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We present a semi-Lagrangian method for advection—diffusion and incompress-
ible Navier—Stokes equations. The focus is on constructing stable schemes of second-
order temporal accuracy, as this is a crucial element for the successful application
of semi-Lagrangian methods to turbulence simulations. We implement the method
in the context of unstructured specthgl/element discretization, which allows for
efficient search-interpolation procedures as well as for illumination of the nonmono-
tonic behavior of the temporal (advection) error of the fofgAt + AXA—TI). We
present numerical results that validate this error estimate for the advection—diffusion
equation, and we document that such estimate is also valid for the Navier—Stokes
equations at moderate or high Reynolds number. Two- and three-dimensional lami-
nar and transitional flow simulations suggest that semi-Lagrangian schemes are more
efficient than their Eulerian counterparts for high-order discretizations on nonuni-
form gl’idS. (© 2001 Academic Press

1. INTRODUCTION

The case against direct numerical simulation of turbulent flows (DNS) at high Reynol
number R is often made based on the enormous amount of spatial scales that need t
resolved. Indeed, simple estimates based on the Kolmogorov dissipative length scale sut
that the required number of degrees of freedom scaRe¥$ in three dimensions [17].
What is not factored, however, in such an estimate is the computational cost associ
with the time-integrationof the Navier—Stokes equations, which in practice, may be th
prohibitive factor. After all, in a parallel computation, the spatial resolution requirements c
be alleviated by domain decomposition whereas the time-stepping cost cannot be avoi

To illustrate the current inefficiency of time-discretization, let us consider the ofte
used semi-implicit Eulerian scheme, where advection is treated explicitly. The maximi
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allowable time step is dictated by th#L number, which is typically of order one, and thus

At £
CFL X W

Here L is an integral length scale, is a characteristic velocity scale, e.g., tinesvalue,
and N¢ represents the scaling of the maximum eigenvalue associated with the spec
discretization, withN the total number of nodes in one dimension. For example, for
Fourier discretizationr = 1; for Chebyshev discretization (used often in DNS of wall-
bounded turbulence) = 2; and for spectrdt/p element methods ~ 3/2 (see [18], Ch. 6).
We want to compare this time step to the Kolmogorov time scale

T =+ (WL/ud).

To this end, we recall that according to Kolomogorov theory valid at high Reynolds humb
Re in order to resolve the Kolmogorapatial length scale, we need to employ approxi-
mately

N ~ Re¥/*

nodes per each spatial direction. Using these estimates, we can obtain the ratio of
maximum allowable time step to Kolmogorov's time scale, i.e.,

Alort | Rd2 1 o Re/24, @)
T N«

Itis clear from Eq. (1) that at Reynolds number of 10,000, the maximum allowable tir
step can be one order & 1) to four orders¢ = 2) of magnitude smaller than themporal
Kolmogorov scale. Therefore, in magbectralDNS ofinhomogeneoutirbulence (where
a > 3/2), there is aruneven distribution of resolutian space and time, with the smallest
spatial scale approximately matched but with the temporal scale over-resolved by at |
two to three orders of magnitudeThis inefficiency of currently employed semi-implicit
schemes for DNS of inhomogeneous turbulence has been recognized before, and atte
have been made to employ fully implicit schemes. However, this requires Newton iterati
and nonsymmetric solvers that render the overall approach inefficient.

Progress can be made by employing semi-Lagrangian time-discretization, which cc
increase significantly the maximum allowable time step while maintaining the efficiency
symmetric solvers. The semi-Lagrangian approach has long been used in meteorolog
numerical weather prediction, where the use of a large time step is essential for efficie
This approach has been introduced at the beginning of the 1980s [31], and the basic
is to discretize the Lagrangian derivative of the solution in time instead of the Euleri
derivative. It involves backward time integration of a characteristic equation to find t
departure point of a fluid particle arriving at an Eulerian grid point. The solution value
the departure point is then obtained by interpolation. There is no mesh deformation a
Lagrangian methods because the “arrival points” employed coincide with the grid poir

20ne could argue that discretization in space is typically high order but in time is low order; however, e\
with this factor taken into account the uneven distribution argument is still valid.
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However, there may be significant interpolation cost to obtain the solution values at
“departure points.”

The cost-effectiveness of semi-Lagrangian advection in the context of geophysical flc
was studied systematically by Bartello and Thomas [4]. They found that there is signific
computational overhead and that the efficiency of the semi-Lagrangian approach dept
on the specific flow problem. For example, for quasi-geostrophic turbulence, the efficier
is high but for the Kolmogorov cascade the semi-Lagrangian scheme is efficient only
very high spatial resolutions. This result is consistent with the aforementioned analysis (e
case of uniform discretizatios = 1) if we take into account the computational overheac
associated with semi-Lagrangian advection. The analysis in [4] involves homogene
turbulence only, and comparisons with a relatively low-order Eulerian scheme with at m
cubic spline interpolations. The method we develop here targets complex-geometry fl
with truly high-order spatial discretizations that require nonuniform grids. Our experien
with such flows using Eulerian time stepping is that they require time steps much sma
than what accuracy considerations dictate; e.g., see [6, 22].

The semi-Lagrangian method depends strongly on the spatial discretization. Specific:
its accuracy is particularly sensitive to the method of backward integration of the char
teristic equation as well as the interpolation scheme to evaluate the solution at depat
points. This has been shown by Falcone and Ferretti [9], who conducted a rigorous a
ysis of the stability and convergence properties of semi-Lagrangian schemes. Typic:
the backward integration is performed by employing second-order schemes (i.e., midp
rule), explicitly or implicitly. In [15] and [21], the fourth-order Runge—Kutta method wa:
employed but their results did not show any improvement over the second-order scher
This finding is perhaps due to low spatial resolution used in these works, which is cruc
for the overall accuracy of semi-Lagrangian schemes. It has been shown that the simj
semi-Lagrangian scheme with linear interpolation is equivalent to the classical first-or
upwinding scheme [27], which is excessively dissipative (see [31] and [37]). A popul
and effective choice for interpolation methods in previous works has been the cubic sp
methods [20]; see also [4].

