
Recently, interest has grown in develop-
ing efficient computational methods
(both sampling and nonsampling) for
studying ordinary or partial differential

equations (ODEs or PDEs) with random inputs.
Stochastic Galerkin (SG) methods based on gen-
eralized polynomial chaos (gPC) representations
have several appealing features (see the sidebar).
However, when the model equations are compli-
cated, the numerical implementation of SG or
gPC algorithms can become highly nontrivial, and
we must take care to design robust and efficient
solvers for the resulting systems of equations.

We propose an equation-free, multiscale compu-
tational approach to uncertainty quantification
(UQ) that, in some sense, combines sampling meth-
ods with nonsampling ones. This approach uses
short bursts of appropriately initialized sampling
runs to estimate quantities arising in SG numerics,
circumventing the need to derive equations for gPC
coefficients through the SG procedure.

Equation-Free Computation
The equation-free approach1–3 has been designed
specifically for problems that are “effectively sim-
ple”—that is, problems for which we believe macro-
scopic (averaged, population-level, coarse-grained,
effective) evolution equations exist conceptually, al-
though they aren’t available in closed form. For
such problems, the only available model is a fine-
scale (atomistic, stochastic, agent-based) simulator,
but running this over macroscopic space and time
scales is often prohibitively expensive. Our equa-
tion-free approach uses the fine-scale simulator as
an experiment that can be initialized and run at will.

We want to operate on two levels: first, we de-
sign and execute appropriately initialized short-
time numerical experiments with the best-available
microscopic model. Then, we use these computa-
tions’ results to estimate the coarse quantities (for
example, residuals or action of Jacobians) required
to compute with the unavailable macroscopic equa-
tions.1,2 Thus, to solve the unavailable macroscopic
equations, we estimate closures numerically on de-
mand, instead of deriving them analytically. To per-
form numerical analysis tasks (such as integration,
solution of linear and nonlinear equations, and
eigen analysis) we act on the microscopic simula-
tion directly (equation-free), taking extensive ad-
vantage of matrix-free iterative linear algebra.4

We’ve applied our framework to a variety of
problems, from bifurcation analysis of complex sys-
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tems to homogenization of random media,2,3,5–10

but in this article, we apply our equation-free ap-
proach to UQ. Our examples are dynamical sys-
tems (ODEs) with random inputs, but we can read-
ily extend our approach to certain types of PDEs.11

In this context, ensembles of shorts bursts of de-
terministic ODE simulations through Monte Carlo
(MC) sampling act as the detailed, microscopic
model; the coarse-grained dynamics are the long-
term dynamics of a set of gPC expansion coeffi-
cients of the ensemble statistics. The idea is that
deterministic equations exist and accurately close

at the level of this leading gPC expansion coeffi-
cient set, so these finite degrees of freedom are suf-
ficient for representing the ensemble statistics. The
normal procedure for obtaining evolution equa-
tions for these leading gPC coefficients would be
to perform an SG projection of the governing sto-
chastic equations on the gPC basis; truncating this
Galerkin projection gives an approximation of
these equations. We project the results of short
bursts of MC sampled dynamics onto the gPC ba-
sis (thus, the Galerkin-free label). We illustrate
equation-free projective integration and equation-

Approaches to 
Uncertainty Quantification

S ources of uncertainty generally include those in sys-
tem parameters as well as in boundary and initial

conditions; these are ubiquitous in engineering applica-
tions and are often modeled as random variables or
processes. Traditional approaches to uncertainty quantifi-
cation (UQ) include the Monte Carlo method and its vari-
ants—for example, Latin Hypercube Sampling1—which
generate ensembles of random realizations for the pre-
scribed random inputs and use repetitive deterministic
solvers for each realization. Such methods’ convergence
rates can be relatively slow, and researchers have devoted
extensive time to developing nonsampling methods that
employ no repetitive deterministic solvers. These include
perturbation methods2 and second-moment analysis,3,4

which are both well suited for systems with relatively small
random inputs and outputs.

The recently developed stochastic Galerkin (SG) methods
can exhibit faster convergence for problems with relatively
large random inputs and outputs. The SG methods’ faster
convergence is attributed to the use of generalized polyno-
mial chaos (gPC) representations of random processes.
Such representations are generalizations of the Wiener-
Hermite polynomial chaos expansion,5 which others have
applied to various problems in mechanics.6 The generaliza-
tions employ non-Hermite polynomials to improve effi-
ciency for a wider class of random processes and include
global polynomial expansions,7,8 piecewise polynomial ex-
pansions,9,10 and wavelet basis expansions.11,12 Although
SG methods based on gPC can, in general, converge
rapidly, the resulting systems of deterministic equations for
the gPC coefficients are often large and coupled, thus we
must take care to design efficient and robust solvers for
them. The form of the resulting equations can become
quite complicated when the underlying differential equa-
tions have nontrivial and nonlinear forms.13 Furthermore,
the dimensionality of the discretized SG equations for an

engineering model can be much larger than the dimen-
sionality of the base case deterministic model.

