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Abstract
The inverse problem in electro- and magneto-encephalography (EEG/MEG)
aims at reconstructing the underlying current distribution in the human brain
using potential differences and/or magnetic fluxes that are measured non-
invasively directly, or at a close distance, from the head surface. The simulation
of EEG and MEG fields for a given dipolar source in the brain using a volume-
conduction model of the head is called the forward problem. The finite element
(FE) method, used for the forward problem, is able to realistically model tissue
conductivity inhomogeneities and anisotropies, which is crucial for an accurate
reconstruction of the current distribution. So far, the computational complexity
is quite large when using the necessary high resolution FE models. In this paper
we will extend the concept of the EEG lead field basis to the MEG and present
algorithms for their efficient computation. Exploiting the fact that the number
of sensors is generally much smaller than the number of reasonable dipolar
sources, our lead field approach will speed up the state-of-the-art forward
approach by a factor of more than 100 for a realistic choice of the number of
sensors and sources. Our approaches can be applied to inverse reconstruction
algorithms in both continuous and discrete source parameter space for EEG and
MEG. In combination with algebraic multigrid solvers, the presented approach
leads to a highly efficient solution of FE-based source reconstruction problems.
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1. Introduction

It is common practice in cognitive research and in clinical routine and research to reconstruct
current sources in the human brain by means of non-invasive field measurements outside the
head domain. The activity that is measured in EEG and MEG is the result of movements of
ions, the so-called primary currents, within activated regions in the cortex sheet of the human
brain. The primary current can be modelled mathematically by means of a current dipole
[1–5]. The current dipole causes Ohmic return currents to flow through the surrounding
medium. The EEG measures the potential differences from the return currents at the scalp
surface, whereas the MEG measures the magnetic flux of both primary and return currents. The
reconstruction of the dipole sources is called the inverse problem of EEG/MEG. Its solution
requires the repeated simulation of the field distribution in the head for a given dipole in the
brain, the so-called forward problem. One of the major advantages of EEG and MEG source
reconstruction over other brain imaging techniques such as positron emission tomography
(PET) or functional magnetic resonance imaging (fMRI) is its high temporal resolution.

For the forward problem, the volume conductor head has to be modelled. It is known that
the head tissue compartments scalp, skull, cerebro-spinal fluid, brain grey matter and white
matter have different conductivities and that the layers skull and white matter are anisotropic
conductors [6–9]. Different numerical approaches for the forward problem have been used
such as multi-layer sphere [10], boundary element (BE) [11–13] and finite element (FE)
[4, 14–18] head modelling, where only the FE method is able to treat both realistic geometries
and inhomogeneous and anisotropic material parameters. In most cases, magnetic resonance
images (MRI) are exploited for the construction of BE and FE head models.

Figure 1 [18] shows an axial cut through a five tissue tetrahedra FE head model with
147 287 nodes and 892 115 elements. The tetrahedra of the layers scalp (light brown), skull
(green), cerebro-spinal fluid (light blue), brain grey matter (dark blue) and white matter
(yellow) are indicated with different colours. The model was generated by means of a bimodal
T1/PD-weighted MRI registration and segmentation approach [18, section 1] followed by a
surface-based Delaunay tetrahedrization [18, section 4.7.3]. It is generally assumed that the
weak volume currents outside the skull and far away from the EEG and MEG sensors have a
negligible influence on the measurements. Therefore, the parts of the head mask lying outside
a dilated outer skull surface mask have been cut away when generating the presented volume
conductor model. In figure 2 [18], the white matter conductivity anisotropy is shown on the
underlying T1-MRI by means of tensor ellipsoids (red) in the barycentres of the white matter
finite elements (not shown in the figure).

The influence of skull and white matter conductivity anisotropy on the EEG/MEG forward
problem was studied in realistic FE models in [17–20, 21]. In [15, 18, 21, 22], the sensitivity of
the EEG inverse problem towards skull conductivity anisotropy was examined. The sensitivity
of source reconstruction methods on realistic white matter anisotropy for both EEG and MEG
was studied in [18, 22]. In those studies it has been shown that an exact modelling of tissue
conductivity inhomogeneity and anisotropy is crucial for an accurate reconstruction of the
sources.

