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Abstract

Numerical integration formulas in n-dimensional nonsymmetric Euclidean space of degree two, consisting of n + 1 equally
weighted points, are discussed, for a class of integrals often encountered in statistics. This is an extension of Stroud’s theory [A.H.
Stroud, Remarks on the disposition of points in numerical integration formulas, Math. Comput. 11 (60) (1957) 257–261; A.H.
Stroud, Numerical integration formulas of degree two, Math. Comput. 14 (69) (1960) 21–26]. Explicit formulas are given for
integrals with nonsymmetric weights. These appear to be new results and include the Stroud’s degree two formula as a special case.
© 2007 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Here we discuss numerical integration formulas of the form∫
D

f (x)W(x)dx ≈
∑

k

akf (u(k)), (1)

where D ⊂ R
n is a region in an n-dimensional, real, Euclidean space; x = (x1, x2, . . . , xn) is the coordinates, ak are

constants; and u(k) are points in the space. The formulas are called degree of N if they are exact for integrations of any
polynomials of x of degree at most N but not N + 1. This is a subject that has been undergoing extensive research,
with more efforts devoted to symmetric integration regions, particularly n-cube. See, for example, books and review
articles in [2–5,8,11,7]. For n-dimensional symmetric integrals, Stroud analyzed the disposition of the points and gave
sets of points for degree 2 and 3 formulas, consisting of n + 1 and 2n equally weighted points, respectively [9]. He
further presented theory for general integration weights and proved that n + 1 is the minimum number of points for
equally weighted degree 2 formulas [10].

Here we extend Stroud’s results and present formulas of degree 2 of n + 1 equally weighted points for integrals
with nonsymmetric integration weights. In particular we consider integrals with non-negative weights of identical and
independent components, i.e.,

W(x) = w(x1) · · ·w(xn), w(xi) � 0, i = 1, . . . , n. (2)
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Such integrals often arise in statistical analysis where one is required to evaluate expectations of multivariate distribu-
tions, where W(x) represents a probability density function with identical and independent components. The specific
cases considered in this article include, for i = 1, . . . , n,

• Gaussian weights in R
n.

w(xi) = 1√
2π

exp

(−x2
i

2

)
, −∞ < xi < ∞. (3)

• beta weights in n-cube.

w(xi) ∼ (1 − xi)
α(1 + xi)

β, α,β � 0, xi ∈ [−1,1]. (4)

Note this is slightly different from the traditional notation in statistics, where beta distribution is usually defined
in xi ∈ (0,1).

• gamma weights in [0,∞)n.

w(xi) ∼ e−xi xα
i , α � 0, xi � 0. (5)

Note integral (1) with the Gaussian weights (3), and beta weights (4) with α = β , fall into the cases of symmetric
regions. And when α = β = 0 in (4), it is the traditional n-cube integration with constant weights. Here we present
an approach via the theory of orthogonal polynomials and derive explicitly the points of degree 2 formulas for these
integrals with nonsymmetric integration weights. It should be clear now that even though the integration weights can
be nonsymmetric, the integration domain always takes the form of a Cartesian product of identical one-dimensional
domains — bounded interval, half real line, or the entire real line.

2. Points disposition of degree 2 formulas

For the integration weights (2) considered here, one can construct orthogonal polynomial systems such that∫
pm(xi)pn(xi)w(xi) dxi = h2

mδmn, m,n = 0,1,2, . . . , (6)

where δmn is the Kronecker delta function and h2
m are the normalization constants. The orthogonal systems satisfy a

three-term recurrence relation

xipn(xi) = anpn+1(xi) + bnpn(xi) + cnpn−1(xi), n > 0, (7)

along with p0 = 1 and p−1 = 0. General properties of orthogonal polynomials and the conditions on weights under
which an orthogonal system exists have been studied extensively. See, for example, [12,1].

Let us denote the first order polynomial as p1(xi) = γ xi + δ, where γ, δ are real and γ �= 0. The following result
characterizes the point disposition for degree 2 formulas with n + 1 equally weighted points.

Theorem 1 (Formulas of degree 2). A necessary and sufficient condition that n + 1 equally weighted points u(k),
k = 0,1, . . . , n, form a numerical integration formula of degree 2 for (1) is that an affine transformation of the points
p1(u

(k)) = γ u(k) + δ form the vertices of a regular n-simplex with centroid at the origin and lie on the surface of an
n-sphere of radius r = √

nγ c1, where p1(xi) = γ xi + δ is the first-order polynomial from the orthogonal system (6)
and c1 is the coefficient in its recurrence relation (7).

