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Abstract

We present a generalized polynomial chaos algorithm for the solution of transient heat conduction subject to un-

certain inputs, i.e. random heat conductivity and capacity. The stochastic input and solution are represented spectrally

by the orthogonal polynomial functionals from the Askey scheme, as a generalization of the original polynomial chaos

idea of Wiener [Am. J. Math. 60 (1938) 897]. A Galerkin projection in random space is applied to derive the equations

in the weak form. The resulting set of deterministic equations is subsequently discretized by the spectral/hp element

method in physical space and integrated in time. Numerical examples are given and the convergence of the chaos

expansion is demonstrated for a model problem.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Heat transfer analysis relies heavily on obtaining

accurate physical properties of the medium. In many

situations, experimental data for physical properties are

available, but there exist cases where obtaining them is a

difficult task and appropriate models have to be used.

For example, obtaining physical properties from mea-

surements for gas mixtures at high temperatures can be

difficult. Both measurement-based and model-based

physical properties are subject to errors (random, sys-

tematic and modeling errors) and determining the effect

of these errors becomes essential in heat transfer design.

In some cases, especially in complex systems, the effect

of these uncertainties can be significant. For instance, it

has been shown that the uncertainty in heat conductivity

has substantial influence on the temperature prediction

of biological bodies [24]. The resulting temperature un-

certainty is very important in treatment planning and in

designing certain clinical apparatus where even a few
* Corresponding author. Fax: +1-401-863-3369.

E-mail address: gk@cfm.brown.edu (G.E. Karniadakis).

0017-9310/$ - see front matter � 2003 Elsevier Ltd. All rights reserv

doi:10.1016/S0017-9310(03)00299-0
degrees of temperature fluctuation may cause serious

problem [7].

It is a common practice in engineering to use mean

values for design variables or parameters and then use

safety factors to specify the final design. Safety factors

tend to overspecify the equipment, increasing both

manufacturing and operating costs. Thus, there has been

recently a growing interest in probabilistic modeling for

uncertainty quantification and sensitivity analysis. Such

probabilistic modeling can be implemented by using ei-

ther a statistical approach or a non-statistical approach.

The statistical approach, e.g. Monte Carlo simulation

(MCS), employs repetitive tests over a sufficiently large

body of sampling. On the other hand, the non-statistical

approach is based upon an analytical treatment of the

uncertainty. In many cases, it has advantages over the

statistical approach in terms of computer time and in

ease of interpretation. Thus, recent research effort has

been focusing on developing efficient non-statistical

methods for uncertainty quantification.

Several non-statistical methods have been developed

with different treatment of stochastic fields. The per-

turbation method is based on the expansion of random

quantities around their mean values, and is widely used

in practice. The solution is often expressed in terms of
ed.
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Table 1

Correspondence of the orthogonal polynomials and random

variables for different Wiener–Askey chaos (N P 0 is a finite

integer)

Random Orthogonal Support
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their first- and second-moment, resulting in the so-called

�second moment analysis� [22,25,27,26,31]. Another ap-
proach is based on the manipulation of the stochastic

operator. Methods along this line of approach include

the weighted integral method [9,10] and Neumann ex-

pansion method [30,39]. In [8], a formulation based on

finite element method was proposed to �discretize� di-
rectly the random field.

A non-statistical approach, called polynomial chaos,

is based on the homogeneous chaos theory of Wiener

[33]. This method was first applied by Ghanem and

Spanos to various problems in mechanics [12–16]. It

involves a spectral expansion of random variables based

on the Hermite orthogonal polynomials in terms of

Gaussian random variables. A broader framework,

called the �generalized polynomial chaos� or the �Wiener–
Askey chaos�, was proposed in [36]. This method em-
ploys more orthogonal polynomials from the Askey

scheme [1] as the expansion basis to represent general

non-Gaussian processes more efficiently. It includes the

classical Hermite polynomial chaos as a subset and has

been applied to various problems [37,35,38].

The objective of this paper is to model transient heat

conduction with uncertain inputs by the generalized

polynomial chaos expansion. In particular, we focus on

media with random heat conductivity and capacity.

The corresponding steady-state problem has been

studied both theoretically and numerically [2–5,8,17]. A

number of papers have addressed the unsteady prob-

lems, using perturbation methods [11,18–20] and the

classical Hermite polynomial chaos in one physical di-

mension [13].