References
1. G.S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications,

Springer-Verlag, 1996.

2. M. Kleiber and T.D. Hien, The Stochastic Finite-Element Method, John

Wiley & Sons, 1992.

3. W.K. Liu, T. Belytschko, and A. Mani, “Probabilistic Finite Elements

for Nonlinear Structural Dynamics,” Computer Methods in Applied

Mechanics and Eng., vol. 56, no. 1, 1986, pp. 61–81.

4. W.K. Liu, T. Belytschko, and A. Mani, “Random Field Finite Elements,”

Int’l J. Numerical Methods in Eng., vol. 23, no. 16, 1986, pp. 1831–1845.

5. N. Wiener, “The Homogeneous Chaos,” Am. J. Mathematics, vol. 60,

1938, pp. 897–936.

6. R.G. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral

Approach, Springer-Verlag, 1991.

7. D. Xiu and G.E. Karniadakis, “Modeling Uncertainty in Steady State Dif-

fusion Problems via Generalized Polynomial Chaos,” Computer Methods

in Applied Mechanics and Eng., vol. 191, no. 43, 2002, pp. 4927–4948.

8. D. Xiu and G.E. Karniadakis, “The Wiener-Askey Polynomial Chaos

for Stochastic Differential Equations,” SIAM J. Scientific Computing,

vol. 24, no. 2, 2002, pp. 619–644.
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10. M.K. Deb, I. Babŭska, and J.T. Oden. “Solution of Stochastic Partial

Differential Equations using Galerkin Finite-Element Techniques,”

Computer Methods in Applied Mechanics and Eng., vol. 190, no. 48,

2001, pp. 6359–6372.

11. O. Le Maitre et al., “Uncertainty Propagation using Wiener-Haar Ex-

pansions,” J. Computational Physics, vol. 197, no. 1, 2004, pp. 28–57.

12. O. Le Maitre et. al, “Multiresolution Analysis of Wiener-Type Uncer-

tainty Propagation Schemes,” J. Computational Physics, vol. 197, no.

2, 2004, pp. 502–531.

13. D. Xiu and S.J. Sherwin, “Uncertainty Modelling in Hyperbolic Sys-

tems and its Applications in Reduced Modelling of a Human Arterial

Network,” to be published in SIAM J. Scientific Computing, 2005.



18 COMPUTING IN SCIENCE & ENGINEERING

free fixed-point and limit-cycle computations for a
class of random dynamical systems.

Computational Framework
Consider a nonlinear system of equations

, x(0) � x0, (1)

where x = x(t) � �n, n = 1, 2, …, is a vector-valued
function of time, and f : U � �n is a smooth func-
tion defined on some subset U � �n. In this article,
we restrict our exposition to autonomous systems,
although we can readily extend our approach to
nonautonomous ones.

To represent random inputs, we introduce to
Equation 1 a random parameter � � �� which be-
longs to an appropriately defined sample set. For
many practical systems—for example, chemical or
biological reactions—a major source of uncertainty
resides in the parameters associated with material
or rate properties. In this article, we study a system
of equations for x(t, �),

, x(0, �) = x0(�), (2)

where f : U � � � �n, and x0 : � � �n is the initial
condition. The vector field f generates a flow �t :
U � � � �n, which becomes a random vector and
satisfies

(3)

for all x � U, � � �� and � � I, where I = (a, b) � � is
some interval. A straightforward way to resolve Equa-
tion 2 is to use the MC method, wherein we generate
multiple realizations of the random inputs for � � �
and conduct deterministic simulations for each real-
ization. The results constitute an ensemble of solu-
tions, and we can apply various postprocessing proce-
dures to obtain solution statistics. Generally, we need
several realizations to obtain accurate statistics. Here-
after, we refer to MC solutions as fine-scale solutions.