An important question is how to handle the computational complexity of FE-modelling
with regard to the EEG/MEG inverse problem. It is the state-of-the-art approach for the
EEG/MEG inverse methods to solve a forward problem for each possible dipolar source
[4, 10–13, 17, 23]. For the FE method, in general, iterative solvers such as the successive over-
relaxation (SOR) or the preconditioned conjugate gradient (CG) method with preconditioners
such as Jacobi (Jacobi-CG) or incomplete Cholesky (IC-CG) have been used (see, e.g., [4]). In
the last few years, algebraic multigrid (AMG) solvers have been developed (see, e.g., [24, 25]).
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For the considered application, it was shown in [26] that the AMG, used as a preconditioner
for the CG method, is more efficient than IC with or without threshold-techniques. In [27],
the AMG solver was found to be superior to an SOR method and to a symmetric SOR
preconditioned CG method in finite difference discretizations of the volume conductor. A
parallel AMG–CG approach for the forward problem in source localization has been used in
[18, 20, 23]. When comparing the parallel AMG–CG on the anisotropic head model shown in
figures 1 and 2 with a standard Jacobi-CG on a single processor, speed-up factors of about 80
have been achieved, 10 through multigrid preconditioning and 8 through parallelization on 8
processors [18, 20, 23]. Still, the repeated solution of such a system with a constant geometry
matrix for thousands of right-hand sides (the sources) is the major time consuming part within
the inverse localization process and limits the resolution of the models.

A further very efficient concept for the reduction of the computational complexity has
been described, the concept of reciprocity ([16, 28–30] and [18 section 6.3]). The theory
of reciprocity was already introduced in 1853 by [28] and was intensively studied for both
the electric and the magnetic cases in [29 sections 11, 12]. The reciprocity theorem for the
electric case states that the field of the so-called lead vectors is the same as the current field
raised by feeding a reciprocal current to the lead [29, section 11.6.3]. The concept allows
us to switch the role of the sensors with the dipole locations. For the FE-based EEG source
reconstruction, it was shown in [16] how to use this principle for the efficient computation of
a so-called node-oriented lead field basis, a matrix with ‘number sensors’ rows and ‘number
FE nodes’ columns. This matrix can then be exploited within the EEG inverse problem. In
[30], reciprocity was used for the efficient solution of the EEG inverse problem when using
the finite difference method for the forward problem. The application of reciprocity to MEG
is nontrivial and has been studied in [31], where the magnetic lead field theorem was proved.
Nevertheless, as far as we know, it is not yet clear how to efficiently compute the lead field
basis for the MEG in combination with the FE method for the forward problem.

In this paper, we will simply apply the mathematical law of associativity with respect
to the matrix multiplication. Then, for each head model, we only have to solve ‘number of
EEG/MEG sensors’ times a large sparse FE system of equations in order to compute the lead
field basis for both EEG and MEG. This set-up can be computed efficiently using the parallel
AMG–CG solver. Each forward solution is then reduced to the multiplication of the lead field
basis to a FE right-hand side vector.

The paper is organized as follows: in the next section we describe the electric and the
magnetic forward problems. In section 3, FE discretization aspects are discussed. Section 4
contains a brief description of inverse methods on discrete [12, 32–37] and on continuous
[11, 18, 38] source parameter space. In section 5, we estimate the complexity of the state-
of-the-art approach to the EEG/MEG inverse problem. Section 6 contains our new approach
resulting in two algorithms that solve the EEG and MEG inverse problem. In section 7, we will
discuss the applicability of the mathematical dipole model in combination with the subtraction
method in the context of our new approach. Finally, we conclude and give some perspectives
in section 8.

2. Forward problem formulation

2.1. The Maxwell equations

Let us begin with the introduction of some notation: let E and D be the electric field and electric
displacement, respectively, ρ the electric free charge density, ε the electric permeability and j
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the electric current density. By µ we denote the magnetic permeability and by H and B the
magnetic field and induction, respectively.