In this paper, we solve the two-dimensional unsteady

heat transfer problem by generalized polynomial chaos

expansion, where the uncertainties can be introduced

through heat conductivity, heat capacity, source terms,

boundary/initial conditions or some combinations. In

the next section, we review the concept of the general-

ized polynomial chaos, and in Section 3 the Karhunen–

Loeve expansion for representation of the stochastic

inputs. In Section 4, we apply the expansion to the un-

steady heat conduction equation. Numerical results are

presented in Section 5, and we conclude the paper with a

brief discussion.

variables n polynomials

fUng
Continuous Gaussian Hermite ð
1;1Þ

Gamma Laguerre ½0;1Þ
Beta Jacobi ½a; b�
Uniform Legendre ½a; b�

Discrete Poisson Charlier f0; 1; 2; . . .g
Binomial Krawtchouk f0; 1; . . . ;Ng
Negative

binomial

Meixner f0; 1; 2; . . .g

Hypergeo-

metric

Hahn f0; 1; . . . ;Ng
2. Generalized polynomial chaos (Wiener–Askey chaos)

The generalized polynomial chaos expansion is a

representation of a function f 2 L2ðXÞ where X is the

properly defined probability space. It employs the hy-

pergeometric orthogonal polynomials from the Askey

scheme in the random space as the trial basis to expand

stochastic processes. The Askey scheme classifies the

hypergeometric orthogonal polynomials and indicates

the limit relations between them. For a detailed account
of definitions and properties of hypergeometric poly-

nomials, see [1]; for the limit relations of the Askey

scheme, see [23] and [29].

The original polynomial chaos [33,34] employs the

Hermite polynomials in the random space as the trial

basis. Cameron and Martin [6] proved that such ex-

pansion converges to any second-order processes in the

L2 sense. The generalized polynomial chaos, or the
Wiener–Askey chaos, includes more types of orthogonal

polynomials from the Askey scheme, and the classical

Hermite polynomial chaos is a subset.

The representation of a general second-order random

process X ðxÞ by generalized polynomial chaos can be
expressed as

X ðxÞ ¼ c0W0 þ
X1
i1¼1

ci1W1 ni1ðhÞ
� �

þ
X1
i1¼1

Xi1
i2¼1

ci1i2W2 ni1ðhÞ; ni2ðhÞ
� �

þ
X1
i1¼1

Xi1
i2¼1

Xi2
i3¼1

ci1i2i3W3 ni1ðhÞ; ni2ðhÞ; ni3ðhÞ
� �

þ � � � ; ð1Þ

where Wnðni1 ; . . . ; nin Þ denotes the generalized polynomial

chaos of order n in terms of the multi-dimensional ran-
dom variables n ¼ ðn1; . . . ; nn; . . .Þ. Note that this is an
infinite summation in the infinite dimensional space of n.

The expansion bases fWng are multi-dimensional hy-
pergeometric polynomials defined as tensor-products of

the corresponding one-dimensional polynomials bases

f/kg
1
k¼0, which form an orthogonal basis in L2ðRÞ. The

corresponding type of polynomials fWg and their asso-
ciated random variables n are listed in Table 1.
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For notational and computational convenience, Eq.

(1) is often rewritten, according to some numbering

scheme, in a form with only one index as

X ðxÞ ¼
X1
j¼0

ajUj nðxÞð Þ; ð2Þ

where there is a one-to-one correspondence between the

coefficients and basis functions in (1) and (2). The family

fUng is an orthogonal basis in L2ðXÞ with orthogonality
relation

hUiUji ¼ hU2i idij; ð3Þ

where dij is the Kronecker delta and h�; �i denotes the
ensemble average which is the inner product in the

Hilbert space of the variables n

hf ðnÞgðnÞi ¼
Z

f ðnÞgðnÞW ðnÞdn; or

hf ðnÞgðnÞi ¼
X

n

f ðnÞgðnÞW ðnÞ ð4Þ

in the discrete case. Here W ðnÞ is the weighting function
corresponding to the Askey polynomials chaos basis

fUig.
In the Wiener–Askey chaos expansion, the type of

the orthogonal polynomials fUng is chosen in such a
way that their weighting function has the same form as

the probability function of n. As an example, we show

the Wiener–Jacobi chaos in one dimension. The one-

dimensional nth-order Jacobi polynomials are defined as

P ða;bÞ
n ðnÞ ¼ ð
1Þn

2nn!
ð1
 nÞ
að1þ nÞ
b

� dn

dxn
ð1
h


 nÞnþað1þ nÞnþb
i
; 
1 < n < 1;

