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We present a semi-Lagrangian method for advection–diffusion and incompress-
ible Navier–Stokes equations. The focus is on constructing stable schemes of second-
order temporal accuracy, as this is a crucial element for the successful application
of semi-Lagrangian methods to turbulence simulations. We implement the method
in the context of unstructured spectral/hp element discretization, which allows for
efficient search-interpolation procedures as well as for illumination of the nonmono-
tonic behavior of the temporal (advection) error of the form:O(1tk + 1x p+1

1t ). We
present numerical results that validate this error estimate for the advection–diffusion
equation, and we document that such estimate is also valid for the Navier–Stokes
equations at moderate or high Reynolds number. Two- and three-dimensional lami-
nar and transitional flow simulations suggest that semi-Lagrangian schemes are more
efficient than their Eulerian counterparts for high-order discretizations on nonuni-
form grids. c© 2001 Academic Press

1. INTRODUCTION

The case against direct numerical simulation of turbulent flows (DNS) at high Reynolds
number (Re) is often made based on the enormous amount of spatial scales that need to be
resolved. Indeed, simple estimates based on the Kolmogorov dissipative length scale suggest
that the required number of degrees of freedom scale asRe9/4 in three dimensions [17].
What is not factored, however, in such an estimate is the computational cost associated
with the time-integrationof the Navier–Stokes equations, which in practice, may be the
prohibitive factor. After all, in a parallel computation, the spatial resolution requirements can
be alleviated by domain decomposition whereas the time-stepping cost cannot be avoided.

To illustrate the current inefficiency of time-discretization, let us consider the often-
used semi-implicit Eulerian scheme, where advection is treated explicitly. The maximum
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allowable time step is dictated by theCFL number, which is typically of order one, and thus

1tCFL ∝ L
uNα

.

HereL is an integral length scale,u is a characteristic velocity scale, e.g., thermsvalue,
and Nα represents the scaling of the maximum eigenvalue associated with the spectral
discretization, withN the total number of nodes in one dimension. For example, for a
Fourier discretizationα = 1; for Chebyshev discretization (used often in DNS of wall-
bounded turbulence)α = 2; and for spectral/hpelement methodsα ≈ 3/2 (see [18], Ch. 6).
We want to compare this time step to the Kolmogorov time scale

τ =
√
(νL/u3).

To this end, we recall that according to Kolomogorov theory valid at high Reynolds numbers
Re, in order to resolve the Kolmogorovspatial length scale, we need to employ approxi-
mately

N ≈ Re3/4

nodes per each spatial direction. Using these estimates, we can obtain the ratio of the
maximum allowable time step to Kolmogorov’s time scale, i.e.,

1tCFL

τ
∝ Re1/2 1

Nα
∝ Re1/2−3α/4. (1)

It is clear from Eq. (1) that at Reynolds number of 10,000, the maximum allowable time
step can be one order (α = 1) to four orders (α = 2) of magnitude smaller than thetemporal
Kolmogorov scale. Therefore, in mostspectralDNS of inhomogeneousturbulence (where
α ≥ 3/2), there is anuneven distribution of resolutionin space and time, with the smallest
spatial scale approximately matched but with the temporal scale over-resolved by at least
two to three orders of magnitude.2 This inefficiency of currently employed semi-implicit
schemes for DNS of inhomogeneous turbulence has been recognized before, and attempts
have been made to employ fully implicit schemes. However, this requires Newton iterations
and nonsymmetric solvers that render the overall approach inefficient.

Progress can be made by employing semi-Lagrangian time-discretization, which could
increase significantly the maximum allowable time step while maintaining the efficiency of
symmetric solvers. The semi-Lagrangian approach has long been used in meteorology for
numerical weather prediction, where the use of a large time step is essential for efficiency.
This approach has been introduced at the beginning of the 1980s [31], and the basic idea
is to discretize the Lagrangian derivative of the solution in time instead of the Eulerian
derivative. It involves backward time integration of a characteristic equation to find the
departure point of a fluid particle arriving at an Eulerian grid point. The solution value at
the departure point is then obtained by interpolation. There is no mesh deformation as in
Lagrangian methods because the “arrival points” employed coincide with the grid points.

2 One could argue that discretization in space is typically high order but in time is low order; however, even
with this factor taken into account the uneven distribution argument is still valid.
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However, there may be significant interpolation cost to obtain the solution values at the
“departure points.”

The cost-effectiveness of semi-Lagrangian advection in the context of geophysical flows
was studied systematically by Bartello and Thomas [4]. They found that there is significant
computational overhead and that the efficiency of the semi-Lagrangian approach depends
on the specific flow problem. For example, for quasi-geostrophic turbulence, the efficiency
is high but for the Kolmogorov cascade the semi-Lagrangian scheme is efficient only at
very high spatial resolutions. This result is consistent with the aforementioned analysis (e.g.,
case of uniform discretizationα = 1) if we take into account the computational overhead
associated with semi-Lagrangian advection. The analysis in [4] involves homogeneous
turbulence only, and comparisons with a relatively low-order Eulerian scheme with at most
cubic spline interpolations. The method we develop here targets complex-geometry flows
with truly high-order spatial discretizations that require nonuniform grids. Our experience
with such flows using Eulerian time stepping is that they require time steps much smaller
than what accuracy considerations dictate; e.g., see [6, 22].

The semi-Lagrangian method depends strongly on the spatial discretization. Specifically,
its accuracy is particularly sensitive to the method of backward integration of the charac-
teristic equation as well as the interpolation scheme to evaluate the solution at departure
points. This has been shown by Falcone and Ferretti [9], who conducted a rigorous anal-
ysis of the stability and convergence properties of semi-Lagrangian schemes. Typically,
the backward integration is performed by employing second-order schemes (i.e., midpoint
rule), explicitly or implicitly. In [15] and [21], the fourth-order Runge–Kutta method was
employed but their results did not show any improvement over the second-order schemes.
This finding is perhaps due to low spatial resolution used in these works, which is crucial
for the overall accuracy of semi-Lagrangian schemes. It has been shown that the simplest
semi-Lagrangian scheme with linear interpolation is equivalent to the classical first-order
upwinding scheme [27], which is excessively dissipative (see [31] and [37]). A popular
and effective choice for interpolation methods in previous works has been the cubic spline
methods [20]; see also [4].