In the considered low frequency band (frequencies below 2000 Hz), the capacitive
component of tissue impedance, the inductive effect and the electromagnetic propagation effect
and thus the temporal derivatives can be neglected in the Maxwell equations of electrodynamics
[39]. It can be assumed that µ is constant over the whole volume and is equal to the permeability
of vacuum [39]. Therefore, the electric and magnetic fields can be described by the quasi-static
Maxwell equations

div D = ρ

curl E = 0

curl B = µj (1)

div B = 0 (2)

with the material equations

D = εE

B = µH,

since biological tissue mainly behaves as an electrolyte [39]. The electric field can be expressed
as a negative gradient of a scalar potential,

E = −grad u. (3)

The current density is generally divided into two parts [39], the so-called primary or impressed
current, jp, and the secondary or return currents, σE,

j = jp + σE, (4)

where σ denotes the 3 × 3 conductivity tensor. The sources to be localized during the inverse
problem and to be modelled in the forward problem, the primary currents jp, are movements
of ions within the dendrites of the large pyramidal cells of activated regions in the cortex sheet
of the human brain. Stimulus-induced activation of a large number of excitatory synapses of
a whole pattern of neurons leads to negative current monopoles under the brain surface and to
positive monopoles quite closely underneath. Various modelling possibilities for the primary
currents are discussed in the literature [1–5]. While the so-called mathematical dipole model
[2, 18] will be considered later in section 7, we will restrict ourselves in the following to the
blurred dipole model [4, 18].

2.2. The electric forward problem

We now assume that the conductivity distribution σ in the head domain is given. Taking the
divergence of equation (1) (divergence of a curl of a vector is zero) and using equations (3)
and (4) gives the equation

−div(σ grad u) = −div jp in �, (5)

which describes the potential distribution in the head domain � due to a primary current jp in
the brain. For the forward problem, the primary current and the conductivity distribution in
the volume conductor are known, and the equation has to be solved for the unknown potential
distribution. The boundary condition

(σ
1
grad u1, n)|at surface = (σ

2
grad u2, n)|at surface
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Figure 1. Five tissue FE head model with 147 287 nodes and 892 115 elements. The tetrahedra of
the layers scalp, skull, cerebro-spinal fluid, brain grey matter and white matter are indicated with
different colors.

with n the unit surface normal expresses the continuity of the current density across any surface
between regions of different conductivity. We find homogeneous Neumann conditions on the
head surface � = ∂�,

(σ grad u, n)|� = 0, (6)

and, additionally, a reference electrode with given potential, i.e.,

uref = 0. (7)

2.3. The magnetic forward problem

Since the divergence of B is zero (see Maxwell equation (2)), a magnetic potential A with
B = curl A can be introduced and, using Coulomb’s gauge div A = 0, Maxwell’s equation (1)
transforms to

µ( jp − σ grad u) = curl (curl A) = grad (div A) − �A = −�A.

The source term is vanishing outside the volume conductor, so that the solution of this Poisson
equation is given by [40]

A(x) = µ

4π

∫
�

jp(y) − σ(y)grad u(y)

|x − y| dy. (8)

Let F be the surface enclosed by the MEG magnetometer flux transformer ϒ = ∂F . A typical
MEG magnetometer conduction loop ϒ is shown in figure 3(b). The magnetic flux 
 through
ϒ is determined as a surface integral over the magnetic induction for the coil area F, or, using
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Figure 2. White matter anisotropy modelled with conductivity tensor ellipsoids in the barycentres
of the white matter finite elements presented on an underlying magnetic resonance image.

Figure 3. (a) Sensors of whole head BTI-148-channel MEG system together with the outer surface
of the head model of figure 1 [18]. (b) A typical magnetometer flux transformer.

the Stokes theorem [40], as


 =
∫

F

B · df =
∮

ϒ

A(x) · dx
(8)=

∮
ϒ

µ

4π

∫
�

jp(y)

|x − y| dy · dx

+
∮

ϒ

µ

4π

∫
�

−σ(y) grad u(y)

|x − y| dy · dx.
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The first part of this magnetic flux is called the primary magnetic flux and in the following
denoted with 
p, and the second is the so-called secondary magnetic flux 
sec.


p is only dependent on the source model and can in general be computed by simply
evaluating an analytical formula [11, 18, 41, 42].