ð5Þ

where parameter a, b > 
1 are real numbers. The
weight function in the orthogonality relation (4) is

W ðn; a; bÞ ¼ ð1
 nÞað1þ nÞb

2aþbþ1Bða þ 1; b þ 1Þ ; 
1 < n < 1; ð6Þ

where Bðp; qÞ ¼ CðpÞCðqÞ=Cðp þ qÞ is the beta function.
It can be seen that this weighting function is in the same

form as the probability density function (PDF) of a b
random variable defined in ð
1; 1Þ. The first few mem-
bers of the one-dimensional Wiener–Jacobi chaos are

U0 ¼ 1; U1 ¼
a þ b þ 2

2
n þ a 
 b

2
; . . . ð7Þ

When a ¼ b ¼ 0, the Wiener–Jacobi chaos reduces to
Wiener–Legendre chaos with weighting function

W ðnÞ ¼ 1=2, 
1 < n < 1, which is the PDF of the uni-
form random variable n � Uð
1; 1Þ. Within the frame-
work of generalized polynomial chaos, one has more

freedom to represent general non-Gaussian stochastic
processes more efficiently. For more details about gen-

eralized polynomial chaos, see [35,36,37].
3. The Karhunen–Loeve decomposition

The Karhunen–Loeve (KL) expansion is another way

of representing a random process [28]. It is based on the

spectral expansion of the correlation function of the

process. It is particularly useful for the generalized poly-

nomial chaos expansion as it provides ameans of reducing

dimensionality in random space. Let us denote the pro-

cess by hðx;xÞ and its correlation function by Rhhðx; yÞ,
wherex and y are the spatial or temporal coordinates. The

KL expansion then takes the following form:

hðx;xÞ ¼ �hhðxÞ þ
X1
i¼1

ffiffiffiffi
ki

p
/iðxÞniðxÞ; ð8Þ

where �hhðxÞ denotes the mean of the random process, and
niðxÞ forms a set of uncorrelated random variables.

Also, /iðxÞ and ki are the eigenfunctions and eigenvalues

of the correlation function, respectively, i.e.,Z
Rhhðx; yÞ/iðyÞdy ¼ ki/iðxÞ: ð9Þ

In practice, a finite-term expansion of (8) is employed,

where the summation is truncated at finite number n.
The number of terms n is determined by the decay of
eigenvalues from (9) to ensure the truncation error is

acceptably small. Subsequently, this results in an n-
dimensional polynomial chaos expansion, with each

term from (8) corresponding to the linear (first-order)

terms in the chaos expansion. Among other possible

decompositions of a random process, the KL expansion

is optimal in the sense that the mean-square error of the

finite-term representation is minimized. It provides an

effective way to represent the input random processes

with known correlation function.
4. Governing equations and solution procedure

The unsteady stochastic heat equation for a spatially

varying medium, in the absence of convection, is

cðx;xÞ oT
ot

¼ r � ½kðx;xÞrT � þ f ðt; x;xÞ;

ðx;xÞ 2 D� X ð10Þ

subjected to the following initial and boundary condi-

tions

T ð0; x;xÞ ¼ T0ðx;xÞ; ð11Þ

T ðt; x;xÞ ¼ Tb; x 2 oD1; 
k oT
on

ðt; x;xÞ ¼ qb;

x 2 oD2; ð12Þ
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where D is a bounded domain in Rd (d ¼ 1; 2; 3) and X is
a probability space. The temperature T � T ðt; x;xÞ and
heat source f ðt; x;xÞ are R-valued functions on

½0;1� � D� X. The initial condition T0 and the volu-
metric heat capacity of the medium c are R-valued

functions on D� X, and kðx;xÞ ¼ ½kijðx;xÞ� is the con-
ductivity tensor defined on Dd�d � X. oD1 and oD2 de-
note the subsets of the boundary with fixed temperature

and heat flux, respectively. We further assume that the

medium is isotropic with kiiðxÞ ¼ kðxÞ, 8i 2 ½1; d� and
kij ¼ 0, i 6¼ j. The governing equation (10) can be re-
written as

cðx;xÞ oT
ot

¼ r � ½kðx;xÞrT � þ f ðt; x;xÞ;

ðx;xÞ 2 D� X ð13Þ

with initial condition (11) and boundary condition (12).