An intriguing finding is that the error of semi-Lagrangian schemes in solving advectiol
diffusion equationglecreasesas the time step increases in a certain range of paramete
and this has initially led to some erroneous justifications [24, 25]. The error analysis in
showed that the overall error of semi-Lagrangian method is inde¢donotonic with
respect to time stept, and, in particular, it has the form

. AxPH
@ (At + At ) ,
wherek refers to the order of backward time integration @tb the interpolation order;
similar conclusions had been reached earlier in [23]. Another interesting result was obtai
by Giraldo [13] who combined the semi-Lagrangian approach with spectral element ¢
cretization for the advection—diffusion equation. He found that for polynomial d*der4
the combined scheme exhibits neither dissipation nor dispersion errors. This importan
sult has to also be factored into any cost-effectiveness analysis regarding semi-Lagran
advection.

The extension of semi-Lagrangian method to the solution of Navier—Stokes equations!
presented in the pioneering work of Pironneau (1982) [28]. He demonstrated the nonlir
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stability of the method even as the viscosity approaches to zero. He also obtained subop
error estimates, which were improved later lyfi §1988) [38]. Most of the previous analysis
and numerical implementations in CFD applications have employed the Taylor—Hood fir
element and are first-order in time [2, 15, 29]. In a more recent paper [1], an error anal
was conducted for the fractional-step method for incompressible Navier—Stokes equati
In particular, the pressure—correction version of the fractional scheme with first-order ti
stepping was analyzed and an extension to a second-order was proposed but not analyze
attemptat a second-order scheme was made in [2] but no convergence rates were docurr
in that work. Moreover, results presented for the standard benchmark problem of driv
cavity flow are markedly different than accepted results in the literature, possibly becaus
an erroneous treatment of the pressure term. A higher-order temporal discretization, sir
to the stiffly-stable scheme proposed in the present paper, was proposed independently
for advetion problems.

In this paper, we present a semi-Lagrangian spebpatlement (SLSE) method for
the two- and three-dimensional incompressible Navier—Stokes equations, inspired by
results of Giraldo [13] for the advection—diffusion equation. In particular, we apply tt
newermodalversion of the spectral element method [18] to the advection diffusion; ul
structured discretizations are involved consisting of triangles and tetrahedra. We stud
detail the dependence of the overall accuracy upon the time step, demonstrating the
monotonic trends suggested by the theory of Falcone and Ferretti [9]. We then extenc
semi-Lagrangian spectrhip element method to incompressible Navier—Stokes equatiol
targeting a high-order temporal discretization. To this end, we propose a discretiza
based on a second-order stiffly-stable scheme, to circumvent instabilities or inaccura
associated with the treatment of the pressure term in previous efforts. We demons
that the new SLSE method achieves second-order accuracy in time and retains spe
accuracy in space. We also demonstrate the nonmonotonic dependence of error upor
step for a certain range of parameters, similar to that of advection—diffusion equation. -
new SLSE method is applied to two- and three-dimensional incompressible flow pr
lems with typical time steps more thawenty timeghe time steps of the corresponding
Eulerian discretization. Here we consider standard benchmarks for CFD for which th
is plenty of experience using Eulerian time-stepping with various spatial discretization
proaches. Both laminar and transitional flows are considered but not turbulent flows as:
merit a separate investigation. As regards efficiency, a new search-interpolation proce
is developed, which makes the SLSE method at most twice as expgesitene step
compared to its Eulerian counterpart for tivection—diffusioequation. For high spectral
order (P > 10), the SLSE method is less than 25% more expensive per time step than
Eulerian approach, resulting in an overall gaire-to two-orders of magnitudi favor of
the SLSE. For the Navier—Stokes simulations we performed, the overall speed-up dep:
onthe specific case. The cost for the SLSE varies from four to ten times smaller than the ¢
putational cost of the corresponding Eulerian SE scheme with no special code optimiza
involved.

The paperis organized as follows: In the next section, we present the algorithms for sec
interpolation, and backward integration, and validate the method for the advection—diffus
equation. We then extend the method to incompressible Navier—Stokes equations exam
different splitting schemes, and present two- and three-dimensional flow simulations
the laminar and transition regime for validation of the method. We conclude with a br
summary.
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2. ADVECTION-DIFFUSION EQUATION

We first consider the advection—diffusion equation

d

a—‘f +U-Vp =vV2p, (2)
and we use a semi-implicit scheme for time discretization, i.e., we employ a second-or
Adams—Bashforth scheme for the advection term and a Crank—Nicolson scheme for

diffusion term

¢n+l ¢n 3¢n _ ¢n71 _ ) ¢n+1 + q:)n
(W ()

The semi-implicit scheme avoids the stability constraint from the diffusion term but it
subject to the CFL condition because of the explicit treatment of the advection term. T
CFL restriction is more severe for the spectrglelement method as the permissible time
stepAt scales approximately as the square of the spectral order [18].

The Lagrangian form of (2) is

d¢p

a9t vV, (4)
dx

Fri u(x, t). (5)

The idea of gureLagrangian approach is to solve Eq. (4) along the characteristic lines (!
This leads to an effective decoupling of the advection and diffusion terms and an unc
ditionally stable scheme. However, as the fluid particles move along, they may resul
heavily distorted and irregular mesh. Hence, expensive remeshing is required between
steps. In the semi-Lagrangian approach, the computational mdsfeds At each time
step, a discrete set of particles arriving at the grid points is tracked backward over a
gle time step along its characteristic line up to its departure points. The solution value
the departure points is then obtained by interpolation. The second-order Crank—Nicol
semi-Lagrangian scheme is of the form

n+1 n+1 + n
o) I~ ¢d _ VV2(¢ 5 ¢d>’ (6)
% =u(x, t), X" =xt"" = x,. (7)

Here ¢ denotes the value af at thedeparturepointsxy at time leveln, andx, is the
position of thearrival points which are the grid points. The characteristic equation (7) i
solved backward, i.e., we solve for the departure point at time tewe], with the initial
conditionx™t1 = x,.

