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EQUATION-FREE, MULTISCALE COMPUTATION FOR UNSTEADY
RANDOM DIFFUSION∗

DONGBIN XIU† AND IOANNIS G. KEVREKIDIS‡

Abstract. We present an “equation-free” multiscale approach to the simulation of unsteady
diffusion in a random medium. The diffusivity of the medium is modeled as a random field with
short correlation length, and the governing equations are cast in the form of stochastic differential
equations. A detailed fine-scale computation of such a problem requires discretization and solution of
a large system of equations and can be prohibitively time consuming. To circumvent this difficulty,
we propose an equation-free approach, where the fine-scale computation is conducted only for a
(small) fraction of the overall time. The evolution of a set of appropriately defined coarse-grained
variables (observables) is evaluated during the fine-scale computation, and “projective integration”
is used to accelerate the integration. The choice of these coarse variables is an important part of the
approach: they are the coefficients of pointwise polynomial expansions of the random solutions. Such
a choice of coarse variables allows us to reconstruct representative ensembles of fine-scale solutions
with “correct” correlation structures, which is a key to algorithm efficiency. Numerical examples
demonstrating accuracy and efficiency of the approach are presented.
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1. Introduction. This paper is devoted to numerical simulations of diffusion
in a random medium whose material property, i.e., diffusivity (permeability, conduc-
tivity), is characterized by small-scale, rough structures. This problem arises in the
study of composite material properties, flow in porous media, etc. (see, e.g., [5, 31]).
Direct, fully resolved computations of the governing equations in such media can
be prohibitively time consuming, as the fine-scale structures require discretizations
resulting in large degree of freedom calculations. Hence, there has been a growing in-
terest in designing efficient alternative methods to solve the problems with the desired
accuracy.

The properties of such media are typically modeled as deterministic smooth
functions superimposed with fast oscillatory components. One of the traditional ap-
proaches is to derive the effective properties of such (heterogeneous) media—the so-
called homogenization or upscaling techniques. These techniques are typically based
on analytical asymptotic treatments and have been remarkably successful in several
applications. Their applicability may, however, be restricted due to the assumptions
that need to be made for the media (see, e.g., [3, 4, 7]). Numerical (as contrasted to
analytical) approaches to homogenization are typically based on building multiscale
basis functions into the spatial discretization. Methods along this line of approach
can be found in [16, 17, 18, 30, 32] and are the subject of active research.
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916 DONGBIN XIU AND IOANNIS G. KEVREKIDIS

Alternatively, we can choose to model the medium properties as random fields,
to account for our insufficient knowledge and/or measurement error. For example,
field data indicate that the conductivity of many natural porous formations can be
accurately described by a lognormal distribution (see, e.g., [9]). The homogenization
techniques developed for deterministic media can be generalized to random media,
and a comprehensive review can be found in [33].

In addition to deriving equations describing an effective medium, as homogeniza-
tion does, many efforts have been devoted to direct detailed simulations of random
media. In this context, the corresponding governing equations, e.g., the diffusion equa-
tion, Darcy’s law, etc., are cast in the form of stochastic equations and solved as such
directly. This approach further complicates the problem, since the governing equations
are now defined in (much) higher-dimensional spaces, composed of both the physical
space and the space accounting for the parameterization of the medium randomness
(the random space). The most straightforward numerical approach is the Monte Carlo
method (see, e.g., [8]), where repetitive deterministic simulations are conducted for
particular realizations of the random functions describing the medium properties, and
what we are interested in here is the statistics of the solution. This approach, based
on random sampling, can be computationally expensive because the convergence rate
of the ensemble averages, e.g., mean solution, is relatively low. (Monte Carlo simu-
lations consisting of M realizations converge at a rate of 1/

√
M .) There has been,

therefore, a continuing interest in constructing nonsampling methods, which include
perturbation methods [22], second-moment analysis [26], stochastic Galerkin methods
[39, 2, 15], etc. Among them, the stochastic Galerkin methods, also called “general-
ized polynomial chaos” expansions, have been successful in many applications, when
the basis functions in the random space are appropriately chosen. In particular, when
the solution is sufficiently smooth in the random space, stochastic Galerkin methods
converge exponentially fast [40, 39, 2].

However, for the problem we intend to study in this paper—random media with
short correlation length—the stochastic Galerkin methods become inefficient. This is
because the short correlation length will induce a higher-dimensional random space,
and subsequently a larger number of equations to be solved—the so-called curse of
dimensionality. We remark that such a difficulty exists for all the existing nonsampling
methods. On the other hand, although Monte Carlo methods are (formally) immune
from such a curse of dimensionality, their inherently slow convergence rate can hardly
improve the overall efficiency.

In this paper, we propose an equation-free, multiscale method to simulate dif-
fusion in a random media with small-scale structure (short correlation length). The
equation-free methods were first introduced in [38] and are designed to resolve multi-
scale problems efficiently. Such methods solve the equations for the effective, coarse-
grained behavior without obtaining them in closed form; the quantities required for
these computations (residuals, action of Jacobians, time derivatives) are estimated
by solving the microscopic/stochastic model with appropriately chosen initial condi-
tions over short times (and, in certain cases, only parts of the spatial domain). The
numerical results of these appropriately initialized short bursts of microscopic com-
putations are used to estimate the rate of change (or other quantities of interest) of
appropriately defined observables: macroscopic variables characterizing the coarse-
grained evolution. These rates are then used by projective integration to evolve the
coarse-grained observables in time with (hopefully much) larger time steps [11, 12, 34].
Thus, the time-consuming microscopic solvers are used for only a (small) fraction of
the overall time integration, and no explicit knowledge of the equations governing the
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EQUATION-FREE METHOD FOR RANDOM DIFFUSION 917

macroscopic variables is required (equation-free). This framework has been applied
to a variety of problems, ranging from bifurcation analysis of complex systems to
homogenization of periodic media [11, 14, 21, 25, 28, 29, 35, 36].

For the random media with rough structure considered in this paper, we em-
ploy the Monte Carlo method as the “fine-scale” solver. An orthogonal polynomial
expansion of the fine-scale solution is conducted (in principle) at every point in the
physical space. Our coarse-grained observables are the first few expansion coefficients
of such pointwise polynomial expansions on a relatively coarse grid; the key assump-
tion underlying our method is that in principle it should be possible to write a closed
equation for these observables that can successfully describe the (long term) evolution
of the solution statistics.