If we define

C(y) =
∮

ϒ

1

|x − y| dx, (9)

and if the potential distribution u is given, the final equation for 
sec emerges from the
secondary (return) currents and can be given by


sec = − µ

4π

∫
�

(σ(y)grad u(y), C(y)) dy. (10)

3. Discretization aspects for the forward problem

3.1. Discretizing the electric forward problem

For the numerical solution, we choose a finite-dimensional subspace with dimension N and a
standard nodal finite element basis ψ1, . . . , ψN . The numerical solution process depends on
the chosen model for the primary source. Here, we will refer to the literature for a deeper
discussion and restrict ourselves to the following remarks.

The mathematical dipole model together with the subtraction approach [14, 18, 43] will
be discussed later in section 7.

The blurred dipole model [4, 18] follows the law of St Venant and is made up from
monopolar loads on all neighbouring FE nodes so that the dipolar moment is fulfilled and the
source load is as regular as possible. The dipole moment is then only a means for visualization.
In this case, variational and FE techniques can be directly applied to equation (5) with boundary
conditions (6) and reference potential (7). This yields a system of linear equations

KN

N

Ku = jblur
(11)

where the stiffness or geometry matrix has entries

Kij =
∫

�

(grad ψj(y), σ (y)grad ψi(y)) dy ∀1 � i, j � N (12)

and is symmetric positive definite. The positive definiteness follows from the ellipticity of the
underlying bilinear form [18]. The right-hand-side jblur has only cnz non-zero entries, if cnz is
the number of neighbouring FE nodes to that FE node which is closest to the location of the
dipole. The vector u ∈ R

N denotes the solution vector for the total potential.
Let us further assume that the (seeg −1) non-reference EEG electrodes directly correspond

to FE nodes at the surface of the head model. It is then easy to determine a restriction matrix
R ∈ R

(seeg−1)×N , which has only one non-zero entry with the value 1 in each row and which
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maps the potential vector onto the non-reference EEG electrodes

R

N

–1seeg

Ru =: ueeg. (13)

3.2. Discretizing the magnetic forward problem

For the magnetic forward problem, the flux transformers of the MEG device have to be
modelled (see equation (9)). As an example, the sensors of the whole head BTI-148-channel
MEG system together with the outer surface of the head model of figure 1 are shown in
figure 3(a). A typical magnetometer coil ϒ is shown in figure 3(b). Following [42], we model
such a coil by means of a thin, closed conductor loop, using isoparametric quadratic row
elements. When approximating the potential u by means of its Galerkin projection, equation
(10) can be written in matrix form

S

N

smeg

Su =: 
sec (14)

with S ∈ R
smeg×N the so-called secondary flux matrix. S maps the potential onto the secondary

flux vector 
sec ∈ R
smeg . The secondary flux matrix has the entries

Sij = − µ

4π

∫
�

(σ(y)grad ψj(y), Ci (y)) dy ∀1 � j � N

where Ci (y) denotes the function (9) for the ith MEG magnetometer ϒi (1 � i � smeg). For
the computation of the matrix entries of S, a FE ansatz for the integrand and Gauss integration
is used [42].

4. The inverse problem

The non-uniqueness of the inverse problem in EEG and MEG implies that assumptions on the
source model, as well as anatomical and physiological a priori knowledge about the source
region, should be taken into account to obtain a unique solution.

In the following, we will distinguish two classes of inverse methods, those in discrete
source parameter space and those in continuous source parameter space. The dipole model
for the primary current is regarded as the ‘atomic’ structure for both classes.