2.1. Details of the Algorithm

The departure points do not coincide with the grid points, and thus a search-interpolal
procedure is needed. Also, the overall accuracy and efficiency of semi-Lagrangian depe
critically on both the accuracy of the backward intergration of (7) as well as the accuracy
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the interpolation method. In the following, we provide details on how we implement bo
algorithms.

2.1.1. Backward Integration

We solve Eq. (7) for one single time step in order to obtair= x(t") by the explicit
second-order midpoint rule

X = Xq — %u(xa, t"), (8)
xdzxa—Atu(i,t”+A2t). 9)
By defining
o = Xg — Xd,

we can rewrite thexplicitmidpoint rule as
At At
a = At U<Xa— ZU(Xa,tn),tn+2). (10)

Similarly, we employimplicit integration for Eq. (8) setting

. At (... At
X=Xa—7u X,t +7 5

to arrive at the implicit midpoint rule

a ., At
a_Atu(xa—E,t +7). (11)
This is the backward integration algorithm used in most of previous semi-Lagrang
schemes. Although the explicit and implicit schemes are formally of second-order, a sr
accuracy improvement has been reported for the implicit method. Equation (11) has t
solved iteratively, but numerical experiments show that only a few iterations are nee
for convergence (typically around five). This result is valid if a high-order predictor |
employed in the iterative process [30, 34]. For an advection—diffusion equation with |
velocity field known analytically, this additional cost is negligible. However, for a velocit
field known only in numerical form, the iteration is costly because each substep require
search-interpolation procedure. Our numerical results show that the two methods give alr
identical results and for more general problems, especially for Navier—Stokes equations
explicit method (Eq. (10)) is preferred. To enhance the accuracy further, higher-order m
ods can be used; in the following we will be using the fourth-order Runge—Kutta metho

2.1.2. Search-Interpolation Procedure

In general, the departure points do not coincide with the grid points. To evaluate
solution at these points, we have developed the following algorithms:
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X, X,

(x4-x;) n >0, Vi, if x, is inside

FIG. 1. Sketch toillustrate the searching algorithm.

Searching Algorithm. We first determine in which element a particular departure poir
lies. Although for structured grids this task can be as simple as index checking, it is n
trival for unstructured grids. For general quadrilaterals, the QuadTree algorithm has b
employed by Giraldo [13]. In this paper, we present a new fast searching algorithm
pecially designed for the semi-Lagrangian method that works for triangles, quadrilater:
tetrahedra, and hexahedra elements in unstructured discretizations.

The searching starts with the “parent” element, which could be the element where
point physically lies initially or where it is last found (see Fig. 1). To decide if the poin
is in the element or not, the scalar product between the vector starting from the vel
of the element to the point and the inward normal vertor of the corresponding edge
taken. The point is inside the element if all the scalar products of each edge are p
tive. If any of them is negative, the point falls outside the element in that direction. Tl
searching is then moved to the neighboring element in that direction by using the conr
tivity information of the unstructured grid until the parent element is found. In the wor
case scenario, the number of elements checked is the same as the number of elemer
particle travels. Thus, the method is very fast; as in the spdttralement method, a sub-
stantially smaller number of elements is employed compared to low-order finite elemel
Our numerical tests show that the cost of searching is negligible compared to the of
costs.

Interpolation Algorithm. An advantage of the spectiafj element method is that it
employs a high-order polynomial basis and thus there is no need for constructing
plicitly special interpolation functions (e.g., cubic splines). A Lagrangian interpolatio
is then performed in the parent element of the departure points using the spectral
sis, which is a hierarchical set of Jacobi polynomials [18]. The order of the polyn
mial basis used throughout this paper ranges fRm 1 to P = 14 with a typical value
P=28.

2.2. Numerical Results

In this section we present the results and error analysis of the SLSE method applie
advection—diffusion equation (2).
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2.2.1. Benchmark Problem

We use the same Guassian-cone problem, also used in [13], to test the SLSE me!
The transport velocity field is

u= +y’ v = —X.
The initial condition is
(X, y,0) = e*[(xfxO)ZJr(yfyo)?]/z,\z’

and the exact solution is

2
e—[>‘<2+§/2] /2(12+2vt)

7t = 5 A
P Y= ot

where
X = X — XgCOst — ypsint, ¥ =y + Xgsint — yp cost.

The constants are fixed at= 3; and (Xo, Yo) = (—3. 0). A mesh consisting of 16 10
guadrilateral elements is used, and the time-integration is performeshéorevolution
corresponding tb = 2.

The L2 error norm is used to examine the accuracy, i.e.,

N2
e = f(¢exact ®) dQ. (12)

.f ¢gxactd Q

The Courant number (CFL) and the nondimensional diffusion coefficient are defined

UAt VAt
o=maxl — | and pu=max| — |,
As AS?

whereU = +/u? 4+ v2 andAs = /Ax2 + Ay?; these definitions are the same as in [13].
InFig. 2, we plotthe results from an Eulerian method (Adams—Bashforth/Crank—Nicols
ABCN) and the SLSE method with fixed= 0.5 andu = 0.01. The backward integration is
the explicit midpoint rule (Eq. (10)), denoted here as RK2 method. The spectral order va
from P = 2 to 8. We observe on this semi-log plot that spectral convergence is achiey
for both methods. The SLSE method gives relatively larger error at lower polynomial orc
P, but it quickly reaches thé&(At?) temporal error limit atP = 8. In Fig. 3, we plot the
results with larger time step. The base time stepcorresponds to CFL number= 0.5.
Results with 1At and 2Q\t, which correspond to CFL number 5 and 10, are also plotte
We observe that as the time step increases, the error is reduced, matching the error
Eulerian scheme but at time step sfaentytimes larger. Also, a further improvement with
the fourth-order Runge—Kutta method (RK4) is obtained att2@ith polynomial order
P =6.