The particular assumption (observation) in this paper is that, although each in-
dividual realization of the solution is characterized by small spatial scales, induced by
the small scales in the diffusivity field, ensemble solution averages are characterized by
larger, “coarser” scales. That is, after possibly a short initial transient (relaxation),
the ensemble solution averages are significantly smoother than individual realizations
in space and can therefore be accurately approximated with (hopefully significantly)
fewer degrees of freedom (e.g., on a coarse mesh). This, in turn, implies that a closed
equation exists (whether we can explicitly derive it or not) for these averages on a
coarser mesh; this is precisely the equation that we will try to solve in this paper,
without explicitly deriving it.

The coefficients of the pointwise polynomial expansion of the random solutions
are representative of such ensemble averages and are observed to be smoother func-
tions in space. We thus expect that they can indeed be represented on a coarse mesh.
Since the explicit form of the governing equations for the evolution of such coefficients
is unknown (to our best knowledge), we employ the equation-free framework to com-
pute with it. In effect, we are trying to combine the simplicity of the Monte Carlo
implementation with the strengths of (generalized) polynomial chaos representation:
instead of deriving and discretizing the equations for the appropriate polynomial chaos
coefficients via Galerkin expansion, we try to solve these equations through the design
of “just enough” short computational experiments with the detailed direct solvers. To
this end, the rate of change of these coarse-grained variables is estimated numerically
from short bursts of fine-scale computation and propagated in time with larger steps
via the projective integration technique. The advantage of the present definition of
the coarse variables is that it allows us to reconstruct representative ensembles of
fine-scale solutions with controlled accuracy. Numerical examples are presented to
document the accuracy and efficiency of the new algorithm.

The paper is organized as follows. In section 2 we formulate the mathematical
framework for diffusion in a random medium, and subsequently the multiscale prob-
lem we will study. In section 3 we present the details of the construction of our
“equation-free” multiscale algorithm; in particular we focus on the “lifting” step: the
construction of representative ensembles of fine-scale solution realizations. Numeri-
cal examples are presented in section 4, and we conclude the paper with a general
discussion in section 5.

2. Unsteady diffusion equations in random media. In this section, we be-
gin by presenting the mathematical framework for diffusion in a random medium. We
then formulate the multiscale problem that we will study and discuss the difficulties
in solving it efficiently.
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918 DONGBIN XIU AND IOANNIS G. KEVREKIDIS

2.1. Formulations for random diffusion. Let D ∈ R
d, d = 1, 2, 3, be a

bounded polygonal domain, let J = (0, T ] ∈ R
+ = (0,∞), for some fixed time T > 0,

and let (Ω,F , P ) be a complete probability space. Here Ω is the set of outcomes,
F ⊂ 2Ω is the σ-algebra of events, and P : F → [0, 1] is a probability measure. Let
DT = D×J , and we study the following random diffusion equation: find a stochastic
function, u : Ω × D̄T → R, such that for P -almost everywhere ω ∈ Ω, the following
equation holds:⎧⎪⎨

⎪⎩
ut(ω, ·) −∇ · (κ(ω, x)∇u(ω, ·)) = f(ω, ·) in DT ,

u(ω, ·) = 0 on ∂D × [0, T ],

u(ω, ·) = u0(ω, x) on D × {t = 0},
(2.1)

where u is the unknown and ut = ∂u/∂t its time derivative. κ, u0 : Ω×D → R and f :
Ω×DT → R are known stochastic functions with continuous and bounded covariance
functions. Denote by B(A) the Borel σ-algebra generated by the open subsets of A;
then κ and u0 are assumed to be measurable with the σ-algebra (F ⊗ B(D)) and f
with (F ⊗B(DT )).

The following assumptions are made on the input stochastic data:
1. κ is bounded and uniformly coercive, i.e.,

∃ κmin, κmax ∈ (0,+∞) : P
(
ω ∈ Ω : κ(ω, x) ∈ [κmin, κmax] ∀x ∈ D̄

)
= 1.

(2.2)

Also, κ has a uniformly bounded and continuous first derivative; i.e., there
exists a real deterministic constant C such that

P
(
ω ∈ Ω : κ(ω, ·) ∈ C1(D̄) and maxD̄ |∇xκ(ω, ·)| < C

)
= 1.(2.3)

2. f ∈ L2(Ω) ⊗ L2(DT ), i.e.,∫
Ω

∫
J

∫
D

f2(ω, x, t)dxdtdP (ω) < +∞.(2.4)

3. u0 ∈ L2(Ω) ⊗ L2(D), i.e.,∫
Ω

∫
D

u2
0(ω, x)dxdP (ω) < +∞.(2.5)

2.2. Finite-dimensional noise and variational form. For the problem (2.1)
to be practically solvable numerically, it should be possible to reduce the infinite-
dimensional probability space to a finite-dimensional space. This can be accomplished
by characterizing the probability space by a finite number of random variables. Such a
procedure, termed as the “finite-dimensional noise assumption” in [2], is often achieved
via a certain type of decomposition which can approximate the target random process
with desired accuracy. One of the choices is the Karhunen–Loève-type expansion [27],
which is based on the spectral decomposition of the covariance function of the input
random process (see, e.g., [15, 39]). Following a decomposition and assuming that
the random inputs can be characterized by N random variables, we can rewrite the
random inputs in the abstract form

κ(ω, x) = κ(Y1(ω), . . . , YN (ω), x) and f(ω, x, t) = f(Y1(ω), . . . , YN (ω), x, t),(2.6)
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EQUATION-FREE METHOD FOR RANDOM DIFFUSION 919

where N ≥ 1 is a finite integer and {Yn}Nn=1 are real random variables with zero
mean value and unit variance and whose images Γn,N ≡ Yn(Ω) are bounded intervals
in R for n = 1, . . . , N . Moreover, we assume that each Yn has a density function
ρn : Γn,N → R

+ for n = 1, . . . , N , and we denote ρ(y) for all y ∈ Γ the joint probability

density of (Y1, . . . , Yn) and Γ ≡
∏N

n=1 Γn,N ⊂ R
N the support of such density. The

expectation operator is subsequently defined as E(f) =
∫
Γ
f(y)ρ(y)dy. Note that when

random variables Yn, n = 1 . . . , N , are independent, we have ρ(y) =
∏N

n=1 ρn(yn) for
all y ∈ Γ.