Proof. Let

I0 =
∫
D

W(x)dx, I2 =
∫
D

p2
1(x1)W(x)dx = · · · =

∫
D

p2
1(xn)W(x)dx.

To enforce polynomial exactness of degree 2, it suffices to require (1) to be exact for the orthogonality conditions (6)
for up to second order polynomials.
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∫
D

p1(xi)W(x)dx = 0, i = 1, . . . , n, (8)

∫
D

p2(xi)W(x)dx = 0, i = 1, . . . , n, (9)

∫
D

p1(xi)p1(xj )W(x)dx = I2δij , i, j = 1, . . . , n. (10)

By using the recurrence relation (7) and orthogonality (8) and (9), we have

I2 =
∫
D

p2
1(xi)W(x)dx =

∫
D

(γ xi + δ)p1(xi)W(x)dx = γ c1I0.

That is,

I2/I0 = γ c1. (11)

Therefore, in order to satisfy the conditions (8), (9), and (10), it suffices to satisfy (8), (10), and (11). Let

u(k) = (uk1, uk2, . . . , ukn), k = 0,1, . . . , n,

be the n + 1 points of an integration formula of degree 2 with equal weights of I0/(n + 1). Then conditions (8) and
(10) require, respectively,

p1(u0i ) + p1(u1i ) + · · · + p1(uni) = 0, i = 1, . . . , n, (12)

p1(u0i )p1(u0j ) + · · · + p1(uni)p1(unj ) = n + 1

I0
I2δij , i, j = 1, . . . , n. (13)

Let v(k) = p1(u
(k)) = γ u(k) + δ be the affine transformation of points u(k), i.e.,

v(k) = (vk1, . . . , vkn) = (
p1(uk1), . . . , p1(ukn)

)
, k = 0,1, . . . , n.

Eqs. (12) and (13) can be written as

v0i + v1i + · · · + vni = 0, i = 1, . . . , n, (14)

v0iv0j + v1iv1j + · · · + vnivnj = n + 1

I0
I2δij , i, j = 1, . . . , n. (15)

From this point on, the procedure by Stroud [9] for symmetric integrals can be applied to the transformed points v(i).
For self-completeness, we carry out the rest of the proof here.

By defining a matrix

A =

⎡
⎢⎢⎢⎢⎢⎣

v01 v11 v21 · · · vn1
v02 v12 v22 · · · vn2
...

...
...

. . .
...

v0n v1n v2n · · · vnn√
I2/I0

√
I2/I0

√
I2/I0 · · · √

I2/I0

⎤
⎥⎥⎥⎥⎥⎦ ,

we can rewrite (14) and (15) as

AAT = (n + 1)I2

I0
I,

where I is the identity matrix. Hence

ATA = (n + 1)I2

I0
I

is equivalent to the following equations

vi1vj1 + · · · + vinvjn + I2 = (n + 1)I2
δij , i, j = 0, . . . , n. (16)
I0 I0
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Therefore the points v(k) lie on a sphere of radius r = √
nI2/I0 = √

nγ c1 with centroid at the origin. It is also
straightforward to show that they are equidistant, i.e., from (16) we have

d2(v(k), v(j)) = v2
k1 + · · · + v2

kn + v2
j1 + · · · + v2

jn − 2(vk1vj1 + · · · + vknvjn) = 2(n + 1)I2

I0
.

Therefore v(k) are the vertices of a regular n-simplex. Reversal of the above argument proves the conditions of the
theorem are sufficient. This completes the proof.

3. Formulas of degree two

We have shown that by using orthogonal polynomials defined by the integration weights W(x), the analysis by
Stroud for symmetric integrals can be extended to integrals with nonsymmetric weights. Here we present explicit
points locations for formulas of degree 2 with n + 1 equally weighted points, for the three kinds of integrals listed in
Section 1. The polynomial exactness of the formulas have been verified numerically.

3.1. Integrals with Gaussian weights

The orthogonal polynomials corresponding to the Gaussian weights (3) are the Hermite polynomials and γ c1 = 1
in (11). Let us define n + 1 points

x(k) = (xk,1, xk,2, . . . , xk,n), k = 0,1, . . . , n

as

xk,2r−1 = √
2 cos

2rkπ

n + 1
, xk,2r = √

2 sin
2rkπ

n + 1
, r = 1,2, . . . , [n/2], (17)

where [n/2] is the greatest integer not exceeding n/2, and if n is odd xk,n = (−1)k . Then x(k) form an integration
formula of degree 2 for integral (1) with Gaussian weights (3). These points lie on the surface of an n-sphere of radius
r = √

n.