An intriguing finding is that the error of semi-Lagrangian schemes in solving advection–
diffusion equationsdecreasesas the time step increases in a certain range of parameters,
and this has initially led to some erroneous justifications [24, 25]. The error analysis in [9]
showed that the overall error of semi-Lagrangian method is indeednot monotonic with
respect to time step1t , and, in particular, it has the form

O
(
1tk + 1xP+1

1t

)
,

wherek refers to the order of backward time integration andP to the interpolation order;
similar conclusions had been reached earlier in [23]. Another interesting result was obtained
by Giraldo [13] who combined the semi-Lagrangian approach with spectral element dis-
cretization for the advection–diffusion equation. He found that for polynomial orderP ≥ 4
the combined scheme exhibits neither dissipation nor dispersion errors. This important re-
sult has to also be factored into any cost-effectiveness analysis regarding semi-Lagrangian
advection.

The extension of semi-Lagrangian method to the solution of Navier–Stokes equations was
presented in the pioneering work of Pironneau (1982) [28]. He demonstrated the nonlinear
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stability of the method even as the viscosity approaches to zero. He also obtained suboptimal
error estimates, which were improved later by S¨uli (1988) [38]. Most of the previous analysis
and numerical implementations in CFD applications have employed the Taylor–Hood finite
element and are first-order in time [2, 15, 29]. In a more recent paper [1], an error analysis
was conducted for the fractional-step method for incompressible Navier–Stokes equations.
In particular, the pressure–correction version of the fractional scheme with first-order time
stepping was analyzed and an extension to a second-order was proposed but not analyzed. An
attempt at a second-order scheme was made in [2] but no convergence rates were documented
in that work. Moreover, results presented for the standard benchmark problem of driven-
cavity flow are markedly different than accepted results in the literature, possibly because of
an erroneous treatment of the pressure term. A higher-order temporal discretization, similar
to the stiffly-stable scheme proposed in the present paper, was proposed independently in [5]
for advetion problems.

In this paper, we present a semi-Lagrangian spectral/hp element (SLSE) method for
the two- and three-dimensional incompressible Navier–Stokes equations, inspired by the
results of Giraldo [13] for the advection–diffusion equation. In particular, we apply the
newermodalversion of the spectral element method [18] to the advection diffusion; un-
structured discretizations are involved consisting of triangles and tetrahedra. We study in
detail the dependence of the overall accuracy upon the time step, demonstrating the non-
monotonic trends suggested by the theory of Falcone and Ferretti [9]. We then extend the
semi-Lagrangian spectral/hp element method to incompressible Navier–Stokes equations
targeting a high-order temporal discretization. To this end, we propose a discretization
based on a second-order stiffly-stable scheme, to circumvent instabilities or inaccuracies
associated with the treatment of the pressure term in previous efforts. We demonstrate
that the new SLSE method achieves second-order accuracy in time and retains spectral
accuracy in space. We also demonstrate the nonmonotonic dependence of error upon time
step for a certain range of parameters, similar to that of advection–diffusion equation. The
new SLSE method is applied to two- and three-dimensional incompressible flow prob-
lems with typical time steps more thantwenty timesthe time steps of the corresponding
Eulerian discretization. Here we consider standard benchmarks for CFD for which there
is plenty of experience using Eulerian time-stepping with various spatial discretization ap-
proaches. Both laminar and transitional flows are considered but not turbulent flows as they
merit a separate investigation. As regards efficiency, a new search-interpolation procedure
is developed, which makes the SLSE method at most twice as expensiveper time step
compared to its Eulerian counterpart for theadvection–diffusionequation. For high spectral
order (P ≥ 10), the SLSE method is less than 25% more expensive per time step than the
Eulerian approach, resulting in an overall gainone-to two-orders of magnitudein favor of
the SLSE. For the Navier–Stokes simulations we performed, the overall speed-up depends
on the specific case. The cost for the SLSE varies from four to ten times smaller than the com-
putational cost of the corresponding Eulerian SE scheme with no special code optimization
involved.

The paper is organized as follows: In the next section, we present the algorithms for search,
interpolation, and backward integration, and validate the method for the advection–diffusion
equation. We then extend the method to incompressible Navier–Stokes equations examining
different splitting schemes, and present two- and three-dimensional flow simulations in
the laminar and transition regime for validation of the method. We conclude with a brief
summary.
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2. ADVECTION–DIFFUSION EQUATION

We first consider the advection–diffusion equation

∂φ

∂t
+ u · ∇φ = ν∇2φ, (2)

and we use a semi-implicit scheme for time discretization, i.e., we employ a second-order
Adams–Bashforth scheme for the advection term and a Crank–Nicolson scheme for the
diffusion term

φn+1− φn

1t
+ u · ∇

(
3φn − φn−1

2

)
= ν∇2

(
φn+1+ φn

2

)
. (3)

The semi-implicit scheme avoids the stability constraint from the diffusion term but it is
subject to the CFL condition because of the explicit treatment of the advection term. The
CFL restriction is more severe for the spectral/hp element method as the permissible time
step1t scales approximately as the square of the spectral order [18].