After the finite-dimensional characterization of the random inputs (2.6), the un-
steady diffusion equation (2.1) can be expressed in the following strong form:

⎧⎪⎨
⎪⎩

ut(y, x, t) −∇ · (κ(y, x)∇u(y, x, t)) = f(y, x, t) ∀(y, x, t) ∈ Γ ×D × J,

u(y, x, t) = 0 ∀(y, x, t) ∈ Γ × ∂D × [0, T ],

u(y, x, 0) = u0(y, x) ∀(y, x) ∈ Γ ×D.

(2.7)

Often we seek its weak solution satisfying the following variational form: find
u ∈ L2

ρ(Γ) ⊗ L2(0, T ;H1
0 (D)) with ut ∈ L2

ρ(Γ) ⊗ L2(0, T ;H−1(D)) such that

{
Iρ(ut, v) + Kρ(u, v;κ) = Iρ(f, v) ∀v ∈ L2

ρ(Γ) ⊗H1
0 (D),

u(t = 0) = u0,
(2.8)

where

Iρ(v, w) =

∫
Γ

ρ(y)

∫
D

v(y, x)w(y, x)dxdy

and

Kρ(v, w;κ) =

∫
Γ

ρ(y)

∫
D

κ(y, x)∇v(y, x) · ∇w(y, x)dxdy.

Note that problem (2.7) or (2.8) becomes an (N +d)-dimensional problem, where
d is the dimensionality of the physical space D and N is the dimensionality of the
random space Γ.

2.3. Formulations for multiscale problems. In this section we formulate
the multiscale problem associated with the stochastic diffusion equation (2.1). In
particular, we consider the problem where the random inputs, e.g., diffusivity κ,
have very small correlation length lκ 
 1, compared to the (macroscopic) domain
of interest DT . For notational convenience, hereafter we restrict our exposition to
problems with only κ being the random input and study, for P -almost everywhere
ω ∈ Ω,

∂uε

∂t
(ω, ·) = ∇ ·

[
κ
(
ω,

x

ε

)
∇uε(ω, ·)

]
+ f(x) in DT ,(2.9)

uε(ω, ·) = 0 on ∂D × [0, T ],(2.10)

uε(ω, ·) = uε
0(x) on D × {t = 0}.(2.11)
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920 DONGBIN XIU AND IOANNIS G. KEVREKIDIS

Here we have assumed that the diffusivity κ satisfies the conditions (2.2) and (2.3)
and is a homogeneous random field with a short correlation length lκ ∼ O(ε) 
 O(1),
i.e.,

Cκ(x, y) = C(|x− y|/lκ) lκ ∼ O(ε) 
 O(1), (x, y) ∈ D̄ × D̄,(2.12)

where Cv(x, y) ≡ E [(v(ω, x)−E[v(ω, x)])(v(ω, y)−E[v(ω, y)])] is the two-point covari-
ance function and lκ is the correlation length. Again we characterize the diffusivity
field κ(ω, x/ε) by N independent random variables as in (2.6). Hence, problem (2.9)
is in (N +d) dimensions, and we can formulate it in the strong and weak forms similar
to (2.7) and (2.8), respectively.

The discretization in the spatial domain D ⊂ R
d can be conducted via any stan-

dard technique, e.g., finite difference, finite elements, etc., with a maximum mesh
spacing parameter δ > 0. To fully resolve (2.9), we need to employ a fine mesh
with δ < ε. From a numerical point of view, very small mesh spacing δ often results
in restrictions on the size of time steps of numerical schemes, and such restrictions
are particularly severe for explicit schemes. Hence, a fine-scale computation of (2.9)
requires computations with very small time steps on a very fine mesh.

The discretizations in the N -dimensional random space Γ can be conducted in
different ways. The recently developed stochastic Galerkin methods, or generalized
polynomial chaos, are extensions of the classical polynomial chaos which is based
on the Wiener–Hermite expansion [15]. These extensions include the non-Hermite
global orthogonal polynomial expansion from the Askey scheme [40, 39, 42], piecewise
polynomial expansions [1, 2, 6], and wavelet basis [23, 24]. The stochastic Galerkin
methods have fast convergence as the polynomial order is increased. In fact, under
sufficient regularity requirements, exponential convergence has been proved for sto-
chastic elliptic equations in [2] and shown numerically for various stochastic equations
in [40, 39, 41]. The total number of expansion terms, K, however, depends not only
on the order of polynomials but also on the dimensionality N of the random space.
When N � 1 is very large, K increases fast with increasing order of polynomials.
This significantly reduces the convergence rate with respect to the number of expan-
sion terms for stochastic Galerkin methods. To this end, it may be necessary to resort
to the Monte Carlo method, as its convergence rate, 1/

√
M , where M is the number

of realizations, albeit slower, is independent of the value of N .
The number of random variables, N , used to represent the random process κ(ω, x)

depends on, among other factors, the correlation length of κ. Although one may
choose different decomposition methods, in general, the value of N is inversely pro-
portional to the correlation length lκ. For the problem we consider here, lκ 
 O(1)
implies N � 1, and problem (2.9) is in a high-dimensional random space. Subse-
quently, the fine-scale computation of (2.9) requires a large number of discretization
terms in the N -dimensional random space Γ (by either a large number of expansion
terms from a stochastic Galerkin method at a given order or a large number of realiza-
tions from a Monte Carlo method), a fine mesh in the physical space D to resolve the
small scales induced by lκ 
 O(1), and very small time steps in the time domain J .
Such computations can be prohibitively time consuming.

3. An equation-free multiscale method. In this section we present an equa-
tion-free multiscale method for the integration of (2.9); other tasks (such as fixed point
algorithms for its stationary states) can also be formulated in an equation-free context
(see the discussion in section 5). The key feature of the method is that the costly
fine-scale computations of (2.9) are conducted only for a small fraction of the total
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EQUATION-FREE METHOD FOR RANDOM DIFFUSION 921

integration time. During the fine-scale computations, the rate of change of appro-
priate coarse-scale variables is estimated numerically, and subsequently represented
on a coarser mesh and integrated in time with large time steps. The choice of such
coarse variables is based upon the following assumption (observation): although each
individual realization of the solution of (2.9) is characterized by small spatial scales,
the ensemble averages, e.g., moments, of the solutions are significantly smoother in
space (characterized by much larger scales), i.e.,

E

[
g
(
uε

(
ω,

x

ε
, t
))]

= Ug(x, t) ∀g ∈ C,(3.1)

where C denotes a set of smooth functions. Variables Ug(x, t) are the “coarse-grained”
variables, and we will describe in detail their construction in the following section.
Hereafter, we will drop the superscript ε of the fine-scale variables uε.