4.1. Inverse methods for a discrete source parameter space

One piece of physiological a priori information about the source region (influence space) is
the assumption that the generators must be located on the folded surface of the brain inside
the cortex, ignoring white matter and deeper structures such as basal ganglia, brain stem
and cerebellum. If convolutions of the cortical surface are appropriately modelled by the
segmentation procedure, another addition is the anatomical information that the generators are
perpendicular to this surface [3, 44]. This limitation to normally oriented dipoles is called the
normal-constraint. Because the dipole models an active source region with a certain extent
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and the resolution of the inverse current reconstruction by means of noisy EEG or MEG data
is limited, most inverse methods (see, e.g., [12, 32–37]) and especially all so-called current
density methods [12, 32, 36, 37] are based on a discretized influence space. The discretization
can be represented, for example, by the vertices of a cortical triangulation when using the
physiological constraint. Other approaches use regular 3D discretizations of the whole brain
volume. The so-called influence nodes are the ninf vertices of the discretized influence space.
Since the differential equation is linear, it is possible to set up a so-called influence matrix
L ∈ R

s×r (often also called lead field matrix). A forward solution for a dipole on one of the
ninf influences nodes with unit strength in one Cartesian direction at the

s = seeg + smeg

EEG/MEG measurement sensors is stored as a column of L. If the physiological a priori
information and the normal-constraint are applied, there is only one possible dipole direction
for each influence node and thus every dipole location i ∈ {1, . . . , ninf} is represented by only
one column in the influence matrix, i.e. r = ninf . For the unconstrained case, three columns
in L represent the three orthogonal unit dipoles at a specific location, i.e. r = 3ninf .

If once, the discretization of the influence space has been fixed, the block of the r right-
hand sides jblur ∈ R

N (see section 7 for the mathematical dipole model) can be set up. The
goal is then a fast computation of the influence matrix L, which can subsequently be used for
the whole variety of inverse reconstruction methods for discrete source parameter space.

4.2. Inverse methods for a continuous source parameter space

The second class of inverse methods exploits a continuous source parameter space [11, 18,
38]. One could imagine, for example, the restriction of the inverse reconstruction to a limited
number of dipoles (with respect to the application: one up to three). Their nonlinear location
parameters are optimized continuously in the brain volume, while the remaining parameters
are determined with a linear fit to the measured EEG/MEG data within each optimization
step. This is done, e.g., within the so-called dipole fit methods [11, 18, 38]. The number r
of necessary forward simulations in such methods is dependent on the convergence speed of
the optimization method. This class of inverse algorithms cannot exploit the influence matrix
concept (apart from interpolation techniques [13]), since the new dipole parameters and thus
the new right-hand sides are only determined within the previous optimization step. Still, we
can apply our new approach successfully.

5. State-of-the-art approach in EEG/MEG source reconstruction

For the considered inhomogeneous and anisotropic volume conductor models, the AMG–CG
iterative solver [18, 20, 23, 26] turned out to be an asymptotically optimal solver method for
the numerical solution of (11), where the operation count and memory demand are of the order
O(N). Our approach can also be applied in combination with other solver methods, but in the
following we will only consider the AMG–CG.

We will now describe the state-of-the-art approach for the EEG/MEG inverse problem
which covers both classes of inverse methods. A new FE right-hand side vector is determined
by the inverse algorithm, and the AMG–CG solver is used for the numerical solution of the
potential distribution. For the computation of the secondary flux at the MEG-sensors, the
potential distribution is then multiplied by the secondary flux matrix following equation (14).
The restriction (13) terminates the forward computation.

The numerical tests are performed on a Sun Ultrasparc III with 900 MHz CPU clock rate.
We only use a single processor for the following computations.
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5.1. Complexity estimation for AMG–CG solver

We first estimate the complexity for an AMG–CG solution [23], following the MultiGrid
operation count of [45, section 10.4.4]. With cnz ∗ N being the sparsity of the geometry/

stiffness matrix, we assume CS ∗ cnz ∗ N operations for the smoother, CD ∗ cnz ∗ N for the
computation of defect and restriction and CP ∗ N for the prolongation of the error. Here,
CS denotes the cost factor for the smoother which is an iteration-specific constant. We use
Gauss–Seidel smoothing for which it is CS = 2 − 2/cnz [45, section 4.6.1]. CP and CD

depend on the chosen prolongation operator. As described in [23], our prolongation matrix
interpolates the value of a fine grid node (which is not at the same time a coarse grid node) only
from strong neighbour coarse grid nodes, i.e. CP � cnz. In our application, the restriction
matrix is the transpose of the prolongation matrix. We use a V-cycle with only one pre-
and one post-smoothing step within each preconditioning operation. We then obtain as an
approximation of the necessary work for the MG preconditioner [45, theorem 10.4.2]:

8
7 ∗ (2 ∗ CS + CD + CP /cnz) ∗ cnz ∗ N.