Stochastic Galerkin Approach
gPC expansions provide a way to represent a ran-
dom solution with fewer degrees of freedom than
MC methods. When we use the SG method with a
gPC representation, we seek to expand the random
solution as

, (4)

where {�m}m=1
M is a set of orthogonal polynomial ba-

sis functions and �(�) = (	1, …, �d) is a random vec-
tor. The dimensionality of the random vector �, d,
is determined by the given random inputs. For in-
stance, d can represent the number of random pa-
rameters we intend to model. We can determine
these either explicitly through the problem state-
ment or implicitly through an inverse analysis.12

We determine the total number of the expansion
coefficients {x̂m}m=1

M by d and highest order (p) of
the polynomial basis {�m}—that is, M = (d +
p)!/d!p!. Clearly, the problem size for solving UQ
grows quickly with d. We determine the expansion
coefficients using

,  m = 1, …, M, (5)

where 
�� is the expectation (ensemble average)
operator; we can determine the normalization
factor 
�m

2� analytically prior to any computations
once we choose the type of orthogonal polyno-
mials {�m}m=1

M . For better computational effi-
ciency, we must establish a correspondence be-
tween the type of orthogonal polynomial � and
the type of random vector �. These correspon-
dences typically associate a probability density
function with the weights of some suitable or-
thogonal polynomials—for example, Gaussian
PDF with Hermite polynomials or uniform PDF
with Legendre polynomials.13

Equations 4 and 5 define two operations that
let us transform between an ensemble of fine-
scale solutions x(t, �) and the corresponding ex-
pansion coefficients {x̂m(t)}. That is, given an en-
semble of solutions x(t,�), we can obtain its
expansion coefficients {x̂m(t)} using Equation 5;
conversely, given a set of expansion coefficients
{x̂m(t)}, we can use Equation 4 to construct an en-
semble of full-scale states x(t, �) by generating a
set of random realizations of �(�). The former
operation, in equation-free terminology, is the re-
striction, whereas the latter constitutes a lifting op-
erator. We discuss the importance of consistently
using random seeds for �(�) in Equations 4 and 5
elsewhere.11

To obtain evolution equations for the expansion
coefficients {x̂m}M

m=1,   one conducts the SG projec-
tion of Equation 2:

,   x̂m(0) = x̂0,m,    m = 1, …, M, (6)

where {f̂m}m=1
M and {x̂0,m}m=1

M are the expansion coef-
ficients of f and x0, respectively. That is,

d
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m = 1, …, M. (7)

Denoting y = ( x̂1, …, x̂M)T and g = (f̂1, …, f̂M)T, we
can write the above equation more compactly as

, y(0) = y0. (8)

Although Equation 8 is a system of determinis-
tic ODEs, for a general nonlinear dynamical sys-
tem, the analytical form g(y) can be highly non-
trivial to derive and implement; this precise
difficulty motivates our equation-free approach.

The Equation-Free Approach
Our equation-free UQ computations don’t require
the explicit form of g(y). We now use our approach
to integrate the dynamical equations (Equation 8)
and present computations of their fixed points and
limit cycles.

Coarse-grained projective integration. For dynam-
ical integrations of Equation 8, we follow a gen-
eral procedure.5,14 For a given initial condition
yn = y(tn) at time level tn = n�t, n 
 1, where �t is
the time step of fine-scale simulators, we take the
following steps:

• Lifting step. Generate a fine-scale ensemble xn(�)
= x(tn, �) using the lifting operation in Equation
4.

• Fine-scale evolution step. Use xn(�) as initial condi-
tions and integrate Equation 2 for a short time to
obtain xl(�) = �(t l, tn; �) for l > n—that is, inte-
grate Equation 2 for nf = l – n time steps.

• Restriction step. Evaluate y(t) for tn � t � t l using
the restriction operation in Equation 5, and esti-
mate numerically dy/dt at t = t l (or, more gener-
ally, a polynomial approximation of the short y
trajectory). We use this estimate to approximate
Equation 8’s right-hand side (RHS).

• Projective integration. Using y l and a local linear
model, extrapolate the coarse Equation 8 for-
ward in time using the estimated RHS. We des-
ignate the coarse time step to be �tc = nc�t with nc

 1, and we obtain y m = y(t m), where
tm = t l + nc�t = tn + (nf + nc)�t.