Equation (2.9) defines an evolutionary process,

∂u

∂t
(ω, x, t) = r(u), (ω, x) ∈ Ω ×D,(3.2)

characterized by a solution operator {s(t)}, which forms a semigroup u(·, t) =
s(t)u(·, 0) in t ∈ J . We will assume that the set of properly defined coarse-scale
variables from (3.1) satisfy, possibly after a short transient (relaxation) period, closed
differential equations

∂Ug

∂t
(x, t) = R(Ug), (x, t) ∈ DT .(3.3)

Note that typically one has several coarse variables. Subsequently, Ug is a vector
field, and (3.3) is a system of equations. We also remark that the explicit knowledge
of (3.3) may not be easy to obtain or may be too complicated to be of any practical
use if it were known.

The general procedure for the equation-free projective integration methods (see,
e.g., [11, 21, 20]) over one global time step Δt, starting at t = tn and ending at
t = tn+1, consists of the following key components:

• a “restriction” operator P to evaluate the coarse-grained variables from the
ensemble of fine-scale computations, i.e., Ug = Pu, and a “lifting” opera-
tor Q to construct the representative ensemble of fine-scale solutions from
the coarse-scale variables, i.e., u = QUg;

• nf > 1 steps of fine-scale computations of (3.2) with a small time step δt,
where we will define Δtf = nfδt and an intermediate time level tnc = tn+Δtf ;

• one step of coarse projective integration of the coarse-scale equation (3.3)
with a time step of the size Δtc = ncδt, nc > 1.

Since Δtc is associated with the time scale of the coarse variables Ug defined in (3.1),
we usually have nc � 1. The global time step is Δt = tn+1 − tn = Δtf + Δtc =
(nf + nc)δt. Figure 3.1 is a graphical illustration of the notation.

Specifically, for the multiscale diffusion problem in a random medium described
by (2.9), the equation-free integration over one global time step Δt consists of the fol-
lowing steps (given a fine and coarse computational mesh and that Un

g (x) ≡ Ug(x, t
n)

on the coarse mesh):

1. Lifting (or reconstruction): Generate an ensemble of random solutions
un(ω, x) ≡ u(ω, x, tn) on the fine mesh.
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922 DONGBIN XIU AND IOANNIS G. KEVREKIDIS

Projective integration
Exact

Δ t
f
 Δ t

c
 

δ t 

t=tn t=tn
c
 t=tn+1 

Fig. 3.1. Sketch of the multiscale equation-free integration over one global time step.

2. Fine-scale computation: Fully resolve (2.9) by using the fine mesh in D, a
small time step δt in J , and an appropriate method in Γ (e.g., the Monte
Carlo method). Such a fine-scale integration is conducted only for a short
period of time, from tn to the intermediate time tnc , i.e., u(·, t) = s(t)u(tn),
for tn ≤ t ≤ tnc = tn + nfδt. Here nf ≥ 1 such that nfδtf ∼ tR 
 tM , where
tR is the local relaxation time of the fine-scale process and is assumed to
be much shorter than tM , the typical time scales of the coarse-scale process
(3.3).

3. Restriction: Evaluate the coarse variables Ug(t) defined in (3.1) on the coarse
mesh for tn ≤ t ≤ tnc .

4. Coarse-scale integration: Estimate the time derivatives of the coarse vari-
ables Ug at t = tnc and integrate the coarse-scale equations (3.3) to tn+1

via the projective integration method on the coarse mesh, with a time step
Δtc = ncδt = tn+1 − tnc . Here Δtc ∼ tM � tR.

We now present a detailed description of each of the steps, starting with the more
straightforward step—the fine-scale computation.

3.1. Fine-scale computation. The objective of the fine-scale computation is
to fully resolve (2.9). To this end, any conventional spatial and temporal discretization
scheme can be employed, e.g., finite difference or finite elements. Since the dimen-
sionality is high ((N + d)-dimensional), we employ a Monte Carlo simulation (MCS)
in the random space Γ. Here we illustrate the formulation of a Monte Carlo finite
element method (MCFEM).

Denote Xd
δ ⊂ H1

0 (D), D ⊂ R
d, a family of piecewise linear finite element approxi-

mation spaces, with a maximum mesh spacing parameter δ > 0. This is the fine mesh,
as we choose δ < O(ε) 
 O(1) to fully resolve all spatial scales. We shall assume all
the standard assumptions on the finite element triangulation and its approximation
estimate, i.e.,

min
χ∈Xd

δ

‖v − χ‖ ≤ Cδ‖v‖H2(D) ∀v ∈ H2(D) ∩H1
0 (D),(3.4)
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EQUATION-FREE METHOD FOR RANDOM DIFFUSION 923

where C > 0 is a constant independent of v and δ.
The MCFEM formulation for (2.9) is as follows:
• Prescribe the number of realizations, M , and a piecewise linear finite element

space on D, Xd
δ , defined as above.

• For each j = 1, . . . ,M , sample independently and identically distributed re-
alizations of the diffusivity κ(ωj , ·) and find the corresponding approximation
uδ(ωj , ·) ∈ L2(0, T ;Xd

δ ) with ∂uδ

∂t ∈ L2(0, T ; (Xd
δ )′) such that

(
∂uδ

∂t
(ωj , ·), χ

)
δ

+

∫
D

κ(ωj , ·)∇uδ(ωj , ·) · ∇χdx = (f, χ)δ ∀χ ∈ Xd
δ , t ∈ J,

(3.5)

where (·, ·)δ is the usual inner product in Xd
δ .

• Process the solution ensemble to generate statistics, e.g., E(u) =
1
M

∑M
j=1 uδ(ωj , ·).

For more detailed discussion on the stochastic finite element spaces for elliptic
problems, see [2]; for numerical examples and implementations of stochastic Galerkin
methods for steady/unsteady diffusion equations, see [39, 42].