2.2.2. Error Analysis

The error of semi-Lagrangian method consists of two parts: the error of the backw
integrationO(Atkt1) and the error from interpolatio& (Ax) = O(AxP*1), wherek is
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FIG. 2. Spatial convergence of Eulerian and semi-Lagrangian methods with a spgzéiaihent discretiza-
tion at small time step; Gaussian-cone problem.

the order of integration method atlis the order of the polynomial basis. Therefore, the
overall accuracy of semi-Lagrangian method is

nHl_ 0 d AxP+1
u—ug _du (Atk_'_O(X)). (13)

=40
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FIG. 3. Spatial convergence of Eulerian and semi-Lagrangian methods atA@rggaussian-cone problem.
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A rigorous derivation of the above expression can be found in [9]. Equation (13) sho
that the error is not monotonic with respectAs. When the polynomial ordeP is small,
the interpolation error dominates. Ag increases, the overall error decreases. It can als
be appreciated that as the first te®(At¥) is subdominant, further increasingwill
not improve the overall accuracy. This explains the reason that [15] and [21] did not :
improvement of fourth-order Runge—Kutta method over the second-order methods. On
other hand, when the spatial error is subdominant at RighcreasingAt increases the first
error term in [13] and thus the overall error is larger. In this case, a higher-order backw
integration method (highds, e.g., Runge—Kutta of fourth-order) reduces the dominant fir:
term and improves the solution.

To further study the structure of the error, we test the SLSE method at different time st
and different spectral orders. We set the viscosity to a small valse4.6 x 1075, in order
to emphasize the effect of the advection. The rangéafads 0.01 to Q05, which corresponds
to CFL number 5 to 25, foP = 10. In Fig. 4 we plot results obtained with second-ordel
backward integrationk(= 2) in log—log axes. We make the following observations:

e P = 4: Theinterpolation erroris relatively large, and thus the second error termin (1
dominates. AsAt increases, the overall accuracy improves almost monotonically up tc
large At when the first error term becomes significant.

e P =6: The interpolation error is smaller and the first error term in (£B)At?),
is comparable with the second term. Ad increases, the error starts to decrease firs
The O(At?) term then becomes dominant and the overall error starts to increase. At t
intermediate spatial resolution, there is clearly a competition between the two error te|
resulting in the minimum error arountlt ~ 0.024.

e P = 8: The interpolation error is sufficiently small and thus (®eAt?) dominates.
The overall error then grows at an algebraic second-order rate.

e P =10: The result is identical to that ¢ = 8, because the dominant error is the
O(At?) term, which does not depend éh

10° 3
10" 3
5
o [
10°F af g
10°f o
F —e— P:=8
- —=a— P=10
107§
- L L I L L L L I L L L L I ] I | I
0.01 0.02 0.03 0.04 0.05

At

FIG. 4. Error dependence upaft with second-order backward integration for several spectral ofders
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FIG. 5. Error dependence upaft with fourth-order Runge—Kutta for backward integration.

A similar but less obvious behavior can be observed in Fig. 5 with fourth-order Rung
Kutta backward integratiork(= 4). It is worth noticing that with high-order interpolation
polynomials,P = 8 andP = 10, the interpolation error is very small and so is the backwar
integration errorQ(At%)). The competition between the two error terms resultiateay
and the overall accuracy is preserved over a large range of time step. A slight anomal
observed folP = 6 where a second decaying trend appears toward the larger step.

The above results show that when the solution is well-resolved in space with high-or
polynomial interpolation, the overall accuracy is solely controlled by the method of bac
ward integration. InFig. 6, we plots results obtained with polynomial order 10; second-,
third- and fourth-order Runge—Kutta backward integrations are employed and referred t
the legend as RK2, RK3, and RK4, respectively. The second-order scheme, RK2, show
algebraic growth rate of order two, as tf¥&At?) error term always dominates. For third-
and fourth-order schemes, RK3 and RK4, the trend is less obvious. Mhismot too large,

1.5E-08 |- —%— P=10-RK3
i —4—— P=10-RK4

A

1E-08

e,

—a— P-10-RK2
—— P=10-RK3
— & P-10-RK4

SE-09

10° ! L N R [T B | - . . L L T B
0.01 0.02 0.03 004  0.05 0.01 0.02 0.03 004 005
At ] N ! ! !

FIG. 6. Error dependence upaft with P = 10: Left: RK2, RK3, and RK4; Right: close-up view of RK3
and RK4.
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FIG. 7. Numerical solution for the parabolic cone advection problem. Left: Eulerian SE method, and Rig
SLSE method. A low resolutioR = 4 simulation is shown and the contour levels are nonuniform for visualizatior
purposes. In both plots, the same exactly vizualization approach was employed.

the two error terms in the estimate (13) are comparable and the competition between t
is nearly in balance resulting in a very slow growth in overall error. It is only at relativel
large At that the two methods deviate and show different growth rates (see right plot).