We furthermore have to count one matrix-vector multiplication (2 ∗ cnz ∗ N operations), two
scalar products (2 ∗ 2 ∗ N operations) and three vector additions (3 ∗ N operations) for the
CG step. If we assume that i iterations have to be carried out, we will need for one AMG–CG
solution approximately i ∗ k ∗ N operations with

k := 8
7 ∗ (2 ∗ CS + CD + 2 + (CP + 7)/cnz) ∗ cnz.

We will study the head model of figures 1 and 2 with N = 147 287 FE nodes as an example:
in order to reach a sufficient accuracy, we have to reduce the relative error by a factor of
108 which can be accomplished by i = 20 iterations of AMG–CG [18, 20, 23, 26]. On our
machine, each iteration takes 1.269 s, i.e. 25.38 s to solve for each right-hand side.

5.2. Complexity estimation for the state-of-the-art approach

Let us now have a look at the complexity of the state-of-the-art approach for the inverse
problem.

For the matrix-vector multiplication in equation (14), 2 ∗ smeg ∗ N operations are needed.
Let us neglect the work for the restriction u eeg = Ru and for the computation of the FE
right-hand side vector. Then, for each inverse algorithm with r different right-hand sides, the
state-of-the-art approach needs

r ∗ ((i ∗ k + 2 ∗ smeg) ∗ N)

operations.
In EEG/MEG source reconstruction, r is generally quite large, especially because the

results of various different inverse algorithms based on different hypotheses on the underlying
current distribution are compared to each other. Already an anatomically correct discretization
of the cortical surface, respecting all curvatures of the cortical sulci and gyri, results in at least
104 influence nodes [18, figure 2.5]. This number would be even exceeded in the case of a 3D
discretization of the whole brain volume. In contrast to that, the number of sensors s is rather
small. The most modern vector-MEG devices have at most 500 sensors and for the EEG, not
more than 150 sensors can be fixed on the head surface. In most applications, the number of
sensors is below 150 (see figure 3(a)) as an example).

In our model problem, we have smeg = 150 sensors and r = 30 357 right-hand sides
(possible dipoles). The solution of the FE system for 30 357 right-hand sides and subsequent
matrix-vector multiplication with S from equation (14) takes

774 331 s = 215 h,



Efficient computation of lead field bases and influence matrix 1109

which is too expensive for realistic applications. In the next section, we explain how one can
severely reduce this complexity, down to 1 h.

6. Computation of the lead field basis and influence matrix

The inverse of the geometry/stiffness matrix, K−1, exists, but its computation is a difficult
task, since the sparseness of K will be lost while inverting. But with regard to the EEG inverse
problem, we are only interested in computing

N

–1 R

K

Beegeegs
–1 Beeg := RK−1 ∈ R

(seeg−1)×N , (15)

which describes the direct mapping of a FE right-hand side vector to the non-reference
electrodes:

Beegjblur (15)= RK−1jblur (11)= Ru
(13)= u eeg.

Weinstein et al [16] introduced the notation EEG lead field basis for Beeg. We will now see
that we face a comparable situation with regard to the MEG inverse problem. In fact, let us
define the MEG lead field basis:

N

S

K

Bsmeg meg

–1 Bmeg := SK−1 ∈ R
smeg×N . (16)

One should note that the rows of Beeg do indeed form a basis in the mathematical sense, while
this is not necessarily true for Bmeg. Bmeg describes the direct mapping of the FE right-hand
side vector to the secondary magnetic flux vector:

Bmegjblur (16)= SK−1jblur (11)= Su
(14)= 
 sec.

The lead field basis can be computed as follows: if we multiply the matrix equation[
Beeg

Bmeg

]
=

[
R
S

]
K−1

with K from the right-hand side and transpose both sides, we obtain

K
[
Btr

eeg Btr
meg

] = [Rtr Str].