3.2. Restriction and lifting. The restriction from the fine-scale variables u
to coarse-scale variables Ug consists of two steps: “random restriction” and “spatial
restriction.” First, the fine-scale variables u are averaged to Ug in the random space
according to (3.1) (random restriction); then the coarse variables Ug are further re-
stricted from the fine mesh to the coarse mesh (spatial restriction) justified by the
assumption/observation that they are smoother. The lifting procedure is the reverse
of the restriction. We now describe the details of the two procedures in both the
random space Γ and the physical space D.

3.2.1. Operations in random space. The solution of the fine-scale computa-
tion via the MCFEM in section 3.1, or other effective methods, generates an ensemble
of M realizations of the random solution uδ at any x ∈ Xd

δ and t ∈ J . For any fixed
(x, t), uδ(ω, ·) is a random variable, and we seek to represent such a random variable
by an orthogonal polynomial approximation and define the expansion coefficients as
our coarse-grained observables (variables). Hereafter we drop the subscript δ in uδ,
the fine-scale numerical solution of u, and seek to approximate it by Iωu for any fixed
(x, t),

u(ω, x, t) � Iωu(ω, x, t) =

K∑
k=0

Ūk(x, t)Φk(ξ(ω)),(3.6)

where {Φk(ξ(ω))}Kk=0 is a set of orthogonal polynomials {Φ} in terms of random
variable ξ(ω). The expansion coefficients are determined by

Ūk =
1∫

Ω
Φ2

kdP

∫
Ω

u(ω, ·)Φk(ξ(ω))dP (ω)

=
1

E [Φ2
k]

E [u(ω, ·)Φk(ξ(ω))] , k = 0, . . . ,K,

(3.7)

where the orthogonality of the basis functions has been used. Such a representation of
random variables is commonly used in practice (cf. [15, 40, 39]). The correspondence
between the type of orthogonal polynomials {Φ} and the type of random variable ξ(ω)
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924 DONGBIN XIU AND IOANNIS G. KEVREKIDIS

includes Hermite–Gaussian, Jacobi-beta, Laguerre-gamma, etc. (see [40] for details).
The convergence of such orthogonal polynomial expansions is assumed to be of the
form

‖u(ω, ·) − Iωu(ω, ·)‖L2(Ω) = O(K−γω ) → 0, K → ∞, γω > 0,(3.8)

where we have assumed the convergence rate scales as K−γω for some positive number
γω > 0, which depends on the smoothness of u(ω). We remark that a complete
theoretical analysis on the convergence of different bases remains an open issue. For
numerical examples of the approximations of a random variable via different sets of
bases, see [40].

The expansion coefficients {Ū}Kk=1 are the ensemble averages of u, as defined
in (3.7), and under assumption (3.1), they become the coarse variables with larger
spatial scale, i.e., with smoother profiles in the physical space D. For instance, the
coefficient Ū0(x, t) is the mean field of u and is in general smooth.

The finite-term polynomial approximation (3.6) defines two operations between
u and {Ūk}, i.e., the “restriction” operator in random space Pω such that

{Ūk(·)}Kk=0 = Pωu(ω, ·)(3.9)

and the “lifting” operator Qω such that

Iωu(ω, ·) = Qω{Ūk(·)}Kk=0,(3.10)

where operation Pω is accomplished by (3.7) and Qω by generating random samples
of ξ(ω) in (3.6). Obviously both Pω and Qω are linear operators, QωPω = Iω and
IωIω = Iω.

We remark that the expansion (3.6) is different from the traditional polynomial
chaos expansion. Expansion (3.6) is a pointwise approximation at fixed locations in
(x, t), and hence requires only a one-dimensional (in the random space) polynomial
basis of {Φk(ξ(ω))}, where the random variable ξ(ω) associated with the basis is
different at different locations in the physical space. On the other hand, the traditional
polynomial chaos expansion is written in the full N -dimensional random space for
all locations of (x, t). While operators (3.9) and (3.10) are one-dimensional in the
random space, they do not offer us an easy way to obtain the governing equations for
the coarse variables Ū , as shown in (3.3). (On the other hand, we can readily derive
the governing equations in the N -dimensional random space via a Galerkin method
if the traditional polynomial chaos expansion is employed.) We will show in the next
section that we can circumvent the difficulty of not having the governing equations
by using the “equation-free” approach.

3.2.2. Operations in physical space. Since we have assumed the coarse vari-
ables {Ūk(x, t)} are smooth in space, they can be accurately represented on a coarse
mesh Xd

Δ ⊂ D, whose maximum mesh spacing Δ � δ. Such a representation can be
expressed as, e.g., in terms of polynomial approximations in the physical space D,

Ūk(x, t) � IxŪk(x, t) =

L∑
l=1

ˆ̄Uk,l(t)φk(x),(3.11)

where {φl(x)}Ll=1 are the basis functions in Xd
Δ, and the expansion coefficients are

defined as ˆ̄Uk,l = (Ūk, φl)Δ/(φl, φl)Δ for all k. Here (·, ·)Δ is the usual inner product
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EQUATION-FREE METHOD FOR RANDOM DIFFUSION 925

in Xd
Δ, and we have assumed, for notational convenience, that the bases are orthogo-

nal. The completeness of such bases yields

‖Ūk(x, ·) − IxŪk(x, ·)‖Xd
Δ

= O(L−γx,k) → 0, L → ∞, γx,k > 0 ∀k,(3.12)

where ‖ · ‖Xd
Δ

is an appropriate norm in Xd
Δ and γx,k > 0 quantifies the convergence

rate, which depends on the smoothness of the underlying function Ūk.

Similarly, we can define two operators between Ū and { ˆ̄U l}, i.e., the restriction
operator Px in the physical space D such that

{ ˆ̄Uk,l(·)} = Px{Ūk(x, ·)}, k = 0, . . . ,K and l = 1, . . . , L,(3.13)

and the lifting operator Qx such that

Ix{Ūk(x, ·)} = Qx{ ˆ̄Uk,l(·)}, k = 0, . . . ,K and l = 1, . . . , L.(3.14)

Clearly, we have QxPx = Ix and IxIx = Ix.