Note this assumption on k simplifies the demonstration

of the algorithm, but does not limit its applicability.

By using the generalized chaos expansion, we expand

the random processes in the system of (13), (11) and (12)

in the following form:

kðx;xÞ ¼
XM
i¼0

kiðxÞUiðnÞ;

T ðt; x;xÞ ¼
XM
i¼0

Tiðt; xÞUiðnÞ;

f ðt; x;xÞ ¼
XM
i¼0

fiðt; xÞUiðnÞ: ð14Þ

Note here we have replaced the infinite summation of n

in infinite dimensions in Eq. (2) by a truncated finite-

term summation of fUg in the finite dimensions of
n ¼ ðn1; . . . ; nnÞ. The dimensionality n of n is determined
by the random inputs. The random parameter x is ab-
sorbed into the polynomial basis UðnÞ, thus the expan-
sion coefficients ki, Ti and fi are deterministic. Similar
expansions are applied to other quantities c, T0, Tb and

qb. By substituting the expansion into governing equa-

tion (13), we obtain

XM
i¼0

ciðxÞUi

XM
j¼0

oTj

ot
Uj

¼ r �
XM
i¼0

kiðxÞUir
XM
j¼0

Tjðt; xÞUj

 !" #
þ
XM
i¼0

fiðt; xÞUi:

ð15Þ

A Galerkin projection of the above equation onto each

polynomial basis fUig is then conducted in order to
ensure that the error is orthogonal to the functional

space spanned by the finite-dimensional basis fUig. By
projecting with Uk for each k ¼ f0; . . . ;Mg and em-
ploying the orthogonality relation (3), we obtain for

each k ¼ 0; . . . ;M
XM
i¼0

XM
j¼0

ciðxÞ
oTj

ot
eijk ¼

XM
i¼0

XM
j¼0

r � kiðxÞrTjðt; xÞ
 �

eijk

þ fkðt; xÞhU2ki; ð16Þ

where eijk ¼ hUiUjUki. Together with hU2i i, the coeffi-
cients eijk can be evaluated analytically from the defini-

tion of Ui. By defining

bjkðxÞ ¼
XM
i¼0

ciðxÞeijk; sjkðxÞ ¼
XM
i¼0

kiðxÞeijk

we can rewrite the above equation as

XM
j¼0

bjkðxÞ
oTj

ot
ðt; xÞ ¼

XM
j¼0

r � sjkðxÞrTjðt; xÞ
 �

þ fkðt; xÞhU2ki 8k 2 ½0;M �: ð17Þ

Eq. (17) is a set of (M þ 1) coupled partial differential
equations. The total number of equations (M þ 1) is
determined by the dimensionality of the chaos expansion

(n) and the highest order (p) of the polynomials fUg,
where

ðM þ 1Þ ¼ ðnþ pÞ!=ðn!p!Þ: ð18Þ

The initial condition (11) and boundary condition (12)

are expanded in the same form as (14). By matching the

coefficients in the expansions, we obtain the initial

conditions and boundary conditions for each expanded

equation in (17) to complete the system.

By defining BðxÞ ¼ ½bijðxÞ�, SðxÞ ¼ ½sijðxÞ� with the
indices running through ½0; . . . ;M � and solution vector
Tðt; xÞ ¼ ½T0ðt; xÞ; T1ðt; xÞ; . . . ; TM ðt; xÞ�t, Eq. (17) can be
written more concisely as

BðxÞ oT
ot

ðt; xÞ ¼ r � SðxÞrTðt; xÞ½ � þ Fðt; xÞ; ð19Þ

where FðxÞ ¼ ½f0hU20i; . . . ; fM hU2M i�
t
. Here we have used

the symmetry of matrices BðxÞ and SðxÞ, i.e.