The Lagrangian form of (2) is

dφ

dt
= ν∇2φ, (4)

dx
dt
= u(x, t). (5)

The idea of apureLagrangian approach is to solve Eq. (4) along the characteristic lines (5).
This leads to an effective decoupling of the advection and diffusion terms and an uncon-
ditionally stable scheme. However, as the fluid particles move along, they may result in
heavily distorted and irregular mesh. Hence, expensive remeshing is required between time
steps. In the semi-Lagrangian approach, the computational mesh isfixed. At each time
step, a discrete set of particles arriving at the grid points is tracked backward over a sin-
gle time step along its characteristic line up to its departure points. The solution value at
the departure points is then obtained by interpolation. The second-order Crank–Nicolson
semi-Lagrangian scheme is of the form

φn+1− φn
d

1t
= ν∇2

(
φn+1+ φn

d

2

)
, (6)

dx
dt
= u(x, t), xn+1 = x(tn+1) = xa. (7)

Hereφn
d denotes the value ofφ at thedeparturepointsxd at time leveln, andxa is the

position of thearrival points which are the grid points. The characteristic equation (7) is
solved backward, i.e., we solve for the departure point at time leveln, xn

d, with the initial
conditionxn+1 = xa.

2.1. Details of the Algorithm

The departure points do not coincide with the grid points, and thus a search-interpolation
procedure is needed. Also, the overall accuracy and efficiency of semi-Lagrangian depends
critically on both the accuracy of the backward intergration of (7) as well as the accuracy of
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the interpolation method. In the following, we provide details on how we implement both
algorithms.

2.1.1. Backward Integration

We solve Eq. (7) for one single time step in order to obtainxd = x(tn) by the explicit
second-order midpoint rule

x̂ = xa − 1t

2
u(xa, t

n), (8)

xd = xa −1t u
(

x̂, tn + 1t

2

)
. (9)

By defining

α = xa − xd,

we can rewrite theexplicitmidpoint rule as

α = 1t u
(

xa − 1t

2
u(xa, t

n), tn + 1t

2

)
. (10)

Similarly, we employimplicit integration for Eq. (8) setting

x̂ = xa − 1t

2
u
(

x̂, tn + 1t

2

)
,

to arrive at the implicit midpoint rule

α = 1t u
(

xa − α
2
, tn + 1t

2

)
. (11)

This is the backward integration algorithm used in most of previous semi-Lagrangian
schemes. Although the explicit and implicit schemes are formally of second-order, a small
accuracy improvement has been reported for the implicit method. Equation (11) has to be
solved iteratively, but numerical experiments show that only a few iterations are needed
for convergence (typically around five). This result is valid if a high-order predictor is
employed in the iterative process [30, 34]. For an advection–diffusion equation with the
velocity field known analytically, this additional cost is negligible. However, for a velocity
field known only in numerical form, the iteration is costly because each substep requires a
search-interpolation procedure. Our numerical results show that the two methods give almost
identical results and for more general problems, especially for Navier–Stokes equations, the
explicit method (Eq. (10)) is preferred. To enhance the accuracy further, higher-order meth-
ods can be used; in the following we will be using the fourth-order Runge–Kutta method.

2.1.2. Search-Interpolation Procedure

In general, the departure points do not coincide with the grid points. To evaluate the
solution at these points, we have developed the following algorithms:
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FIG. 1. Sketch to illustrate the searching algorithm.

Searching Algorithm. We first determine in which element a particular departure point
lies. Although for structured grids this task can be as simple as index checking, it is non-
trival for unstructured grids. For general quadrilaterals, the QuadTree algorithm has been
employed by Giraldo [13]. In this paper, we present a new fast searching algorithm es-
pecially designed for the semi-Lagrangian method that works for triangles, quadrilaterals,
tetrahedra, and hexahedra elements in unstructured discretizations.

The searching starts with the “parent” element, which could be the element where the
point physically lies initially or where it is last found (see Fig. 1). To decide if the point
is in the element or not, the scalar product between the vector starting from the vertex
of the element to the point and the inward normal vertor of the corresponding edge is
taken. The point is inside the element if all the scalar products of each edge are posi-
tive. If any of them is negative, the point falls outside the element in that direction. The
searching is then moved to the neighboring element in that direction by using the connec-
tivity information of the unstructured grid until the parent element is found. In the worst
case scenario, the number of elements checked is the same as the number of elements the
particle travels. Thus, the method is very fast; as in the spectral/hp element method, a sub-
stantially smaller number of elements is employed compared to low-order finite elements.
Our numerical tests show that the cost of searching is negligible compared to the other
costs.

Interpolation Algorithm. An advantage of the spectral/hp element method is that it
employs a high-order polynomial basis and thus there is no need for constructing ex-
plicitly special interpolation functions (e.g., cubic splines). A Lagrangian interpolation
is then performed in the parent element of the departure points using the spectral ba-
sis, which is a hierarchical set of Jacobi polynomials [18]. The order of the polyno-
mial basis used throughout this paper ranges fromP = 1 to P = 14 with a typical value
P = 8.

2.2. Numerical Results

In this section we present the results and error analysis of the SLSE method applied to
advection–diffusion equation (2).
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2.2.1. Benchmark Problem

We use the same Guassian-cone problem, also used in [13], to test the SLSE method.
The transport velocity field is

u = +y, v = −x.

The initial condition is

φ(x, y, 0) = e−[(x−x0)
2+(y−y0)

2]/2λ2
,

and the exact solution is

φ(x, y, t) = λ2

λ2+ 2νt
e−[ x̂2+ŷ2]/2(λ2+2νt),

where

x̂ = x − x0 cost − y0 sint, ŷ = y+ x0 sint − y0 cost.

The constants are fixed atλ = 1
8; and(x0, y0) = (− 1

2, 0). A mesh consisting of 10× 10
quadrilateral elements is used, and the time-integration is performed forone revolution
corresponding tot = 2π .

TheL2 error norm is used to examine the accuracy, i.e.,

eL2 =
∫
(φexact− φ)2 dÄ∫

φ2
exactdÄ

. (12)

The Courant number (CFL) and the nondimensional diffusion coefficient are defined as

σ = max

(
U1t

1s

)
and µ = max

(
ν1t

1s2

)
,

whereU = √u2+ v2 and1s=
√
1x2+1y2; these definitions are the same as in [13].