2.2.3. Solution of Finite Smoothness

To further examine the accuracy and robustness of the SLSE method, we solved the
vection equation for a solution with finite regularity. The initial condition is a parabolic con
which has a discontinuity in the derivatives, unlike the previously tested smooth Gauss
cone,

POy, L= ) = —16[r2 — L] ifro<3

elsewhere’

wherer? = (X — X0)? + (Y — Yo)? and (Xo, Yo) is the initial center position of the cone.
The transport velocity field is the same as used in the previous example. This pr
lem is solved with both Eulerian and semi-Lagrangian spebfpadlement methods. A
mesh consisting of 1& 10 quadrilateral elements was used. For polynomial orRler 4,
the two numerical solutions are compared in physical space in Fig. 7 after 10 revc
tions. The point-wise error of the solution after one revolution is plotted in Fig. 8 fc

u | 5 u
] vostataa 0051313
1 daraE = - F

C.0EE090T
D0eBATAR
00132561
OousGIsE
0.0019563

-0DATRIAT
D0BKRETE

FIG. 8. Point-wise error for the parabolic cone advection problem. Left: Eulerian SE method. Right: SL¢
method.
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TABLE |
Comparison of Computational Cost of Eulerian SE and SLSE Methods

Polynomial SLSE-RK4  ABCN Eulerian Ratio Overall speed-up
order P (sec/step) (sec/step) (SLSE/ABCN) (SLSE/ABCN)
4 0.15 0.08 1.88 10.6
6 0.39 0.21 1.86 10.8
8 0.80 0.51 1.57 12.7
10 1.49 1.19 1.25 16.0

polynomial orderP = 8. We see that for both resolutions the errors for the SLSE methc
are localized near the discontinuity, in agreement with previously reported results |
However, for the Eulerian scheme error oscillations are spread everywhere in
domain.

2.2.4. Computational Cost

The SLSE method is generally more expengigetime stephan its Eulerian counterpart.
However, by using the fast searching algorithm presented above, the computational co
SLSE can be of the same order as the Eulerian spdgraléement method. In Table | we
compare the computational cost of the two approaches for the aforementioned Gaus:
cone problem. We see that the SLSE method is less than twice more expensive thar
Eulerian method, and as the spectral order increases the two costs are comparable. Hov
with much larger allowable CFL numbers, the total CPU time required for the SLSE meth
to reach a certain time level is significantly less than that of Eulerian method. The ove
speed-up list in the table is obtained at CFL number of 20. Therefore, at least one orde
magnitude in speed-up is achieved. The observed drop in the cost r&ionaseases can
be explained as follows: In the current implementation of the SLSE method, the comn
edges of interior elements are calculated twice. As the number of degrees-of-freedor
these common edges counts for a smaller portioR &iscreases, the cost ratio decreases
No full optimization has been performed yet to further reduce the search-interpolation C
time.

3. INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

In this section, we extend the SLSE method to incompressible Navier—Stokes equati
Our goal is to design a robust scheme with high-order accuracy in time. We consider
Navier—Stokes equations in Lagrangian form

du _ —Vp+ vV, (14)
dt
V-u=0, (15)

and present three different time-discretization schemes.
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3.1. The First-Order Scheme

The first-order semi-Lagrangian scheme can be obtained readily by treating the right-h
side of (14) implicitly, i.e.,

un+1 _ lJn
At d _V pn+l + vv2un+1’ (16)
vV.u™t=o. (17)

This approach leads to unconditional stability and has been used in [15, 28, 38]. Howe
it is only first-order in time and thus accuracy considerations limit its effectiveness.
3.2. The Second-Order Schemes

We propose two different approaches, the Crank—Nicolson scheme and the stiffly-st:
scheme. We will show that only the latter is suitable for practical applications.

3.2.1. Crank—Nicolson Scheme

A direct extension of the Crank—Nicolson semi-Lagrangian method from the previc
section yields

un+1 _ un un+1 + un
Td = —V er-l + sz <2d> . (18)
vV .u™l =0, (19)

whereug denotes the velocity at the departure point and time levet”. The characteristic
equation is
dx n+1 n+1

Fri umz(x,t), X" = Xa, (20)
wherex, is the position vector of the arrival points, which coincide with the grid points
The velocity at"t1/2 is approximated by the second-order extrapolation

3 n 1 n-1
=_-Uu —zu . 21

> 5 (21)

Equations (18) and (19) can be solved by the fractional-step method, where the disc
continuity equation results in a consistent Poisson equation for the pressure. This me
seems to be second-order in time, and it has been used recently in [2]. However,
numerical experiments show that it is in fact still first-order in time. It can also be justifie
as follows: Considering the fact that the idea of semi-Lagrangian scheme is to integrate
Navier—Stokes equations (14) along characteristic lines, i.e.,

Nl

u™t

Xa
d—udt_/ (-Vp+vVau)dx, (22)

Xd
atrue second-order approximation, according to the midpoint rule, should take the forn
un+l — ug

1
= 5 [(CVPHYVRIG + (VP + v VR (23)



672 XIU AND KARNIADAKIS

Second-order accuracy can be verified by performing a Taylor expansion analysis. C
paring the above equation with Eqg. (18), it is clear that method (18) can be at most f
order in time.

The method describedin Eqg. (23) can be implemented using a high-order splitting sche
which results in a three-step procedure [16]. However, our numerical experiments show
this method develops a long-term instability in the computation. This is due to the expli
part of pressure term in (23), and it is similar to the long-term instability observed
the Eulerian pressure correction formulation [14, 18]; it could be treated by additior
projections.

3.2.2. Stiffly-Stable Scheme

To circumvent the long-term instability resulted from the explicit part of pressure term (s
results below), we employ a variation of the backward multistep scheme [11] to discret

the time derivative. A second-order time-discretization is
Surtt —2uf + tugt
At

= (=Vp+vVau"t (24)

whereuy is the velocityu at the departure poinf; at time levek"” andug‘1 is the velocity at
the departure poirxt{]‘1 attime level"~1. The departure poind] is obtained by solving (20)
with (21) over one single time levelt; while pointxg‘1 is obtained by solving

dx_ u"(x, t), xt" =x, (25)
dt
over two time levels At. By using the above characteristic equations, the resultin
scheme (24) is second-order accurate in time and can be verified by Taylor expan:
analysis.