3.2.3. Global restriction and lifting. The global restriction operator P and
lifting operator Q are thus defined as

P = PxPω such that { ˆ̄Uk,l(t)} = Pu(ω, x, t)(3.15)

and

Q = QωQx such that Iu(ω, x, t) = Q{ ˆ̄Uk,l(t)},(3.16)

where the global approximation operator I is defined as

I = QP = QωQxPxPω = QωIxPω.(3.17)

Note the above operators are defined for ω = {ωj}Mj=1 ∈ Ω, k = {0, . . . ,K}, l =
{1, . . . , L}. A remarkable property of the operator I is that

‖u− Iu‖ → 0, K, L → ∞,(3.18)

where the norm ‖·‖ is defined in the tensor product space of L2(Ω) and the appropriate
space of D that defines the norm in (3.12). Such a property ensures that, by restrict-
ing from the fine-scale solution ensemble to the coarse-scale variables (operator P)
and lifting back to the fine-scale (operator Q), we can reconstruct a representative
ensemble of fine-scale solutions with controllable accuracy.

3.2.4. Implementation of restriction and lifting. In numerical simula-
tions, the ensemble of solutions obtained by the Monte Carlo method in section 3.1,
{u(·, ωj)}Mj=1, is first restricted in random space by Pω (3.9); the resulting variables

{Ūk(x)} on the fine mesh are further restricted to the coarse mesh by Px (3.13).
The random restriction Pω is accomplished by (3.7), where the integral is written

in a formal way as u and ξ in the integrand do not in general have the same probability
measure. To integrate (3.7), we transform both the random variables u and ξ to
a uniform variable θ ∈ U(0, 1) via their cumulative density function (CDF), i.e.,
θ = F (u) = G(ξ), where F and G are the CDF of u and ξ, respectively. Hence,

u = F−1(θ), ξ = G−1(θ),(3.19)
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926 DONGBIN XIU AND IOANNIS G. KEVREKIDIS

and (3.7) can be written as

Ūk =
1∫

Ω
Φ2

kdP

∫
Ω

u(ω, ·)Φk(ξ(ω))dP (ω) =
1∫

Ω
Φ2

kdP

∫ 1

0

F−1(θ)Φk(G
−1(θ))dθ.

(3.20)

The resulting integral in the bounded domain (0, 1) can be readily integrated using
quadrature rules with sufficient accuracy. For more details on such integrations and
numerical examples, see [40].

During the lifting procedure (3.16), the coarse variables on the coarse mesh are
first “lifted” to the fine mesh via Qx (3.14) (effectively, interpolated); the random
lifting operation Qω is then conducted to generate an ensemble of fine-scale solutions
on the fine mesh. The spatial lifting Qx is accomplished through (3.11) and the
random lifting Qω by (3.6). In (3.6), an ensemble of realizations of the random
variable {ξ(ωj)}Mj=1 are generated to, in turn, generate {u(ωj)}Mj=1. The {ξ(ωj)}Mj=1

is generated via (3.19) by using the same set of uniform random variable {θ(ωj)}Mj=1

resulted from the CDF of {u(ωj)}Mj=1, i.e., θ = F (u). By using the same set of θ, the

lifted solution {Iu(ωj)}Mj=1 will have the same correlation structure as {u(ωj)}Mj=1.
This is a key step for efficient numerical computations, as it prescribes the “right”
correlations between a particular realization of the medium and the corresponding
solution for this medium.

3.3. Coarse-scale integration. As pointed out in section 3.2.1, although the
pointwise expansion (3.6) utilizes only one-dimensional expansions in random space
at fixed locations in physical space, it is unclear, to the authors’ best knowledge, how

the governing equations for the coarse variables { ˆ̄Uk,l} should be; i.e., the right-hand
side (RHS) of

∂ ˆ̄Uk,l

∂t
= Rk,l(

ˆ̄U) ∀ k ∈ [0,K], l ∈ [1, L](3.21)

is unknown. To circumvent the difficulty, we employ the “equation-free” approach
where explicit knowledge of these governing equations is not needed. This procedure
is as follows:

• Evaluate the coarse variables { ˆ̄Uk,l(t)} = Pu(·, t) from the fine-scale compu-
tation for tn ≤ t ≤ tnc = tn + nfδt.

• Approximate the RHS of (3.21) at t = tnc , i.e.,

Rk,l(t
n
c ) =

ne∑
j=0

αj
ˆ̄Uk,l(tj) =

d ˆ̄Uk,l

dt
(tnc ) + O(δtJf ), k ∈ [0,K], l ∈ [1, L],

(3.22)

where 1 ≤ ne ≤ nf , tj = tnc − jδt, and Jf denotes the order of the approx-
imation. {αj}ne

j=1 is a set of consistent coefficients such that
∑

αjv(tj) =

dv/dt(tnc ) + O(δtJf ).
• Once the RHS of (3.21) is estimated numerically, (3.21) is integrated forward

in time for one step on a larger time step. For example, given coarse time step
of size Δtc = nc ·δt with nc ≥ 1, such that tn+1 = tn+Δtc = tn+(nf +nc)δt,
the Euler forward integrator takes the form

ˆ̄U
n+1

k,l = ˆ̄Uk,l(t
n
c ) + Δtc ·Rk,l(t

n
c ) + O(Δt2c), k ∈ [0,K], l ∈ [1, L].(3.23)
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EQUATION-FREE METHOD FOR RANDOM DIFFUSION 927

The estimation of derivatives (3.22) may suffer from numerical oscillations, especially
for systems that exhibit noisy behavior at microscopic scales, e.g., molecular dynamics.
In this case, certain smoothing techniques such as a least-square fit may be used to
alleviate the problem [14]. (Such is not the case in this paper.) The integration of
coarse variables (3.23) is a simple Euler forward scheme, which can lead to relatively
large errors when Δtc is large. Other integration schemes, such as higher-order single
step methods or multistep methods, can be used for their improved accuracy and/or
better stability properties [11, 12]. A complete analysis (stability, accuracy, etc.) of
the equation-free method to stochastic equations is still lacking and is beyond the
scope of the current paper. For an error analysis of the equation-free method for a
deterministic system (flow simulation), see [37].