In Fig. 2, we plot the results from an Eulerian method (Adams–Bashforth/Crank–Nicolson,
ABCN) and the SLSE method with fixedσ = 0.5 andµ = 0.01. The backward integration is
the explicit midpoint rule (Eq. (10)), denoted here as RK2 method. The spectral order varies
from P = 2 to 8. We observe on this semi-log plot that spectral convergence is achieved
for both methods. The SLSE method gives relatively larger error at lower polynomial order
P, but it quickly reaches theO(1t2) temporal error limit atP = 8. In Fig. 3, we plot the
results with larger time step. The base time step1t corresponds to CFL numberσ = 0.5.
Results with 101t and 201t , which correspond to CFL number 5 and 10, are also plotted.
We observe that as the time step increases, the error is reduced, matching the error of the
Eulerian scheme but at time step sizetwentytimes larger. Also, a further improvement with
the fourth-order Runge–Kutta method (RK4) is obtained at 201t with polynomial order
P = 6.

2.2.2. Error Analysis

The error of semi-Lagrangian method consists of two parts: the error of the backward
integrationO(1tk+1) and the error from interpolationE(1x) = O(1xP+1), wherek is
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FIG. 2. Spatial convergence of Eulerian and semi-Lagrangian methods with a spectral/hpelement discretiza-
tion at small time step; Gaussian-cone problem.

the order of integration method andP is the order of the polynomial basis. Therefore, the
overall accuracy of semi-Lagrangian method is

un+1− un
d

1t
= du

dt
+O

(
1tk + O(1xP+1)

1t

)
. (13)

FIG. 3. Spatial convergence of Eulerian and semi-Lagrangian methods at large1t ; Gaussian-cone problem.
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A rigorous derivation of the above expression can be found in [9]. Equation (13) shows
that the error is not monotonic with respect to1t . When the polynomial orderP is small,
the interpolation error dominates. As1t increases, the overall error decreases. It can also
be appreciated that as the first termO(1tk) is subdominant, further increasingk will
not improve the overall accuracy. This explains the reason that [15] and [21] did not see
improvement of fourth-order Runge–Kutta method over the second-order methods. On the
other hand, when the spatial error is subdominant at highP, increasing1t increases the first
error term in [13] and thus the overall error is larger. In this case, a higher-order backward
integration method (higherk, e.g., Runge–Kutta of fourth-order) reduces the dominant first
term and improves the solution.

To further study the structure of the error, we test the SLSE method at different time steps
and different spectral orders. We set the viscosity to a small value,ν = 4.6× 10−6, in order
to emphasize the effect of the advection. The range for1t is 0.01 to 0.05, which corresponds
to CFL number 5 to 25, forP = 10. In Fig. 4 we plot results obtained with second-order
backward integration (k = 2) in log–log axes. We make the following observations:

• P = 4: The interpolation error is relatively large, and thus the second error term in (13)
dominates. As1t increases, the overall accuracy improves almost monotonically up to a
large1t when the first error term becomes significant.
• P = 6: The interpolation error is smaller and the first error term in (13),O(1t2),

is comparable with the second term. As1t increases, the error starts to decrease first.
TheO(1t2) term then becomes dominant and the overall error starts to increase. At this
intermediate spatial resolution, there is clearly a competition between the two error terms
resulting in the minimum error around1t ≈ 0.024.
• P = 8: The interpolation error is sufficiently small and thus theO(1t2) dominates.

The overall error then grows at an algebraic second-order rate.
• P = 10: The result is identical to that ofP = 8, because the dominant error is the
O(1t2) term, which does not depend onP.

FIG. 4. Error dependence upon1t with second-order backward integration for several spectral ordersP.
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FIG. 5. Error dependence upon1t with fourth-order Runge–Kutta for backward integration.

A similar but less obvious behavior can be observed in Fig. 5 with fourth-order Runge–
Kutta backward integration (k = 4). It is worth noticing that with high-order interpolation
polynomials,P = 8 andP = 10, the interpolation error is very small and so is the backward
integration error (O(1t4)). The competition between the two error terms results in aplateau,
and the overall accuracy is preserved over a large range of time step. A slight anomaly is
observed forP = 6 where a second decaying trend appears toward the larger step.

The above results show that when the solution is well-resolved in space with high-order
polynomial interpolation, the overall accuracy is solely controlled by the method of back-
ward integration. In Fig. 6, we plots results obtained with polynomial orderP = 10; second-,
third- and fourth-order Runge–Kutta backward integrations are employed and referred to in
the legend as RK2, RK3, and RK4, respectively. The second-order scheme, RK2, shows an
algebraic growth rate of order two, as theO(1t2) error term always dominates. For third-
and fourth-order schemes, RK3 and RK4, the trend is less obvious. When1t is not too large,

FIG. 6. Error dependence upon1t with P = 10: Left: RK2, RK3, and RK4; Right: close-up view of RK3
and RK4.
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FIG. 7. Numerical solution for the parabolic cone advection problem. Left: Eulerian SE method, and Right:
SLSE method. A low resolutionP = 4 simulation is shown and the contour levels are nonuniform for visualization
purposes. In both plots, the same exactly vizualization approach was employed.

the two error terms in the estimate (13) are comparable and the competition between them
is nearly in balance resulting in a very slow growth in overall error. It is only at relatively
large1t that the two methods deviate and show different growth rates (see right plot).

2.2.3. Solution of Finite Smoothness

To further examine the accuracy and robustness of the SLSE method, we solved the ad-
vection equation for a solution with finite regularity. The initial condition is a parabolic cone,
which has a discontinuity in the derivatives, unlike the previously tested smooth Gaussian
cone,

φ(x, y, t = 0) =
{−16

[
r 2

0 − 1
16

]
if r0 <

1
4

0 elsewhere’

wherer 2
0 = (x − x0)

2+ (y− y0)
2 and (x0, y0) is the initial center position of the cone.