A three-step splitting scheme can be used to solve (24), i.e.,

0 —2u] + fuj™

X =0, (26)
a—10

" = _V er—l’ (27)
3,,n+1 _ A
su™t —10

2 = V2L (28)

The discrete divergence-free conditidn u"*! = 0 results in a consistent Poisson equatior
for the pressure
1

vzpﬂ+1 — _v . l:l,
At

with accurate pressure boundary conditions of the form [16]

p

= _y.n 0 v n+1 ,

N v-n[l+V x 0"

wheren is the unit normal, and is the vorticity. For details of the solution procedure of

the equations, see chapter 8 of [18].
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3.3. Numerical Results

In this section, we present numerical results by applying the above discretizations
different benchmark problems. In all the tests employing the SLSE method, the secc
order Runge—Kutta method is employed for backward integration.

3.3.1. The Taylor Vortex

We use the Taylor vortex problem, an exact solution to the unsteady Navier-Sto
equations, in order to quantify the error in the SLSE method. It has the form

u = —cosx siny e 2/Re (29)

v = sinx cosy e 2/Re, (30)
1

p=—7cos X + cos e H/Re, (31)

The computational domain is a square defined by the coordinatgs]] in each direction.

A mesh consisting of % 2 quadrilateral elements is used, and the spectral order ranc
asP = 8,10, 12, and 14. The Reynolds number is fixed at,Bhd theL > norm is used
to examine the error. Note that despite the high Reynolds number here, this is a relati
simple flow to resolve spatially and also it decays exponentially in time.

In Fig. 9 we show the evolution of tHe™ error of the solution over long-time integration,
starting from exact initial conditions. The Crank—Nicolson SLSE method develops a lor
term instability and it leads to inaccurate results. It is seemingly stable for this applicati
because of the decaying of the exact solution with time; in the next section this long-te
instability will be documented more clearly. On the other hand, the stiffly-stable SLS
method is robust with accuracy comparable to the Eulerian scheme.

0.0025 |- B )
| - -
| ~
| Ve
0.002 |- d
i p 7 — — - C-Ntype SLSE
i Stiffly stable SLSE
i Y v Eulerian SE
0.0015 |- /
B /
i /
H B /
@ 0.001 -
_
[/
0.0005 |-/
[/
71
0
- [ T - [ TR T T T N S T
0.00050 50 100 150
time

FIG. 9. Time history of error over long-term integration.
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FIG. 10. Spectral convergence for Eulerian SE and SLSE methods.

In Fig. 10 we plot the dependence of the error upon the spectral polynomial order.
L error of the velocity is measured Bt 27, i.e., after one revolution of the flow. We
see in this semi-log plot that spectral convergence is achieved by both Eulerian and st
Lagrangian spectrdip element methods. The time step here is chosen by fixing the CF
number atr = 0.6. In Fig. 11 we plot the dependence of the error upon the size of tin
step for the stiffly-stable method. The results are similar to the behavior reported ear
for the advection—diffusion equation. Note here the accuracy of SLSE method is dicta
by the termO(At? + AXAF;“). At low P the interpolation error dominates, and increasing
At decreases the overall error, as shownPRog 6. When the interpolation error is small
at P = 12, theAt? term dominates and further increaseAn increases the overall error.
The P = 8 curve shows the competition between these two terms. In this plot, the larg

time step 003 corresponds to the CFL number about 4. We emphasize that it is the s

0.00022 -

10°F 0.0002

€.

0.00018

107

L | I A | L L L L | I B |
0.01 0.02 0.03 0.01 002 0.03
At At

FIG. 11. Error dependence at. Left: SLSE results. Right: close-up view fér = 6.
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FIG. 12. Error dependence ont. Left: Re= 1, and RightRe= 1(F.

of At andnotthe CFL number that restricts the use of semi-Lagrangian method. In ot}
words, for the SLSE method, the restriction on the size of time step is solely due to accur
considerations but not due to stability.

In the Navier—Stokes implementation, another contribution to the error that needs tc
examined is associated with the splitting procedure (Eq. (26)). For the second-order S
method proposed here, the splitting error scale®@sAt?). This error is only visible for
relatively viscous flows. We use two extreme cases to examine this error: One is At
(Re= 1) where the splitting error is of the same order as temporal error; the other is
v = 107® (Re= 10P) where the splitting error is negligible. In Fig. 12 we show the result
for these two cases, and comparison with the second-order Eulerian method for exactly
same spatial discretization. We see thRet= 1, theO(At?) error dominates at very small
time step At ~ 10-%). However, aRe= 10° the O(At?) error starts to dominate only at
At ~ 1072. Comparison of the two responses suggests thabiiet?) error observed at
Re= 1 is the splitting error, and it is comparable in that case to the Runge—Kutta seco
order error. The second-order Eulerian method generates the exact same error inf@s lo
number case and reinforces the above statement. It should be noted that the error fror
semi-Lagrangian part, i.eQ(At? + AZ—F;“), contains anothe®(At?) term. In advection-
dominated flows the Reyolds number is greater than one, and thus the splitting errc
always subdominant.