3.4. Computational complexity. Let us denote by Nf ∼ O(δ−d) the number
of degrees of freedom (DOF) of the fine mesh Xd

δ and by Nc ∼ O(Δ−d) the DOF of
the coarse mesh Xd

Δ. During the coarse integration step, the fine-scale computation
by M realizations of MCSs is effectively reduced to a problem of the evolution of
(K + 1) local polynomial expansion coefficients (3.6) on the coarse mesh obtained by
the global restriction operator P = PxPω. The reduction in computational complexity
can be illustrated as

R
M×Nf

Pω−→ R
(K+1)×Nf

Px−→ R
(K+1)×Nc .(3.24)

Thus, to march problem (2.9) over a global time step Δt = (nf + nc)δt, the par-
ticular equation-free projective integration algorithm, which consists of nf steps of
fine-scale computations and one step of coarse integration, needs to solve a problem
of complexity

Cc ∼ nf × R
M×Nf + R

(K+1)×Nc .(3.25)

On the other hand, the complexity of the full-scale MCFEM over the same time
interval Δt is

Cf ∼ (nf + nc) × R
M×Nf .(3.26)

For the multiscale problem considered in this paper, we have Nf � Nc, O(1) ∼ K 

M , and nc � nf . Thus, roughly speaking, Cf/Cc ∼ (1+nc/nf ) � 1. We remark that
such an estimate is rather crude, and the actual computational efficiency is problem
dependent.

4. Numerical results. In this section we present numerical results on (2.9) in
one spatial dimension x ∈ [0, 1]. The restriction and lifting operations in physical
spaces, as shown in section 3.2.2, come from standard approximation theory, and
here we focus on the properties of the random restriction and the random lifting. We
remark that the method extends trivially to multidimensional physical spaces. We as-
sume that κ(ω, x) is a Gaussian random field with unit mean value, i.e., Eu(ω, x) = 1,
and employ the Hermite polynomials in random space to represent the random field
in (3.6). We employ the Gaussian random field model because of its ease of numeri-
cal generation. (Generation of non-Gaussian random fields is still an active research
area.) From a mathematical point of view, Gaussian models are inappropriate for
the diffusivity fields, as they allow negative values with nonzero probability, and thus
violate the uniform coercivity assumption (2.2). In practice, however, such negative
values are rare, especially when the variance is small, and we can neglect such negative
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928 DONGBIN XIU AND IOANNIS G. KEVREKIDIS

values if they occur in the random realizations. (In the numerical examples below,
negative values never appear.)

We assume that the Gaussian random field has an exponential covariance function,
i.e., Cκ(x, y) = exp(|x − y|)/lκ. Such a correlation function can be generated from
a first-order Markov process and has been used extensively in the literature. All
MCFEM computations are conducted by a linear finite element method with Euler
forward integration, and M = 1,000 realizations are used. The forcing term in (2.9)
is fixed at f(x) ≡ −2, and zero Dirichlet boundary conditions are imposed at x = 0
and x = 1. The restriction in physical space (3.11) is conducted on a set of Jacobi
polynomial basis (see [19, Chapter 2]).

4.1. Accuracy. The complete error analysis of the present multiscale method
remains an open issue. In this section, we conduct numerical experiments to document
the error convergence. In the first example, we set lκ = 0.1 and use 40 linear elements
(δ = 0.025). Fifth-order Hermite expansion (K = 5) is used for the random restriction
(3.6) and fifth-order Jacobi basis (L = 5) for the spatial restriction (3.11). The time
step for the fine-scale computation is δt = 0.001, and it is conducted for nf = 20
steps. The coarse integration has a time step Δtc = 0.08 (i.e., nc = 80), so that
the global time step is Δt = (nf + nc)Δtf = 0.1. For this illustrative example, the
computational speed-up is modest (4 ∼ 5 times), because the separation of scales is
modest.

Figure 4.1 shows the stochastic solution profile (mean and standard deviation)
at time T = 1. Good agreements are obtained between the full-scale MCS and the
equation-free multiscale method.
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Fig. 4.1. Solution profile at T = 1. Left: mean solution. Right: standard deviation.

To study the error contributions from different factors, we conducted a series
of computations with varying parameters. In Figure 4.2 the L∞ errors in mean
and standard deviation (STD) are shown. These computations have fixed values of
Δtf = 0.05, K = 3, and L = 4 and varying time steps Δtc of the coarse integration.
We observe that the errors decrease as the size of time steps for the coarse integration
decreases.

To examine the error convergence with respect to the orders of approximation in
random space (parameter K) and physical space (parameter L), we fix the time steps
of integrations Δtf = Δtc = 0.05. The size of coarse integration Δtc is sufficiently
small such that the temporal errors are subdominant (e.g., O(10−6) for the mean
as shown from Figure 4.2). In Figure 4.3, the errors with increasing order of the
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Fig. 4.2. Errors in mean and STD versus the step size of the coarse integration.
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Fig. 4.3. Errors in mean and STD versus the order of Hermite approximation of the coarse
variables.

Hermite approximations (K) in the random restriction Pω are shown. Fourth-order
(L = 4) Jacobi basis is used in the physical space, so that the errors from spatial
restriction Px are subdominant. It can be seen that as the order K of the random
restriction increases, the errors in STD decrease as expected. The mean solution is
well resolved by even the first-order Hermite expansion (K = 1), and its errors remain
at the O(10−6) level.

We then fix the order of the Hermite approximation in the random space at
third order, i.e., K = 3, and vary L. Again, Δtc = Δtf = 0.05 is sufficiently small.
In Figure 4.4, it can be seen that the error in the mean solution quickly reaches a
saturation level of O(10−6) at second order L = 2. This is consistent with the result
in Figure 4.3. The error in STD keeps decreasing with increasing order of L.

As discussed in section 3.2.3, the current implementations of the restriction op-
erator P and the lifting operator Q allow us to reconstruct representative ensembles
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Fig. 4.4. Errors in mean and STD versus the order of spatial representation of the coarse
variables.
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Fig. 4.5. Comparison of random solution (u) and its lifting (Iu) at t = 0.1. Left: profiles of
u(ωj , x) − Iu(ωj , x) for some realizations of ωj . Right: CDFs of u and Iu at x = 0.5.

of fine-scale solutions by restricting them to the coarse scale first and then lifting
back to the fine scale; i.e., I = QP is an approximation operator. To examine
the properties of the global approximation operator I (3.17), we plot Δu(ω, x, t) =
u(ω, x, t) − Iu(ω, x, t) at an arbitrary chosen time t = 0.1. On the left of Figure 4.5,
several realizations of such errors (randomly chosen from the M = 1,000 realizations)
are shown. It can be seen that the errors are bounded within a small range of the
same order of the spatial error (O(10−3)). The CDF of the random solution u at the
center of the domain (x = 0.5) is shown on the right of Figure 4.5. Again we see
excellent agreement between the probability distribution of the target u and that of
its lifting, Iu.