The transport velocity field is the same as used in the previous example. This prob-
lem is solved with both Eulerian and semi-Lagrangian spectral/hp element methods. A
mesh consisting of 10× 10 quadrilateral elements was used. For polynomial orderP = 4,
the two numerical solutions are compared in physical space in Fig. 7 after 10 revolu-
tions. The point-wise error of the solution after one revolution is plotted in Fig. 8 for

FIG. 8. Point-wise error for the parabolic cone advection problem. Left: Eulerian SE method. Right: SLSE
method.
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TABLE I

Comparison of Computational Cost of Eulerian SE and SLSE Methods

Polynomial SLSE-RK4 ABCN Eulerian Ratio Overall speed-up
order P (sec/step) (sec/step) (SLSE/ABCN) (SLSE/ABCN)

4 0.15 0.08 1.88 10.6
6 0.39 0.21 1.86 10.8
8 0.80 0.51 1.57 12.7

10 1.49 1.19 1.25 16.0

polynomial orderP = 8. We see that for both resolutions the errors for the SLSE method
are localized near the discontinuity, in agreement with previously reported results [9].
However, for the Eulerian scheme error oscillations are spread everywhere in the
domain.

2.2.4. Computational Cost

The SLSE method is generally more expensiveper time stepthan its Eulerian counterpart.
However, by using the fast searching algorithm presented above, the computational cost of
SLSE can be of the same order as the Eulerian spectral/hp element method. In Table I we
compare the computational cost of the two approaches for the aforementioned Gaussian-
cone problem. We see that the SLSE method is less than twice more expensive than the
Eulerian method, and as the spectral order increases the two costs are comparable. However,
with much larger allowable CFL numbers, the total CPU time required for the SLSE method
to reach a certain time level is significantly less than that of Eulerian method. The overall
speed-up list in the table is obtained at CFL number of 20. Therefore, at least one order of
magnitude in speed-up is achieved. The observed drop in the cost ratio asP increases can
be explained as follows: In the current implementation of the SLSE method, the common
edges of interior elements are calculated twice. As the number of degrees-of-freedom of
these common edges counts for a smaller portion asP increases, the cost ratio decreases.
No full optimization has been performed yet to further reduce the search-interpolation CPU
time.

3. INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

In this section, we extend the SLSE method to incompressible Navier–Stokes equations.
Our goal is to design a robust scheme with high-order accuracy in time. We consider the
Navier–Stokes equations in Lagrangian form

du
dt
= −∇ p+ ν∇2u, (14)

∇ · u = 0, (15)

and present three different time-discretization schemes.
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3.1. The First-Order Scheme

The first-order semi-Lagrangian scheme can be obtained readily by treating the right-hand
side of (14) implicitly, i.e.,

un+1− un
d

1t
= −∇ pn+1+ ν∇2un+1, (16)

∇ · un+1 = 0. (17)

This approach leads to unconditional stability and has been used in [15, 28, 38]. However,
it is only first-order in time and thus accuracy considerations limit its effectiveness.

3.2. The Second-Order Schemes

We propose two different approaches, the Crank–Nicolson scheme and the stiffly-stable
scheme. We will show that only the latter is suitable for practical applications.

3.2.1. Crank–Nicolson Scheme

A direct extension of the Crank–Nicolson semi-Lagrangian method from the previous
section yields

un+1− un
d

1t
= −∇ pn+1+ ν∇2

(
un+1+ un

d

2

)
, (18)

∇ · un+1 = 0, (19)

whereun
d denotes the velocityu at the departure pointxd and time leveltn. The characteristic

equation is

dx
dt
= un+ 1

2 (x, t), x(tn+1) = xa, (20)

wherexa is the position vector of the arrival points, which coincide with the grid points.
The velocity attn+1/2 is approximated by the second-order extrapolation

un+ 1
2 = 3

2
un − 1

2
un−1. (21)

Equations (18) and (19) can be solved by the fractional-step method, where the discrete
continuity equation results in a consistent Poisson equation for the pressure. This method
seems to be second-order in time, and it has been used recently in [2]. However, our
numerical experiments show that it is in fact still first-order in time. It can also be justified
as follows: Considering the fact that the idea of semi-Lagrangian scheme is to integrate the
Navier–Stokes equations (14) along characteristic lines, i.e.,∫ xa

xd

du
dt

dt =
∫ xa

xd

(−∇ p+ ν∇2u) dx, (22)

a truesecond-order approximation, according to the midpoint rule, should take the form

un+1− un
d

1t
= 1

2

[
(−∇ p+ ν∇2u)nd + (−∇ p+ ν∇2u)n+1

]
. (23)
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Second-order accuracy can be verified by performing a Taylor expansion analysis. Com-
paring the above equation with Eq. (18), it is clear that method (18) can be at most first
order in time.

The method described in Eq. (23) can be implemented using a high-order splitting scheme,
which results in a three-step procedure [16]. However, our numerical experiments show that
this method develops a long-term instability in the computation. This is due to the explicit
part of pressure term in (23), and it is similar to the long-term instability observed in
the Eulerian pressure correction formulation [14, 18]; it could be treated by additional
projections.

3.2.2. Stiffly-Stable Scheme

To circumvent the long-term instability resulted from the explicit part of pressure term (see
results below), we employ a variation of the backward multistep scheme [11] to discretize
the time derivative. A second-order time-discretization is

3
2un+1− 2un

d + 1
2un−1

d

1t
= (−∇ p+ ν∇2u)n+1, (24)

whereun
d is the velocityu at the departure pointxn

d at time leveltn andun−1
d is the velocity at

the departure pointxn−1
d at time leveltn−1. The departure pointxn

d is obtained by solving (20)
with (21) over one single time level1t ; while pointxn−1

d is obtained by solving

dx
dt
= un(x, t), x(tn+1) = xa (25)

over two time levels 21t . By using the above characteristic equations, the resulting
scheme (24) is second-order accurate in time and can be verified by Taylor expansion
analysis.