This procedure completes an integration of
Equation 8 from tn to tm with a global time step �t

= tm – tn. We repeat the procedure until we reach
the prescribed final integration time. Simply using
the estimated time derivative for the extrapolation
constitutes the projective forward Euler method;
others have constructed and discussed more gen-
eral, multistep, and even implicit forward and back-
ward projective integration methods.2,5,14,15

Fixed-point computation. We can also compute
fixed points of the reduced system in Equation 8
through short bursts of dynamic simulation,
combining it with matrix-free techniques of it-
erative linear algebra. Indeed, we can find steady
states of Equation 8 as fixed points of its coarse
time-stepper

y – ��(y) = 0, (9)

where �� (y) is the result of lifting from y, evolving
the fine-scale computation for time � and restrict-
ing back to y. Fixed-point algorithms for solving
Equation 9, such as the Newton-Raphson method,
require the repeated solution of sets of linear equa-
tions involving Equation 9’s Jacobian. Matrix-free
methods (such as Newton-Krylov-GMRES) for
solving Equation 9 use function evaluations (coarse
time-stepping) with (appropriately chosen) nearby
coarse initial conditions to estimate the action of
Equation 9’s Jacobian (its matrix-vector product
with selected vectors) without explicitly evaluating
this Jacobian. We can thus “wrap” the solution of
linear and nonlinear equations, as well as the eigen-
computations that characterize the coarse solu-
tions’ linear stability, around existing fine-scale de-
terministic codes.2,15

Limit-cycle computation. We can find a dynamical
system’s limit cycle as the solution of a fixed-
point problem similar to Equation 9:

x – �T (x) = 0,

where T is the period of the limit cycle. This is a
nonlinear eigenproblem, characterized by a one-
parameter infinity of solutions: each point on the
limit cycle satisfies this equation for the right pe-
riod. Solving this equation as a shooting boundary
value problem qualitatively corresponds to study-
ing the dynamics in terms of a Poincaré map—that
is, recording the successive points at which an
evolving trajectory crosses transversely a hyper-
plane in phase space. The limit cycle is found as a
fixed point of this Poincaré or return map.

In the presence of uncertainty, we can reasonably
consider a coarse-limit cycle of Equation 3 to be

d
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the fixed point of the following coarse Poincaré
map: an ensemble of initial conditions on a Poin-
caré hyperplane, characterized by a set of leading
gPC coefficients, which, when evolved forward in
time until each one returns to the hyperplane, re-
sult in a new ensemble with the same values of
leading gPC coefficients. We will also need to de-
termine the gPC coefficients of the ensemble of
first return times as part of the process.

Numerical Examples
We employ a continuous stirred-tank chemical re-
actor (CSTR) with a single, irreversible exothermic
reaction as our model problem. The set of two cou-
pled nonlinear ordinary governing equations takes
the following form:

(10)

Here, x1 is the conversion and x2 is the dimension-
less temperature. A. Uppal, W.H. Ray, and A.B.
Poore detail the model’s various dimensionless pa-
rameters (such as the Damkoehler number Da,
heat of reaction B, heat transfer coefficient �, acti-
vation energy �, and coolant temperature x2c) and
describe the model’s rich nonlinear dynamics.16 In
this article, we fix the parameter B = 22 and assume
uncertainty in the parameters � or Da.

Dynamical Integrations
In the first test case, we set B = 22, Da = 0.07, and
designate � to be a random variable with 10 per-
cent uncertainty—that is, � = 
��(1 + ��(�)), where

� � = 3, � = 0.1, and � is a random variable uni-
formly distributed in (–1, 1). Both the fine-scale
solutions and coarse projective integration employ
a second-order integrator. Each deterministic in-
tegration of the fine-scale model in the MC simu-
lation ensemble has the time step �t = 0.005; after
five such time steps (nf = 5) and the corresponding
restrictions, the projective time step for the coarse
integrator is �tc = 0.025 (that is, nc = 5). Figure 1a
shows in error bars the evolution of the random
solution ensemble. At the chosen parameter val-
ues, all random solutions approach a steady state,
as do the error bars. The gaps between the error-
bar clusters indicate the coarse projective integra-
tion steps, when the coarse solution jumps (is pro-
jected forward in time). Figure 1b shows a similar
result, where � = 0.3 and the uncertainty is in the
Damkoehler number Da = 
Da�(1 + ��), where

Da� = 0.07 and � = 0.1.

Figure 2 shows the evolution of x1 in three-
dimensional plots, where one axis shows the range
of the random parameter Da, and the time axes are
normalized to (0, 1). For the chosen Da ranges, the
solution might reach a steady state (Figure 2a), or
become periodic (Figure 2b). Again, the solution
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Figure 1. Uncertainty evolution for x1 in error bars. We show the
evolution of the continuous stirred-tank chemical reactor equations
using (a) 10 percent uniform uncertainty in the parameter � and (b) 10
percent uniform uncertainty in the Da number. The gaps between the
error-bar clusters indicate coarse projective integration steps.
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clusters indicate the fine-scale MC solutions, and
coarse projective integration steps occur in the gaps
between clusters.

