly grow out of control – so-called
“curse-of-dimensionality”. Although with the fast growth of computing power and some
newly developed adaptive algorithms, in both stochastic Galerkin and collocation meth-
ods [19, 20, 78–80], the difficulty is alleviated to some degree. It still remains one of the
most eminent challenges of stochastic computations.

The brute-force Monte Carlo sampling method has a unique property in that its
convergence rate, albeit slow, is independent of dimensionality asymptotically. Conse-
quently for a given stochastic problem there should be a critical value such that when the
random dimensionality is larger than the critical value, Monte Carlo method becomes
advantageous. The precise determination of such a critical value is of course problem
dependent.

7 Random domain problem

In the above discussions, we have assumed the computational domain D in (2.1) is fixed
and contains no uncertainty. In practice, however, it can be a major source of uncertainty
as in many applications the physical domain can not be determined precisely. The prob-
lem with uncertain geometry, i.e., rough boundary, has been studied in areas such as
wave scattering with many specially designed techniques. (See, for example, a review
in [84].) For general purpose PDEs, however, numerical techniques in uncertain domain
are less developed. The problem, similar to (2.1), can be formulated as

L(x,u)=0, in D(y),

B(x,u)=0, on ∂D(y),
(7.1)

where for simplicity the only source of uncertainty is assumed to be in the definition of
the boundary ∂D(y) which is parameterized by the random vector y∈Γ⊂R

N . Note that
even though the governing equation is deterministic (it does not need to be), the solution
still depends on the random variables y.

A general computational framework is presented in [101], where the key ingredient
is the use of a one-to-one mapping to transform the random domain into a deterministic
one. Let

ξ = ξ(x,y), x= x(ξ,y), ∀y∈Γ, (7.2)

be a one-to-one mapping and its inverse such that the random domain D(y) is trans-
formed to a deterministic one E⊂R

d whose coordinates are ξ =(ξ1,··· ,ξd). Then (7.1) is
transformed to the following problem: for all y∈Γ, find u=u(ξ,y) : Ē×Γ→R such that

L(ξ,u;y)=0, in E,

B(ξ,u;y)=0, on ∂E,
(7.3)
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Figure 5: Steady-state gene expression of a genetic toggle switch. Light (and red) error bars centered around
circles are numerical results; Dark (and blue) error bars around dots are experimental measurements. The
re-production of the experimental results from [22] is courtesy of Dr.Gardner. Numerical simulation details can
be found in [86].

where the operators L and B are transformed to L and B, respectively, because of the
random mapping (7.2). The transformed problem (7.3) is a stochastic PDE in a fixed
domain and all of the aforementioned gPC techniques apply.

The key is to construct an efficient and robust random mapping (7.2). This can be
achieved analytically, as demonstrated in [76]. Often analytical mapping is not available,
then a numerical technique can be employed to determine the mapping, as presented
in [101]. Other techniques to cast random domain problem into deterministic problem in-
clude boundary perturbation method [97], isoparametric mapping [9], and a Lagrangian
approach that works well for solid deformation [2]. A different kind approach based on
fictitious domain method is presented in [8].

Problems with rough geometry remain an important research direction. Despite these
recent algorithm development, computations in random domains are still at an early
stage. We note here a recent interesting computational result that reports lift force en-
hancement in supersonic flow due to surface roughness [45].

8 Summary

This paper presents an extensive review of the current state of numerical methods for
stochastic computation and uncertainty quantification. The focus is on fast algorithms
based on the generalized polynomial chaos (gPC) expansion. Upon introducing the gPC
framework, the two major approaches for implementation, Galerkin and collocation, are
discussed. Both approaches, when properly implemented, can achieve fast convergence
and high accuracy and be highly efficient in practical computations. This is due to the fact
that the gPC framework is a natural extension of spectral methods into multi-dimensional
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random space. Important properties of different approaches are discussed without go-
ing into too much technical details, and more in-depth discussions can be found in the
references which consist of mostly published work. With the field advancing at such a
fast pace, new results are expected to appear on a continuously basis to help us further
understand and enhance the methods.

We close the discussion by another illustrative example, a stochastic computation
of a biological problem in Fig. 5. The figure shows the steady-state of a genetic toggle
switch whose mathematical model consists of a system of differential/algebraic equa-
tions (DAE) with six random parameters. This is a comparison of numerical error bars
(in red) and experimental error bars (in blue). The two sets of bars were generated com-
pletely independently and agree each other well. (The larger discrepancy at the switch
location is due to a non-standard plotting technique used in the experimental work. More
details are in [86].) This kind of comparison is not possible for classical deterministic sim-
ulations. By incorporating uncertainty from the beginning of the computations, we are
one step closer to the ultimate goal of scientific computing — to predict the true physics.
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