A three-step splitting scheme can be used to solve (24), i.e.,

û− 2un
d + 1

2un−1
d

1t
= 0, (26)

ˆ̂u− û
1t
= −∇ pn+1, (27)

3
2un+1− ˆ̂u

1t
= ν∇2un+1. (28)

The discrete divergence-free condition∇ · un+1 = 0 results in a consistent Poisson equation
for the pressure

∇2 pn+1 = 1

1t
∇ · û,

with accurate pressure boundary conditions of the form [16]

∂p

∂n
= −ν · n[û+∇ × ωn+1],

wheren is the unit normal, andω is the vorticity. For details of the solution procedure of
the equations, see chapter 8 of [18].
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3.3. Numerical Results

In this section, we present numerical results by applying the above discretizations to
different benchmark problems. In all the tests employing the SLSE method, the second-
order Runge–Kutta method is employed for backward integration.

3.3.1. The Taylor Vortex

We use the Taylor vortex problem, an exact solution to the unsteady Navier–Stokes
equations, in order to quantify the error in the SLSE method. It has the form

u = −cosx siny e−2t/Re, (29)

v = sinx cosy e−2t/Re, (30)

p = −1

4
(cos 2x + cos 2y)e−4t/Re. (31)

The computational domain is a square defined by the coordinates [−π
2 ,

π
2 ] in each direction.

A mesh consisting of 2× 2 quadrilateral elements is used, and the spectral order ranges
as P = 8, 10, 12, and 14. The Reynolds number is fixed at 106, and theL∞ norm is used
to examine the error. Note that despite the high Reynolds number here, this is a relatively
simple flow to resolve spatially and also it decays exponentially in time.

In Fig. 9 we show the evolution of theL∞ error of the solution over long-time integration,
starting from exact initial conditions. The Crank–Nicolson SLSE method develops a long-
term instability and it leads to inaccurate results. It is seemingly stable for this application
because of the decaying of the exact solution with time; in the next section this long-term
instability will be documented more clearly. On the other hand, the stiffly-stable SLSE
method is robust with accuracy comparable to the Eulerian scheme.

FIG. 9. Time history of error over long-term integration.
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FIG. 10. Spectral convergence for Eulerian SE and SLSE methods.

In Fig. 10 we plot the dependence of the error upon the spectral polynomial order. The
L∞ error of the velocity is measured att = 2π , i.e., after one revolution of the flow. We
see in this semi-log plot that spectral convergence is achieved by both Eulerian and semi-
Lagrangian spectral/hp element methods. The time step here is chosen by fixing the CFL
number atσ = 0.6. In Fig. 11 we plot the dependence of the error upon the size of time
step for the stiffly-stable method. The results are similar to the behavior reported earlier
for the advection–diffusion equation. Note here the accuracy of SLSE method is dictated
by the termO(1t2+ 1xP+1

1t ). At low P the interpolation error dominates, and increasing
1t decreases the overall error, as shown forP = 6. When the interpolation error is small
at P = 12, the1t2 term dominates and further increase in1t increases the overall error.
The P = 8 curve shows the competition between these two terms. In this plot, the largest
time step 0.03 corresponds to the CFL number about 4. We emphasize that it is the size

FIG. 11. Error dependence on1t . Left: SLSE results. Right: close-up view forP = 6.
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FIG. 12. Error dependence on1t . Left: Re= 1, and Right:Re= 106.

of 1t andnot the CFL number that restricts the use of semi-Lagrangian method. In other
words, for the SLSE method, the restriction on the size of time step is solely due to accuracy
considerations but not due to stability.

In the Navier–Stokes implementation, another contribution to the error that needs to be
examined is associated with the splitting procedure (Eq. (26)). For the second-order SLSE
method proposed here, the splitting error scales asO(ν1t2). This error is only visible for
relatively viscous flows. We use two extreme cases to examine this error: One is atν = 1
(Re= 1) where the splitting error is of the same order as temporal error; the other is at
ν = 10−6 (Re= 106) where the splitting error is negligible. In Fig. 12 we show the results
for these two cases, and comparison with the second-order Eulerian method for exactly the
same spatial discretization. We see that atRe= 1, theO(1t2) error dominates at very small
time step (1t ∼ 10−3). However, atRe= 106 theO(1t2) error starts to dominate only at
1t ∼ 10−2. Comparison of the two responses suggests that theO(1t2) error observed at
Re= 1 is the splitting error, and it is comparable in that case to the Runge–Kutta second-
order error. The second-order Eulerian method generates the exact same error in this lowRe
number case and reinforces the above statement. It should be noted that the error from the
semi-Lagrangian part, i.e.,O(1t2+ 1xP+1

1t ), contains anotherO(1t2) term. In advection-
dominated flows the Reyolds number is greater than one, and thus the splitting error is
always subdominant.

3.3.2. Two-Dimensional Driven Cavity Flow

We consider the standard benchmark problem of two-dimensional driven cavity flow; see
Fig. 13. The flow is sustained by the motion of the upper wall at constant velocity while all
other walls are stationary. A mesh consisting of 10× 10 quadrilateral elements is used for
most of the tests, and the spectral order is set toP = 10. We compare the horizontal velocity
profile along the vertical center line and the vertical velocity profile along the horizontal
center line in Figs. 14 and 15 corresponding to Reynolds numberRe= 400 in the first and
to Re= 3,200 andRe= 10,000 in the second figure. The Reynolds number here is based
on the velocity of the upper wall and the height of the cavity. The time step of Eulerian
spectral/hp element method is chosen by fixing CFL number atσ = 0.6, while for SLSE
the time step is more than 30 times larger with CFL number at 20. We observe that the
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FIG. 13. 2-D driven cavity flow atRe= 10,000. The flow is (slightly) unsteady so streamlines of the time-
averaged flow are shown.