3.2. Integrals with beta weights

For beta integration weights (4), the corresponding orthogonal polynomials are the Jacobi polynomials and γ c1 =
(α + 1)(β + 1)/(α + β + 3) in (11). A set of points for the degree 2 formulas are

y(k) = 1

α + β + 2

[
2

√
(α + 1)(β + 1)

α + β + 3
x(k) − (α − β)

]
, α,β � 0, (18)

where the points x(k) are defined in (17). Note the Stroud formula of degree 2 from [9] is a special case of (18)
with α = β = 0, in which case the points lie on the surface of an n-sphere of radius r = √

nγ c1 = √
n/3. (See

Theorem 3.8-5 in [11].) For general symmetric weights α = β , the points lie on the surface of an n-sphere of radius
r = (α + 1)

√
n/(2α + 3).

3.3. Integrals with gamma weights

For gamma integration weights (5), the corresponding orthogonal polynomials are the (associated) Laguerre poly-
nomials and γ c1 = α + 1 in (11). A set of integration points for the degree 2 formulas are

z(k) = −√
α + 1 · x(k) + (α + 1), α � 0, (19)

where again the points x(k) are defined in (17).
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3.4. Integrals with more general weights

For more general integration weights (2) satisfying certain conditions, one can uniquely determine, numerically
if needed, the coefficients in the three-term recurrence relation (7) (cf. [6]). One can then construct the polynomial
system (6) and identify the specific form of its first order polynomial p1(xi) = γ xi + δ. Degree 2 formulas can be
readily obtained as follows

t (k) = 1

γ

[√
γ c1x

(k) − δ
]
, k = 0,1, . . . , n, (20)

where c1 is the coefficient in the recurrence relation (7) and the points x(k) are defined in (17).

4. Discussion on formulas of degree three

The key ingredient in the derivation of the degree 2 formulas for nonsymmetric region is the introduction of the
affine transformation via the first order orthogonal polynomials defined by the integration weights. Such a transforma-
tion effectively makes the polynomial exactness requirements for up to second order (8) and (10) “symmetric”. The
same procedure, however, cannot be applied to Stroud’s formulas of degree 3, whose construction hinges on the fact
that integrals of odd polynomials are automatically zeros in symmetric regions. Although the affine transformation
can automatically satisfy∫

D

p1(xi)p1(xj )p1(xk)W(x)dx = 0, i, j, k = 1, . . . , n,

it cannot satisfy∫
D

p3(xi)W(x)dx = 0, i = 1, . . . , n,

unless the integration region is symmetric. Nevertheless, here we list the integration formulas of degree 3 with 2n

equally weighted points, for integrals (1) with Gaussian weights in R
n and symmetric beta weights. These are

straightforward generalizations of the Stroud formulas of degree 3. They are presented here because of the practi-
cal importance of such kinds of integrals. We remark other constructions of 2n points formulas are also available in
the literature [11,3].

For Gaussian integration weights (3), a set of 2n equally weighted points for integration of degree 3 are

q(k) = (qk,1, qk,2, . . . , qk,n), k = 1, . . . ,2n,

with

qk,2r−1 = √
2 cos

(2r − 1)kπ

n
, qk,2r = √

2 sin
(2r − 1)kπ

n
, r = 1,2, . . . , [n/2], (21)

and if n is odd qk,n = (−1)k .
For symmetric beta integration weights (4) with α = β , a set of integration points for degree 3 formulas are

s(k) = 1√
2α + 3

q(k), (22)

where the points q(k) are defined in (21). Again the Stroud formula of degree 3 from [9] is a special case with α = 0.

5. Summary

The analysis by Stroud for integration formulas of degree 2 in symmetric n-dimensional space involving n + 1
equally weighted points is extended to a class of integrals in nonsymmetric regions, which often arise in statistical
analysis. We also present explicit sets of points for such integrals with Gaussian, beta, and gamma integration weights.
The formulas can be useful in statistical analysis as they employ the minimum number of equally weighted points,
n + 1, for degree 2 polynomial exactness. Similar extensions cannot, however, be obtained to degree 3 formulas for
integrals with nonsymmetric integration weights.
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