3.3.2. Two-Dimensional Driven Cavity Flow

We consider the standard benchmark problem of two-dimensional driven cavity flow;
Fig. 13. The flow is sustained by the motion of the upper wall at constant velocity while:
other walls are stationary. A mesh consisting of<LQ0 quadrilateral elements is used for
most of the tests, and the spectral order is s€tte 10. We compare the horizontal velocity
profile along the vertical center line and the vertical velocity profile along the horizont
center line in Figs. 14 and 15 corresponding to Reynolds nuiRber 400 in the first and
toRe = 3,200 andRe = 10,000 in the second figure. The Reynolds number here is bas
on the velocity of the upper wall and the height of the cavity. The time step of Euleri
spectralhip element method is chosen by fixing CFL numbes at 0.6, while for SLSE
the time step is more than 30 times larger with CFL number at 20. We observe that



676 XIU AND KARNIADAKIS

FIG. 13. 2-D driven cavity flow aRe = 10,000. The flow is (slightly) unsteady so streamlines of the time-
averaged flow are shown.
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FIG.14. 2-Ddriven cavity flowaRe= 400. Left: u-velocity profile along vertical centerline. Right: v-velocity
profile along horizontal centerline. (Second-order SLSE result in indistinguishable from Eulerian result.)
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FIG. 16. Time history of u-velocity at the center of the cavity with various meth&ass 400.

semi-Lagrangian and Eulerian methods give essentially identical results, which they a
with the accepted results of [12]. Re= 400 we included results from a first-order SLSE
that show visible differences with the high-order accurate resultReAt10,000 the flow
has bifurcated to an unsteady state. A time periodic oscillation is established, consis
with the results of bifurcation studies for the driven cavity flow (see, for example, [33]).
Fig. 15 (right) the velocity profiles &e = 10,000 correspond to the time-averaged values
they agree with the steady state solution of [12] as the onset of bifurcation is just bel
Re = 10,000.

We now return toRe= 400 to investigate the stability of the Crank—Nicolson semi
Lagrangian scheme. In Fig. 16 we plot the time history of the horizontal-velocity at tl
center point of the cavity aftdong-time integration The flow reaches steady state after
t ~ 30 (nondimensional convective time units). We can see that the second-order stif
stable SLSE method gives almostidentical results as the second-order Eulerian method
first-order SLSE method also reaches steady state but gives less accurate results. Hov
the second-order Crank—Nicolson SLSE method develops a weak long-term instability
fails to reach a steady state in the end, although at an earlier time5Q) it actually
approximates the solution better than the stable first-order method.

We finally compare results for the semi-Lagrangian method using linear and quadr
triangular finite elements for first- and second-order (in time). The results shown in Fig.
were obtained on a mesh consisting o384 equal triangular elements. We see that eve
in the limit of low polynomial order the second-order semi-Lagrangian method perforr
guite accurately in contrast with the first-order (in time) semi-Lagrangian method.

3.3.3. Three-Dimensional Driven Cavity Flow

The extension of the SLSE method to three dimensions is straightforward. Here we st
the effect of the three-dimensionality in the driven cavity flow as a function of the aspe
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FIG. 17. 2-D driven cavity flow aRe= 400 for linear and quadratic (triangular) elements. Left: u-velocity
profile along vertical centerline. Right: v-velocity profile along horizontal centerline.

ratio. The Reynolds number is set at 400 and the aspect ratio was set to 1, 3, and 5
plot velocity profiles at the center symmetric plane in Fig. 18. Three-dimensionality effe
are more pronounced, as expected, for the expansion ratio 1 as the results deviate the
from the corresponding two-dimensional profile, while for the aspect ratio 5, a trend tow:
two-dimensionality is observed. The results shown in the figure are obtained by SL
method with CFL number 20. Results of the Eulerian spettpatlement method are also
computed with CFL number at®but are not shown in the plot because they are essential
identical as the SLSE results. In [2], the semi-Lagrangian (quadratic) finite element met|
is used to solve the 2D driven cavity flow. The reported results show significant differer
with the results of [12], and the authors claim favorable comparison with three-dimensio
experimental results of [19]. The present simulations of the three-dimensional driven ca
flow suggest that such an agreement may have been fortuitous.

3.3.4. Transitional Flow Past a Square Cylinder

In this example, we test the method in the context of vortex shedding for flow pas
square cylinder, which becomes transitional even at low Reynolds number. Specifice
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FIG.18. 3-Ddriven cavity flow aRe= 400. Left: Horizontal-velocity profile along vertical centerline, Right:
vertical-velocity profile along horizontal centerline.
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X

FIG. 19. Snapshot of vorticity contours &e= 200. (Dotted lines denote negative vorticity.) A “2S” vortex
shedding mode is observed.

we will compare with results of Eulerian schemes as well as experimental results cite
[8, 10, 26, 32, 35]. The flow remains steady until the Reynolds number reaches its f
critical value at around 46 50. Here the Reynolds number is based on the uniform inflo
and length of the square cylinder. Abdwe~ 50 a periodic vortex shedding is observed as
shown in Fig. 19. At higher Reynolds number, because of the fast transition that takes p
with a subharmonic cascade present, there is disagreement in the published results re
to the Strouhal number, and drag and lift coefficients. Here we simulate this flow in t
Reynolds number range from 20 to 300 but we only report results for the most interest
cases.

In Fig. 20 we show the element mesh employed in the simulations. It consists of 1-
triangles with the smaller size elements concentrated around the cylinder in order to caf
the large gradients of vorticity caused by the sharp corners. This is the highest resolu
mesh used in [7] in their three-dimensional simulation of a square-section cylinder wit|
wavy surface. They employed the same spettpalement code as the one here but with

20

:

-
=]
LI S B B B e

-20

FIG. 20. Element mesh for flow past a square cylinder. Left: Entire domain (1502 triangles). Right: Close-
view near the cylinder.
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TABLE 1l
Comparison of Strouhal Number (B is the Blockage Ratio)

Okajima [26] Saha [32] Davis [8]  Franke [10] Sohankar [36]
SLSE Eulerian SE  (experimental) (numerical) (numerical) (numerical) (numerical)

Re B=23% B=23% B=0% B=10% B=0% B=8.3% B =5.6%
100 0.146 0.145 041-0145 0.159 0.154 —_ —
200 0.148 0.147 038-0145 0.163 — 0.157 0.170
250 0.139 0.138 039-0143 0.142 0.165 0.141 0.154
300 0.136 0.136 Q37-0139 0.146 — 0.130 0.138

the Eulerian version, and they simulated flows upé&= 150. The domain size parameters
L; = 16 (inflow), L, = 25 (outflow), andL, = 22 (crossflow) result in a low blockage
ratio (B = 1/2Ly = 2.3%), and are chosen according to the study in [3]. All lengths ar
nondimensionalized here with respect to the size of the cylinder. We carried out a deta
convergence study, similar to the one in [7], confirming that with polynomial deder6

a resolution-independent solution is obtained.