FIG. 14. 2-D driven cavity flow atRe= 400. Left: u-velocity profile along vertical centerline. Right: v-velocity
profile along horizontal centerline. (Second-order SLSE result in indistinguishable from Eulerian result.)

FIG. 15. 2-D driven cavity flow atRe= 3,200 (left) andRe= 10,000 (right). Comparisons of the two velocity
components along the vertical and horizontal centerline.
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FIG. 16. Time history of u-velocity at the center of the cavity with various methods;Re= 400.

semi-Lagrangian and Eulerian methods give essentially identical results, which they agree
with the accepted results of [12]. AtRe= 400 we included results from a first-order SLSE
that show visible differences with the high-order accurate results. AtRe=10,000 the flow
has bifurcated to an unsteady state. A time periodic oscillation is established, consistent
with the results of bifurcation studies for the driven cavity flow (see, for example, [33]). In
Fig. 15 (right) the velocity profiles atRe= 10,000 correspond to the time-averaged values;
they agree with the steady state solution of [12] as the onset of bifurcation is just below
Re= 10,000.

We now return toRe= 400 to investigate the stability of the Crank–Nicolson semi-
Lagrangian scheme. In Fig. 16 we plot the time history of the horizontal-velocity at the
center point of the cavity afterlong-time integration. The flow reaches steady state after
t ∼ 30 (nondimensional convective time units). We can see that the second-order stiffly-
stable SLSE method gives almost identical results as the second-order Eulerian method. The
first-order SLSE method also reaches steady state but gives less accurate results. However,
the second-order Crank–Nicolson SLSE method develops a weak long-term instability and
fails to reach a steady state in the end, although at an earlier time (t ∼ 50) it actually
approximates the solution better than the stable first-order method.

We finally compare results for the semi-Lagrangian method using linear and quadratic
triangular finite elements for first- and second-order (in time). The results shown in Fig. 17
were obtained on a mesh consisting of 32× 64 equal triangular elements. We see that even
in the limit of low polynomial order the second-order semi-Lagrangian method performs
quite accurately in contrast with the first-order (in time) semi-Lagrangian method.

3.3.3. Three-Dimensional Driven Cavity Flow

The extension of the SLSE method to three dimensions is straightforward. Here we study
the effect of the three-dimensionality in the driven cavity flow as a function of the aspect
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FIG. 17. 2-D driven cavity flow atRe= 400 for linear and quadratic (triangular) elements. Left: u-velocity
profile along vertical centerline. Right: v-velocity profile along horizontal centerline.

ratio. The Reynolds number is set at 400 and the aspect ratio was set to 1, 3, and 5. We
plot velocity profiles at the center symmetric plane in Fig. 18. Three-dimensionality effects
are more pronounced, as expected, for the expansion ratio 1 as the results deviate the most
from the corresponding two-dimensional profile, while for the aspect ratio 5, a trend toward
two-dimensionality is observed. The results shown in the figure are obtained by SLSE
method with CFL number 20. Results of the Eulerian spectral/hp element method are also
computed with CFL number at 0.6 but are not shown in the plot because they are essentially
identical as the SLSE results. In [2], the semi-Lagrangian (quadratic) finite element method
is used to solve the 2D driven cavity flow. The reported results show significant difference
with the results of [12], and the authors claim favorable comparison with three-dimensional
experimental results of [19]. The present simulations of the three-dimensional driven cavity
flow suggest that such an agreement may have been fortuitous.

3.3.4. Transitional Flow Past a Square Cylinder

In this example, we test the method in the context of vortex shedding for flow past a
square cylinder, which becomes transitional even at low Reynolds number. Specifically,

FIG. 18. 3-D driven cavity flow atRe= 400. Left: Horizontal-velocity profile along vertical centerline, Right:
vertical-velocity profile along horizontal centerline.
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FIG. 19. Snapshot of vorticity contours atRe= 200. (Dotted lines denote negative vorticity.) A “2S” vortex
shedding mode is observed.

we will compare with results of Eulerian schemes as well as experimental results cited in
[8, 10, 26, 32, 35]. The flow remains steady until the Reynolds number reaches its first
critical value at around 40∼ 50. Here the Reynolds number is based on the uniform inflow
and length of the square cylinder. AboveRe∼ 50 a periodic vortex shedding is observed as
shown in Fig. 19. At higher Reynolds number, because of the fast transition that takes place
with a subharmonic cascade present, there is disagreement in the published results related
to the Strouhal number, and drag and lift coefficients. Here we simulate this flow in the
Reynolds number range from 20 to 300 but we only report results for the most interesting
cases.

In Fig. 20 we show the element mesh employed in the simulations. It consists of 1502
triangles with the smaller size elements concentrated around the cylinder in order to capture
the large gradients of vorticity caused by the sharp corners. This is the highest resolution
mesh used in [7] in their three-dimensional simulation of a square-section cylinder with a
wavy surface. They employed the same spectral/hp element code as the one here but with

FIG. 20. Element mesh for flow past a square cylinder. Left: Entire domain (1502 triangles). Right: Close-up
view near the cylinder.
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TABLE II

Comparison of Strouhal Number (B is the Blockage Ratio)

Okajima [26] Saha [32] Davis [8] Franke [10] Sohankar [36]
SLSE Eulerian SE (experimental) (numerical) (numerical) (numerical) (numerical)

Re B= 2.3% B= 2.3% B= 0% B= 10% B= 0% B= 8.3% B = 5.6%

100 0.146 0.145 0.141–0.145 0.159 0.154 — —
200 0.148 0.147 0.138–0.145 0.163 — 0.157 0.170
250 0.139 0.138 0.139–0.143 0.142 0.165 0.141 0.154
300 0.136 0.136 0.137–0.139 0.146 — 0.130 0.138

the Eulerian version, and they simulated flows up toRe= 150. The domain size parameters
Li = 16 (inflow), Lo = 25 (outflow), andLh = 22 (crossflow) result in a low blockage
ratio (B = 1/2Lh = 2.3%), and are chosen according to the study in [3]. All lengths are
nondimensionalized here with respect to the size of the cylinder. We carried out a detailed
convergence study, similar to the one in [7], confirming that with polynomial orderP ≥ 6
a resolution-independent solution is obtained.