The last step uses the symmetry of the geometry matrix (see equation (12)).

Algorithm 1 INVERSE PROBLEM WITH MODERATE SIZE OF THE LEAD FIELD BASIS

Precompute Beeg and Bmeg and store both matrices
repeat

INVERSE ALGORITHM COMPUTES NEW jblur

MULTIPLY jblur BY Beeg AND Bmeg: USE SPECIAL STRUCTURE OF jblur

until TERMINATION OF INVERSE ALGORITHM
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Algorithm 2 INVERSE PROBLEM WITH LARGE SIZE OF THE LEAD FIELD BASIS

PRECOMPUTE Jblur ∈ R
N×r

IN CSC-FORMAT

for i = 1, . . . , s do
DETERMINE THE iTH ROW OF THE LEAD FIELD BASIS

MULTIPLY THIS ROW BY Jblur, I.E., COMPUTE iTH ROW OF L
STORE iTH ROW IN L ∈ R

s×r

end for
USE L FOR INVERSE METHODS ON DISCRETE PARAMETER SPACE

6.1. Algorithms

Let us first assume that we are equipped with a computer memory which is large enough to
store s ∗ N doubles for the lead field bases Beeg and Bmeg. In this case, algorithm 1 can be
used. In a set-up phase, Beeg and Bmeg are computed once per head-model by means of solving
s large sparse FE-systems of equations using, e.g., the iterative AMG-CG solver. The lead
field bases can then be exploited for any new FE right-hand side within the inverse algorithm
for both classes of inverse methods, discrete and continuous. Remember that for the blurred
dipole model, jblur has only cnz non-zero entries, which can efficiently be used within the
matrix-vector multiplication.

The mathematical dipole would lead to dense right-hand side vectors (no non-zero entries).
In this case, we suggest special techniques described in section 7.

If the computer memory is too small to store s ∗ N doubles for Beeg and Bmeg and if
only inverse methods for discrete source parameter space in combination with the blurred
dipole model are of interest, algorithm 2 is the appropriate one. In a set-up phase, the block
with r right-hand sides jblur for all blurred dipoles of the influence space is precomputed and
stored using a compressed sparse column (CSC) format [46]. Let us denote this matrix with
Jblur ∈ R

N×r. Each row of the lead field basis can then be computed using AMG-CG and
directly multiplied to Jblur. The result is a row of the influence matrix L ∈ R

s×r from chapter 4.1.
L can then be exploited by means of all inverse methods working on that specific discrete
influence space.

6.2. Complexity of algorithms 1 and 2

Let us now have a look at the complexity of algorithm 1 that computes the lead field bases
Beeg and Bmeg.

As in section 5.2 we consider the tetrahedra model problem (figures 1 and 2) with
r = 30 357 right-hand sides and s = smeg = 150 sensors. In brackets we give the concrete
time for the computations on our machine (cf section 6).

After a set-up with

s ∗ i ∗ k ∗ N operations (3807 s),

which is a unique calculation for each individual head geometry, we only have to multiply the
new FE right-hand side vector by the lead field bases. For r full right-hand side vectors, this
amounts to

r ∗ (2 ∗ s ∗ N) operations (3871 s).

If, furthermore, the blurred dipole is used, this operation count is reduced to only

r ∗ (2 ∗ s ∗ cnz) operations (4.7 s)
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for each inverse method. Note that this number is independent of the mesh-resolution. The
overall complexity in this case is

s ∗ i ∗ k ∗ N + 2 ∗ r ∗ s ∗ cnz (3812 s),

i.e. it is mainly determined by the set-up phase. The complexity of algorithm 2 is the same
(if the blurred dipole is used). The overall complexity of our approach is thus by a factor r/s
(in our model problem: 200) smaller than the complexity for the state-of-the-art approach. If
various inverse methods are compared to each other, this factor will grow with the number r
of FE right-hand sides.