The time step for SLSE is.005~ 0.01, depending upon the exact value of the Reynold:
number and the polynomial order, and is at least ten times larger than the correspon
Eulerian SE runs. Increasing the Reynolds number leads to increases of velocity amplitu
and this explains such dependence. The restriction on the time step for SLSE is a con
of accuracy but not stability. In Table Il we compare the Strouhal number (hondimensio
frequency) of vortex shedding at different Reynolds numbers. It can be seen that Sl
gives results very close to the Eulerian SE method, and they both agree with Okajin
experimental result well [26]. The discrepancy with other computational results reportec
the literature is due to their larger blockage ratio, i.e., smaller size of the domain, and ¢
lower spatial resolution. It should be noted that most of earlier computations are perforn
with low-order methods.

At Re = 100 and 200, the flow is periodic with a single vortex shedding frequenc
but with the higheReflow exhibiting stronger super-harmonics. HoweverRat= 300
the flow loses stability and a subharmonic frequency cascade emerges. Figure 21 st
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FIG. 21. Spectra of transverse velocity and pressure in the near-wdke-at300 from SLSE and Eulerian
SE method. Left: Transverse velocity spectrum. Right: Pressure spectrum.



METHOD FOR NAVIER-STOKES EQUATIONS 681

FIG.22. Snapshot of vorticity contours Re= 300. (Dotted lines denote negative vorticity). 2P + 25)”
vortex shedding mode is observed.

the amplitude spectra of transverse velocity and corresponding presfee-a800. The
time-history is gathered at a near-wake poit{ 3.43 y = 0.83). The results from the
semi-Lagrangian method and Eulerian method agree very well. They both show cle
the presence of subharmonics with the existence of lower frequengiBaffthe primary
shedding frequency. For the transverse velocity spectra on the left, the primary shed
frequency isf, = 0.136 and the two subharmonics &g~ 0.045 andf, ~ 0.09.

Figure 22 shows a snapshot of vorticity contourgkaet= 300. The flow pattern is in
accordance with the “(2R 2S)” vortex shedding mode discovered in experiments in [39
for an oscillating circular cylinder. In this pattern, two vortices of opposite vorticity forn
a pair on either side of the centerline while a single vortex is formed between the p
The corresponding subharmonics in the experiments were also one-third of the prin
frequency. Williamson and Roshko have presented the physical reasons for this sp:
temporal behavior [39]. Note that the normal mode of shedding is similar to what is sho
in Fig. 19, which is termed as the “2S” mode. In this pattern, a single vortex of oppos
vorticity is formed on either side of the centerline.

As regards computational efficiencytveenty timesarger time step was employed in the
SLSE simulation compared to the Eulerian simulation with other identical parameters. -
corresponding computational speed up with the SLSE method was a factor of about f
without any special code optimization.

4. SUMMARY

A semi-Lagrangian spectralp element (SLSE) method was presented and applied
advection—diffusion and incompressible Navier—Stokes equations. The method is free f
the CFL-restriction and thus very large time steps can be used, dictated only by accu
considerations. This should not be interpreted as violation of the CFL condition, as
numerical domain of dependence of the solution still contains its domain of depende
[9]. It can be understood by considering the definition of the CFL condition tixed
number of nodes as in the finite difference approximations, and contrasting it with 1
effectivelyvariable stencil involved in the semi-Lagrangian approach.

An interesting aspect of the method is the structure of the temporal (advection) er
which reveals nonmonotonic trend with the time step. In particular, in a certain range
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parameters typically encountered in practical computations, the overall error decrease
the time step increases. This behavior, however, depends on the interpolation proce
involved and inaccurate representations may mask this trend. From the practical poir
view, it is the capability of employing significantly larger time steps compared with th
Eulerian schemes that make the SLSE method particularly attractive, especially for t
Reynolds number simulations. This comes at the expense of extra interpolations, whict
“intrinsic” in the spectrali p element method, but it avoids prohibitive costs associated wit
nonsymmetric solvers as in fully implicit schemes or remeshing as in purely Lagrangi
approaches. The high-order spatial discretization of the spdgtelément method seems
to significantly enhance the possibility of using very large time steps. In our numerical te:
the CFL number can be as high as2@0 and still retain good accuracy, while the semi-
Lagrangian method with finite elements is about & [37]. The total cost of SLSE method
was found to be an order of magnitude less than the Eulerian method, depending on
specific problem. This resultis more favorable than the cost reported in [4], where relativ
low-order spatial discretizations and explicitly constructed interpolation algorithms we
employed.

The SLSE method was also extended to incompressible Navier—Stokes equations wit|
cus on second-order temporal accuracy. Two different types of second-order SLSE mett
were presented, and it was shown that only the stiffly-stable implementation is suitable
practical applications. Numerical results with the Taylor vortex problem and two- and thre
dimensional cavity flows demonstrated a similar error structure as in the advection—diffus
equation. A transition flow past a square cylinder in a regime where strong subharmol
are present was also simulated. A time step of twenty times larger was used and an ov
speed up factor diour was obtained compared to corresponding Eulerian time-steppin
The advantages of semi-Lagrangian methods, however, should be demonstrated in c
numerical simulation ahhomogeneousirbulent flows, where the time step currently used
is two to three orders of magnitude smaller than the Kolmogorov temporal scale. While
overall gain for homogeneous flows employing Fourier discretizations may be margir
consistent with the estimates of Eq. (1) and the analysis in [4], we expect a large
for complex-geometry turbulent flows requiring nonuniform grids. We will report on suc
systematic studies in a future publication.
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