BðxÞ ¼ BtðxÞ and SðxÞ ¼ StðxÞ. It can be seen that each
expansion mode of the solution Tiðt; xÞ, i 2 ½0; . . . ;M � in
(19) is coupled on the left-hand side and the right-hand

side. In order to solve the equation efficiently, we invert

the matrix BðxÞ such that DðxÞ � ½dijðxÞ� ¼ B
1ðxÞ and
rewrite (19) as

oT

ot
ðt; xÞ ¼ DðxÞr � SðxÞrTðt; xÞ½ � þDðxÞFðt; xÞ ð20Þ

or, in index form, 8k 2 ½0; . . . ;M �

oTk

ot
ðt; xÞ ¼

XM
i¼0

XM
j¼0

dkjðxÞr � SjiðxÞrTiðt; xÞ
 �

þ
XM
i¼0

dkiðxÞfiðt; xÞhU2i i: ð21Þ

The left-hand side is then decoupled and the equations

can be integrated successively in time. To avoid the se-



Table 2

Coefficients in the mixed explicit–implicit integration (23) (see

[21], chapter 8)

Coefficient First-order Second-order Third-order

c0 1 3/2 11/6

a0 1 2 3

a1 0 )1/2 )3/2
a2 0 0 1/3

b0 1 2 3

b1 0 )1 )3
b2 0 0 1
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vere restriction on the size of time step, a mixed explicit–

implicit method is employed where we keep the diagonal

terms on the right-hand side implicit and the others

explicit. In addition, we employ a high-order stiffly-sta-

ble integration scheme. To illustrate the algorithm, we

denote the first term on the right-hand side of Eq. (21) as

XM
i¼0

XM
j¼0

dkjðxÞr � ½SjiðxÞrTiðt; xÞ�

¼
XM
j¼0

dkjðxÞr � ½SjkðxÞrTkðt; xÞ�

þ
XM
j¼0

XM
i6¼k

dkjðxÞr � ½SjiðxÞrTiðt; xÞ�

� R1k ðt; xÞ þ R2k ðt; xÞ: ð22Þ
The scheme, in matrix form, can be written as

c0T
nþ1ðxÞ 


PJ
1
q¼0 aqT

n
qðxÞ
Dt

¼ Rnþ1
1 ðxÞ þ

XJ
1
q¼0

bqR
n
q
2 ðxÞ þDðxÞFnþ1ðxÞ; ð23Þ

where J is the order of accuracy in time and the super-
scripts (nþ 1) and (n
 q) denote the time level tnþ1 and
tn
q, respectively. The coefficients in the scheme are listed

in Table 2 for different temporal orders. Due to the di-

agonal dominance of matrix SðxÞ, the restriction on time
step is significantly relieved. The equations in (23) are

deterministic and can be discretized by any conventional

method, e.g. finite elements, finite difference, etc. In this

paper we employ the spectral/hp element method to

obtain high accuracy in physical space [21]. Specifically,

the Jacobi polynomials, similar to the ones used in the

aforementioned chaos expansion corresponding to beta

distribution, are used for spatial discretization. This

produces a unified discretization in both the physical

space and the random space.

5. Numerical results

In this section, we present numerical results of the

generalized polynomial chaos expansion to transient
heat transfer problems. We first consider a one-dimen-

sional model problem where the exact solution is avail-

able, and subsequently we present a practical model in

two dimensions of random heat conduction in electronic

cooling.

5.1. One-dimensional model problem

Consider the following problem

cðx;xÞ oT
ot

¼ o

ox
kðx;xÞ oT

ox
ðt; x;xÞ

� �
þ f ðt; x;xÞ;

x 2 ½0; 1�; ð24Þ

with boundary conditions and initial condition, respec-

tively

T ðt;0;xÞ ¼ T ðt;1;xÞ ¼ cos½�ðxÞt�; T ð0;x;xÞ ¼ cosð2pxÞ:

The random heat conductivity and capacity have the

forms

kðx;xÞ ¼ 1þ �ðxÞ½1þ �ðxÞ�x; cðx;xÞ ¼ 2p½1þ �ðxÞ�;
ð25Þ

where �ðxÞ is a random variable, and kðx;xÞ > 0,
cðx;xÞ > 0. The exact solution to this problem is
Teðt; x;xÞ ¼ cos½�ðxÞt þ 2px�; ð26Þ

subject to heat source f ðt; x;xÞ ¼ 4p2kðx;xÞTeðt; x;xÞ.
We define two error measures for the mean and variance

of the numerical solution, respectively

emeanðt; xÞ ¼ jT pðt; xÞ 
 T eðt; xÞj;
evarðt; xÞ ¼ jrpðt; xÞ 
 reðt; xÞj;

where T ðt; xÞ ¼ E½T ðt; x;xÞ� is the mean field and

rðt; xÞ ¼ E½ðT ðt; x;xÞ 
 T ðt; xÞÞ2� is the variance. Here E
is the expectation operator. The subscripts �e� and �p�
denote the exact solution and numerical solution by

polynomial chaos of order p, respectively. Specifically,
we examine the L1 norm (in physical space) of these two

error measurements at time t ¼ 1 as the polynomial
order p increases.
We assume �ðxÞ ¼ rnðxÞ in Eq. (25), where nðxÞ is a

random variable with standard deviation r. Two cases
are demonstrated here: nðxÞ 2 Uð
1; 1Þ is a (continu-
ous) uniform random variable in ð
1; 1Þ; and nðxÞ is a
(discrete) binomial random variable with probability

function f ðx; q;NÞ ¼ N
k

� �
qkð1
 qÞN
k

where 06 q6 1,
k ¼ 0; 1; . . . ;N . The corresponding generalized polyno-
mial chaos are, according to Table 1, Wiener–Legendre

chaos and Wiener–Krawtchouk chaos, respectively. In

Fig. 1 the error convergence of the two Wiener–Askey

chaos is shown for different parameters. It can be seen

on the semi-log scale that the numerical solutions con-

verge exponentially fast as the expansion order p in-
creases, for both mean and variance. The exponential
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Fig. 1. Convergence of Wiener–Askey chaos for the one-dimensional model problem at t ¼ 1: (a) uniform random input and Wiener–
Legendre chaos and (b) binomial random input and Wiener–Krawtchouk chaos.

4686 D. Xiu, G.E. Karniadakis / International Journal of Heat and Mass Transfer 46 (2003) 4681–4693
convergence rate is realized even for relatively large in-

put uncertainty such as r ¼ 0:4, which is outside the
typical effective range of perturbation methods for sto-

chastic problems.

5.2. Random heat conduction in an electronic chip

In this section, we consider the heat conduction in an

electronic chip subject to uncertainties in heat conduc-

tivity and capacity (see Eq. (13)). The computational

domain D is shown in Fig. 2 along with the spatial

discretization. The boundary of the domain consists of

four segments: the top CT, the bottom CB, the two sides
CS and the boundaries of the cavity CC, which has a
depth of 0.6. Adiabatic boundary conditions are pre-

scribed on CB and CS. The cavity boundary CC is ex-
posed to heat flux qbjCC ¼ 1. Two types of conditions on
the top CT are considered: one is maintained at constant
temperature T ¼ 0 (case 1) and the other is adiabatic
(case 2). Due to non-zero net heat flux into the domain,

there is no steady-state in case 2. The initial condition is
x

y

-3 -2 -1 0

-0.5

0

0.5

1

1.5

T
Γ

Γ

Γ

Γ

Γ

S

B

C
C

A

B

Fig. 2. Schematic of the domain of the chip geometry. It c
zero everywhere. For the spectral/hp element solver in

space, 16 elements are used in the domain, as shown in

Fig. 2. Within each element, sixth-order (Jacobi) poly-

nomials are employed. Numerical tests indicate that this

is sufficient to resolve the problem in physical space. Six

reference points are placed at the vertices of some cho-

sen elements in the domain, as shown in Fig. 2. We are

interested in the stochastic solution at these points and

their cross-correlation coefficients. For example, the

cross-correlation coefficient between reference point A
and B is

qABðtÞ

¼E½ðT ðt;xA;xÞ
E½T ðt;xA;xÞ�ÞðT ðt;xB;xÞ
E½T ðt;xB;xÞ�Þ�
rT ðt;xAÞrT ðt;xBÞ

;

ð27Þ

where rT ðt; xÞ is the standard deviation of the solution
T ðt; x;xÞ.
The uncertain heat conductivity and capacity of the

medium are random fields, with mean fields �kkðx; y;xÞ ¼
1 2 3

Γ

Γ

Γ

S

B

C

C D

E

F

onsists of 16 spectral elements of order 6 (7 points).
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1, �ccðx; y;xÞ ¼ 1 and auto-correlation functions of the
form