The time step for SLSE is 0.005∼ 0.01, depending upon the exact value of the Reynolds
number and the polynomial order, and is at least ten times larger than the corresponding
Eulerian SE runs. Increasing the Reynolds number leads to increases of velocity amplitudes,
and this explains such dependence. The restriction on the time step for SLSE is a concern
of accuracy but not stability. In Table II we compare the Strouhal number (nondimensional
frequency) of vortex shedding at different Reynolds numbers. It can be seen that SLSE
gives results very close to the Eulerian SE method, and they both agree with Okajima’s
experimental result well [26]. The discrepancy with other computational results reported in
the literature is due to their larger blockage ratio, i.e., smaller size of the domain, and also
lower spatial resolution. It should be noted that most of earlier computations are performed
with low-order methods.

At Re= 100 and 200, the flow is periodic with a single vortex shedding frequency,
but with the higherReflow exhibiting stronger super-harmonics. However, atRe= 300
the flow loses stability and a subharmonic frequency cascade emerges. Figure 21 shows

FIG. 21. Spectra of transverse velocity and pressure in the near-wake atRe= 300 from SLSE and Eulerian
SE method. Left: Transverse velocity spectrum. Right: Pressure spectrum.
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FIG. 22. Snapshot of vorticity contours atRe= 300. (Dotted lines denote negative vorticity). A “(2P + 2S)”
vortex shedding mode is observed.

the amplitude spectra of transverse velocity and corresponding pressure atRe= 300. The
time-history is gathered at a near-wake point (x = 3.43, y = 0.83). The results from the
semi-Lagrangian method and Eulerian method agree very well. They both show clearly
the presence of subharmonics with the existence of lower frequency of 1/3 of the primary
shedding frequency. For the transverse velocity spectra on the left, the primary shedding
frequency isfb = 0.136 and the two subharmonics aref1 ≈ 0.045 andf2 ≈ 0.09.

Figure 22 shows a snapshot of vorticity contours atRe= 300. The flow pattern is in
accordance with the “(2P+ 2S)” vortex shedding mode discovered in experiments in [39]
for an oscillating circular cylinder. In this pattern, two vortices of opposite vorticity form
a pair on either side of the centerline while a single vortex is formed between the pair.
The corresponding subharmonics in the experiments were also one-third of the primary
frequency. Williamson and Roshko have presented the physical reasons for this spatio-
temporal behavior [39]. Note that the normal mode of shedding is similar to what is shown
in Fig. 19, which is termed as the “2S” mode. In this pattern, a single vortex of opposite
vorticity is formed on either side of the centerline.

As regards computational efficiency, atwenty timeslarger time step was employed in the
SLSE simulation compared to the Eulerian simulation with other identical parameters. The
corresponding computational speed up with the SLSE method was a factor of about four,
without any special code optimization.

4. SUMMARY

A semi-Lagrangian spectral/hp element (SLSE) method was presented and applied to
advection–diffusion and incompressible Navier–Stokes equations. The method is free from
the CFL-restriction and thus very large time steps can be used, dictated only by accuracy
considerations. This should not be interpreted as violation of the CFL condition, as the
numerical domain of dependence of the solution still contains its domain of dependence
[9]. It can be understood by considering the definition of the CFL condition on afixed
number of nodes as in the finite difference approximations, and contrasting it with the
effectivelyvariablestencil involved in the semi-Lagrangian approach.

An interesting aspect of the method is the structure of the temporal (advection) error,
which reveals nonmonotonic trend with the time step. In particular, in a certain range of
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parameters typically encountered in practical computations, the overall error decreases as
the time step increases. This behavior, however, depends on the interpolation procedure
involved and inaccurate representations may mask this trend. From the practical point of
view, it is the capability of employing significantly larger time steps compared with the
Eulerian schemes that make the SLSE method particularly attractive, especially for high
Reynolds number simulations. This comes at the expense of extra interpolations, which are
“intrinsic” in the spectral/hpelement method, but it avoids prohibitive costs associated with
nonsymmetric solvers as in fully implicit schemes or remeshing as in purely Lagrangian
approaches. The high-order spatial discretization of the spectral/hpelement method seems
to significantly enhance the possibility of using very large time steps. In our numerical tests,
the CFL number can be as high as 20∼ 30 and still retain good accuracy, while the semi-
Lagrangian method with finite elements is about 6∼ 7 [37]. The total cost of SLSE method
was found to be an order of magnitude less than the Eulerian method, depending on the
specific problem. This result is more favorable than the cost reported in [4], where relatively
low-order spatial discretizations and explicitly constructed interpolation algorithms were
employed.

The SLSE method was also extended to incompressible Navier–Stokes equations with fo-
cus on second-order temporal accuracy. Two different types of second-order SLSE methods
were presented, and it was shown that only the stiffly-stable implementation is suitable for
practical applications. Numerical results with the Taylor vortex problem and two- and three-
dimensional cavity flows demonstrated a similar error structure as in the advection–diffusion
equation. A transition flow past a square cylinder in a regime where strong subharmonics
are present was also simulated. A time step of twenty times larger was used and an overall
speed up factor offour was obtained compared to corresponding Eulerian time-stepping.
The advantages of semi-Lagrangian methods, however, should be demonstrated in direct
numerical simulation ofinhomogeneousturbulent flows, where the time step currently used
is two to three orders of magnitude smaller than the Kolmogorov temporal scale. While the
overall gain for homogeneous flows employing Fourier discretizations may be marginal,
consistent with the estimates of Eq. (1) and the analysis in [4], we expect a large gain
for complex-geometry turbulent flows requiring nonuniform grids. We will report on such
systematic studies in a future publication.
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