Fixed-Point Calculations
By using a Newton method on Equation 8’s coarse
time-stepper, we can compute random stable or
unstable fixed points. Due to the small number of
coarse variables required (overall, on the order of
10 gPC coefficients), we use Newton with numer-
ical derivatives. When the number of coarse vari-
ables becomes too large for a detailed estimation of

the Jacobian, we can use matrix-free methods such
as NK-GMRES or quasi-Newton methods, such
as Broyden. Figure 3a plots the coarse fixed-point
results obtained with B = 22 and � = 
� �(1 + 0.1
�(�)), where 
� � = 3. We plot the results as a bifur-
cation diagram with respect to the Da number. The
lines denote the deterministic results for the aver-
age � = 3, with the solid line denoting stable fixed
points and the dashed line denoting unstable ones.
We plot the random solutions at various Da values
in error bars; the width of these error bars increases
close to the turning points in Da.
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Figure 3b shows the random fixed points for B =
22, � = 3, and Da = 
Da�(1 + 0.1�)—that is, with 10
percent uncertainty in the Damkoehler number
Da. We plot the data as a bifurcation diagram with
respect to the average Damkoehler number 
Da�.
Again, we denote the deterministic solutions cor-
responding to 
Da� with continuous curves and the
random solutions with error bars.

We deliberately chose the conditions in
regimes where multiplicity occurs for the deter-
ministic problem. Different solution branches for
the deterministic problem have their analogs in
different stationary ensembles for the random
problem; as the parameters approach the deter-

ministic problem’s turning points, the random
stationary ensembles are no longer well defined.
This explains the lack of random solutions closer
to the turning points in both diagrams, especially
Figure 3b. In this case, the random stationary
processes are no longer continuous in the para-
meter, and we can expect polynomial approxima-
tions to perform poorly; some have proposed
remedies involving enrichment with discontinu-
ous functions.17

Limit-Cycle Calculations
To perform limit-cycle computations, we set B =
22, � = 3, and designate Da to be a uniformly dis-
tributed random variable in (0.083, 0.084). From
deterministic analysis, we know that the CSTR sys-
tem of Equation 10 exhibits limit-cycle solutions
when 0.082 < Da < 0.085. We select our Poincaré
surface as the hyperplane (in this case, the line) of
x1 = 0.9. The numerical results show that 
x2� =
5.3376 with standard deviation �x2 = 0.0075, and
the period has mean value 
T� = 1.2284 and a stan-
dard deviation �T = 0.0032.

Figure 4a shows a correlation between the x2
value (x2(�)) and the first return time (T(�)) for the
fixed point of the coarse Poincaré map with uni-
formly distributed random Da(�) � (0.083, 0.084).
Figure 4b plots several realizations of the periodic
orbit; the time axis is normalized by T(�).

Figure 5 presents the random limit cycle as 
x1�
versus error bars of x2(�). The error-bar clusters
denote where the detailed MC computations oc-
cur, and projective integration takes place in the in-
tervals between the clusters.

I n principle, our equation-free approach
combines the simplicity (and inherent em-
barrassing parallelism) of MC simulations
with the power and convergence of

nonsampling gPC representations. Equation-
free “wrappers” have helped enable a wide vari-
ety of numerical tasks, from integration and
fixed-point computation (illustrated here) to
continuation, stability analysis, control, and op-
timization.1,2 We believe that our approach’s
nonintrusiveness could lower the “activation
barrier” in developing and implementing gPC-
based codes, thus facilitating UQ computations
in engineering practice.

Current research directions include an exten-
sion of the equation-free UQ approach to spa-
tially distributed uncertain problems and to cases
in which the fine-scale simulator is atomistic or
stochastic. Linking the approach with data analy-
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Figure 4. Oscillations under certainty. Stochastic limit-cycle solution for
Equation 10 with B = 22, � = 3, and a uniformly distributed random Da ~
(0.083, 0.084). We show (a) correspondence between random period
T(�) and x2(�), when x1(�) = 0.9 is fixed; (b) several realizations of the
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sis techniques for the selection of appropriate
macroscopic observables is also a promising re-
search direction.
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Figure 5. Oscillations under uncertainty. Phase portrait of the stochastic
limit-cycle solution for Equation 10 with B = 22, � = 3, and a uniformly
distributed random Da ~ (0.083, 0.084).