CðrÞ ¼ r
b
K1

r
b

� �
; ð28Þ

where K1 is the modified Bessel function of the second
kind with order 1, b scales as correlation length and r is
the distance between two points. For any given point in

the random field, this type of correlation function takes

into account the influence of its nearest neighbors in all

directions and can be considered the �elementary� cor-
relation in two dimensions [32]. Here we employ this

correlation function and apply the KL decomposition of

Eq. (8), following a similar procedure as in [35]. For

demonstration purposes, relatively strong auto-correla-

tions are assumed for k and c with parameter b ¼ 20,
which results in fast decay of the eigenvalues from the

KL decomposition. Subsequently, we employ the first

three eigenmodes for k and the first eigenmode for c, and
assume the random variables in (8) are uniform random

variables. In Fig. 3, we plot the first two eigenmodes of

the KL decomposition resulted from the numerical

eigensolution of the Bessel type correlation function

(28). We further assume zero cross-correlation between k
and c, with uncertain intensity of rk ¼ rc ¼ 0:2. This
results in a four-dimensional (n ¼ 4) Wiener–Legendre
chaos expansion, with three dimensions from k and one
from c. Third-order (p ¼ 3) Legendre chaos expansion is
used. Resolution checks indicate that this is sufficient to

resolve the problem in random space. For n ¼ 4 and
((a)

Fig. 3. Eigenmodes of the correlation field: (a) the fi

(a) (b)

Fig. 4. Contours of temperature distribution in the electronic chip at
p ¼ 3, the total number of chaos expansion terms is 35
(see Eq. (18)).

We first consider case 1, where the temperature at the

top boundary is maintained at TbjCT ¼ 0. In this case, the
temperature reaches steady-state. In Fig. 4 the contours

of the stochastic solution of the temperature field, in-

cluding the mean and standard deviation, are plotted. It

is seen that the largest output uncertainty, indicated by

the standard deviation, occurs near the corners between

the cavity and the bottom boundary. In Fig. 5, we

show the evolution of stochastic solution at the reference

points, with mean on the left and COV (coefficient of

variance) defined as COVðx; tÞ ¼ rT ðx; tÞ=E½T ðx; t;xÞ� on
the right. We observe that the solution reaches steady-

state quickly and there is a non-negligible response in

COV at the early transient stage. The time evolution of

cross-correlation coefficients between reference point A
and the other points is shown in Fig. 6. It is seen that all

the points except point B are negatively correlated with
point A, and the cross correlation between A and B is
weak. Note that from the definitions, the COV and

cross-correlation coefficients are not defined at t ¼ 0, as
our initial condition is zero everywhere. Thus in the

following, the value of these coefficients is not plotted

near t ¼ 0.
For the second case, we consider the top boundary as

adiabatic. Due to the net inward heat flux from the

cavity boundary, the temperature field will keep in-

creasing and thus there is no steady-state. The equation

is integrated to t ¼ 1 and the contours of mean field and
2
b)

rst eigenmode and (b) the second eigenmode.

steady-state (case 1): (a) mean field and (b) standard deviation.
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standard deviation field are shown in Fig. 7. It is seen

that the variation of the standard deviation across the

width of the domain is small and the maximum value is

along the vertical center line. This is qualitatively dif-
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Fig. 7. Contours of temperature distribution in the electronic chip (u

deviation.
ferent from the steady-state solution of case 1. The so-

lutions at reference points A–F are plotted in Fig. 8. It
can be seen that while the mean temperature keeps

growing over time, the COVs of temperature approach

steady-state. Relatively strong variation in COV is again

visible at the early transient stage. Note that the refer-

ence point F , which has the highest mean temperature, is
the least sensitive to the input uncertainty. Its COV

reaches steady-state very fast with value less than 10%.

In Fig. 9, the cross-correlation coefficients of reference

points B–F with respect to point A, are plotted. Again
the statistics approach steady-state over time. In con-

trast to the result from case 1 in Fig. 6, all points are

positively correlated to point A with strong correlation.
In Fig. 10, the evolution of temperature at reference

points are plotted in error bars, with the lines centered at

the mean values and the length of the bars equal to two

standard deviations (one up and one down).