To further examine the error of I, we plot on the left of Figure 4.6 the pointwise
error of Δu(ω, x, t) at x = 0.5, t = 0.1 for all realizations ωj , j ∈ [1, 1,000]. We
observe that, except at a few discrete points, which belong to a set with arguably zero
measure, the errors are bounded in a very small interval of order O(10−3). On the
right of Figure 4.6, we plot the pathwise correspondence of u(ωj) versus Iu(ωj) for
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Fig. 4.6. Comparison of random solution (u) and its lifting (Iu) at t = 0.1, x = 0.5. Left:
pointwise error of |u(ωj) − Iu(ωj)| for all ωj , j = 1, . . . , 1,000. Right: Iu(ωj) versus u(ωj).

all j = 1, . . . , 1,000. It is seen that the data collapse on y = x where the exact cor-
respondence should be. These results confirm that our I is indeed an approximation
operator which allows us to reconstruct the fine-scale solution ensemble with built in
desired correlation structures from the computed coarse solutions. To achieve this, it
is important that one uses, during the lifting step (3.6), the same uniform random
variable values determined by the numerical solutions at the restriction stage as de-
scribed in section 3.2.4. If, however, a random variable ξ is used without maintaining
the correct correlation structure between the medium realization and the solution in
this medium, the lifted solutions will not be properly correlated to the true solutions,
even if the ensemble is constructed to maintain the same distribution. Figure 4.7
shows such an example. Again, this is the numerical solution at t = 0.1, and we plot
the realizations at x = 0.5. Here the numerical solutions are lifted by using arbitrarily
generated Gaussian random variables ξ in (3.6). We observe that although the solu-
tion has the same distribution as the MCS solutions (Figure 4.7, left), it is completely
uncorrelated to the true solution as shown on the right of Figure 4.7. The ability to
maintain good correlation structure in the lifting procedure is a distinctive feature of
our method. This is different from the conventional lifting procedures, whose recon-
structed solutions are rather arbitrary (to a certain degree), and a certain constraining
procedure or a relaxation integration is needed to “heal” the lifted solution ensemble
[13, 10].

4.2. Efficiency. In the second example, we prescribe a diffusivity field with
relatively small correlation length lκ = 0.01. We employ 1,000 linear elements to
resolve the small spatial scales (δ = 0.001), and this results in a time scale of O(10−6).
Thus, we set the time step of the fine-scale computation at δt = 10−6. The number
of fine-scale computations within each global time step is nf = 1,000, and the time
step of the coarse integration is chosen as Δtc = ncδt with nc = 49,000. Thus,
the global time step is Δt = (nf + nc)δt = 0.05. The polynomial orders are set
at K = 5 and L = 5 for the restrictions in the random space and the physical
space, respectively. For this application, we achieve computational speed-up of ∼ 50,
compared to the full-scale MCS. The random solution profiles in Figure 4.8 show again
good agreement between the full-scale MCFEM and the multiscale computation. We
remark that the quantification of the computational speed-up is problem dependent.
In the diffusion problems considered here, such speed-up is smaller at the beginning
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structure at t = 0.1, x = 0.5. Left: CDF of u and Iu. Right: Iu(ωj) versus u(ωj) for j =
1, . . . , 1,000.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

M
ea

n

Coarse-(x,t) integration
MCS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6
x 10

-3

x

S
T

D

Coarse-(x,t) integration
MCS

Fig. 4.8. Solution profile at T = 1. Left: mean solution. Right: STD.

of the computation due to the fast evolution of the solution. However, the speed-up
is significantly larger once the initial transient is passed.

5. Summary. In this paper we present an equation-free multiscale algorithm for
integrating unsteady diffusion problems in a random medium with small-scale spatial
structures, e.g., short correlation length. The method is based on the assumption that
although the individual realizations of the random solutions are characterized by small
scales, their ensemble averages are much smoother, characterized by larger scales. This
motivates the use of a set of coarse-grained observation variables, which are based
on the pointwise polynomial approximations of the fine-scale random solutions. Such
coarse-grained variables are approximated accurately on a coarse mesh and integrated
in time with large time steps. An equation-free approach is employed for the coarse
integration, as the explicit knowledge of the governing equations of the coarse variables
is unavailable in closed form. Details of the multiscale method are presented, and its
accuracy and efficiency are documented by numerical examples. In particular, we
demonstrate that the present constructions of the restriction and lifting operators
allow us to successfully reconstruct representative fine-scale solutions based only on
the knowledge of the coarse solutions. Future work will include a complete analysis of
error estimates of the current method and applications to more complicated systems.

D
ow

nl
oa

de
d 

01
/2

8/
13

 to
 1

55
.9

8.
20

.4
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



EQUATION-FREE METHOD FOR RANDOM DIFFUSION 933

It is interesting that, in this approach, one creates a “wrapper” around an ex-
isting direct detailed solver, using it as a black box; traditional stochastic Galerkin
algorithms would require the writing of new code to solve the coupled system of equa-
tions in both physical and random space. Our approach can thus be considered as a
“nonintrusive” one—the solution in both physical and random space is solved using
an existing legacy code through a wrapper and sidestepping the effort of new code
development and validation. In this paper the only numerical task we demonstrated
in the equation-free context was temporal integration. Other tasks enabled through
matrix-free iterative linear algebra (e.g., Newton–Krylov GMRES based fixed point
solvers, Arnoldi-type eigensolvers) naturally fit in the equation-free framework; and
many more can be performed on the explicitly unavailable coarse-grained equation:
steady state and bifurcation computations, stability computations, equation-free opti-
mization, and even dynamic renormalization. Finally, the smoothness in space of the
coarse-grained variables can be exploited (via the so-called gap-tooth and patch dy-
namics equation-free schemes) to perform the fully resolved fine-scale computations
not only for short times but also for only parts of the physical domain of interest
[21, 36, 14]. Finally, although in this paper we have designed direct numerical ex-
periments to solve the coarse-grained equation which is hypothesized to exist and
close, it is worth noting that it is also possible to design direct numerical experiments
to test this hypothesis (see [25]). These tasks, and the conditions under which they
can be successfully performed in an equation-free framework and accelerate random
computations, is the subject of ongoing research.
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