MCS were also conducted, for both cases, to validate

the results by polynomial chaos expansion. For case 1

(steady problem) we conducted 20,000 realizations. For

case 2 (unsteady problem) we employed 150,000 real-

izations due to the shorter integration interval in time

(t ¼ 1). In Fig. 11, we show the evolution of solution
1
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statistics at some reference points. On the left, the cross-

correlation coefficients at reference points A and B for
case 1 are plotted. The integration was conducted up to

t ¼ 20 when the solutions reach steady-state, and we
show the close-up view up to t ¼ 6 to focus on the early
transient state. It can be seen that the results between

MCS and polynomial chaos agree well; both reveal the

negative cross-correlation between points A and C. The
agreement between other reference points is equally

good and thus it is not shown here. On the right of Fig.

11, we show, for case 2, the evolution of COVs at ref-

erence points A and D (note in this case, point D has the
maximum response in COV). Again the results of MCS

(150,000 realizations) agree well with those of chaos

expansion. Oscillations in MCS result can be seen during
the early sharp transition of point D. Good agreement is
obtained for the other statistics, e.g. the mean, standard

deviation and cross-correlation, and thus they are not

shown here.

Another issue we are interested in is the individual

effect of the uncertainty in k and c on the output for the
unsteady case (case 2). Two simulations are performed

with one having random conductivity k only and the
other random heat capacity c only. All other parameters
are the same as those in case 2. In Fig. 12 we plot the

evolution of temperature COV at the reference points,

with random capacity c only (left) and random con-

ductivity k only (right). It can be seen that the COVs of
the random capacity only case are smaller than those of

random conductivity only, indicating the uncertainty in

heat conductivity has more influence on the output than

that in heat capacity, for this particular problem.

Comparison on the cross-correlation coefficients are

shown in Fig. 13, where we observe a stronger correla-

tion for the random capacity only case. Note that for

this unsteady problem where the temperature grows

exponentially fast, the influence of heat capacity can be

much more substantial if its probability distribution has

unbounded support, e.g. Gaussian distribution. This

was illustrated for a one-dimensional heat conduction

problem in [13], and we have verified the results inde-

pendently.
6. Summary

We have developed a stochastic spectral method to

model uncertainty in time dependent heat conduction

problems. The generalized polynomial chaos we intro-

duced includes the original polynomial chaos, the
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Hermite chaos, as a subset, and is an extension of the

original chaos idea of Wiener [33] and of the work of

Ghanem and Spanos [16]. The important feature of the

new broader framework is that it incorporates different
types of chaos expansion corresponding to several im-

portant distribution functions, including some discrete

distributions which cannot be readily handled by the

original polynomial chaos directly.
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We have applied the generalized polynomial chaos to

the solution of unsteady heat conduction problems, as a

natural extension of our earlier work on steady-state

diffusion problems [35]. We have shown that, when the

appropriate chaos expansion is chosen according to the

random input, the generalized polynomial chaos solu-

tion converges exponentially fast for model problem.

This is in accordance with the result of [36]. Specifically,

the examples presented here employ the random distri-

butions with bounded support (uniform and binomial),

so that the physical properties (heat conductivity and

capacity) do not have negative values with non-zero

probability. The algorithm is further applied to a more

practical problem of the heat conduction of an electronic

chip. Convergent results were obtained by third-order
chaos expansion and various statistics are examined

accordingly. MCS were conducted to validate the results

by chaos expansion. At least 20,000 realizations were

needed to obtain converged MCS results that agree well

with those of chaos expansion. The cost of chaos ex-

pansion scales linearly with respect to the total number

of expansion. For this particular problem, 35 terms were

used and this resulted in more than 500 times of speed-

up compared to MCS (20,000/35). For the steady-state

problem (case 1), the speed-up is even more (�150,000/
35) for comparable accuracy. On the other hand, the

cost of the generalized polynomial chaos is about the

same as that of perturbation methods. However, high-

order perturbation methods are difficult to implement

and they do not guarantee convergence.
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The efficiency of the chaos expansion is, however,

problem specific and depends greatly upon the dimen-

sionality of the random space. Although Karhunen–

Loeve decomposition, among other possible techniques,

can be used to reduce the dimensionality, it can be large

for systems with very short correlation length, e.g., the

white noise. To this end, the number of expansion terms

may be very large, thus reducing the efficiency of the

chaos expansion drastically. This problem deserves fur-

ther research.
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