7. Mathematical dipole and subtraction approach

For the mathematical dipole [14, 18, 43], a subtraction approach is used for the solution of the
electric forward problem. The total potential u is split into two parts, the singularity potential
u∞ corresponding to the location of the dipole, y ∈ R

3, with the dipole moment M(y) ∈ R
3

[41],

u∞(x) := 1

4π

〈M(y), x − y〉
‖x − y‖3

, div grad u∞ = Jp := div M(y)δ(x − y) (17)

and the unknown correction potential ucorr:

u = u∞ + ucorr.

A FE ansatz for the correction potential leads to a linear system of equations

Kucorr = jcorr (18)

with the same geometry matrix K as in (12). The right-hand side jcorr ∈ R
N is a full vector and

ucorr ∈ R
N denotes the solution vector for the correction potential. A precise definition of the

right-hand side is

jcorr = (K� − K + Kn)u
∞. (19)

K� is the discrete Laplacian and Kn the discretization of the inhomogeneous Neumann
boundary conditions at the surface of the volume conductor induced by u∞ (see, e.g.,
[18, sections 4.4.1, 4.7.4]). The sparsity pattern of both matrices, K� and Kn, is contained in
the sparsity pattern of K. Therefore, cnz ∗ N is also the sparsity of K� + Kn.

The restriction matrix R from (13) maps the potential vector onto the potential of the
non-reference EEG electrodes

u eeg := R(ucorr + u∞)
(18)= RK−1jcorr + Ru∞ (19)= RK−1(K� + Kn)u

∞. (20)

Equation (14) then gets


 sec := S(ucorr + u∞)
(18)= SK−1jcorr + Su∞ (19)= SK−1(K� + Kn)u

∞. (21)

Algorithm 3 INVERSE PROBLEM WITH CONTINUOUS SOURCE PARAMETER SPACE

Precompute B∞
eeg and B∞

meg and store both matrices
repeat

INVERSE ALGORITHM COMPUTES NEW u∞

MULTIPLY u∞ BY B∞
eeg AND B∞

meg

until TERMINATION OF INVERSE ALGORITHM
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The matrices

B∞
eeg := RK−1(K� + Kn) ∈ R

(seeg−1)×N

and

B∞
meg := SK−1(K� + Kn) ∈ R

smeg×N

can be precomputed and used for any right-hand side u∞ coming either from a discrete or a
continuous source parameter space.

7.1. Algorithms and complexity for the mathematical dipole

In the following we give in brackets the concrete times for the computations on our machine
(cf section 5.2) for the tetrahedra model problem (figures 1 and 2).

For a continuous source parameter space algorithm 3 is applicable. Here, one has to
precompute B∞

eeg and B∞
meg with a complexity of

s ∗ i ∗ k ∗ N + s ∗ cnz ∗ N (3876 s)

and can then use these matrices to compute u eeg and 
 sec with a complexity of s ∗ N (0.1 s)
for each dipole (i.e. for each u∞). For a total of r = 30 357 dipoles this complexity is

r ∗ (2 ∗ s ∗ N) (3871 s).

The total complexity for both set-up and solution phase is

(i ∗ k + cnz + 2 ∗ r) ∗ s ∗ N operations (7747 s),

which is 100 times less than the complexity for the state-of-the-art approach.
For a discrete source parameter space the r possible dipole locations are known. In this

case we can use the same strategy as for the blurred dipole, namely to store the whole matrix
U∞ whose columns are the vectors u∞ for the respective dipole locations. However, the
matrix U∞ is not sparse. A new technique to store matrices of this type in a data-sparse form
are so-called hierarchical matrices, or short H-matrices [47–50]. This format exploits the fact
that the function u∞(x) can be interpolated efficiently. The dependence of u∞(x) on the dipole
location y is complicated, but we can split the function u∞ into

u∞(x) =
3∑

i=1

M(y)i

4π
· (xi − yi)

‖x − y‖3
,

such that only the term (xi − yi)/‖x − y‖3 has to be interpolated, i.e. we have to fulfil the
standard admissibility condition

min{diam(X), diam(Y )} � dist(X, Y )

Algorithm 4 INVERSE PROBLEM WITH CONTINUOUS SOURCE PARAMETER SPACE

PRECOMPUTE U∞ ∈ R
N×r

IN H-MATRIX FORMAT

for i = 1, . . . , s do
DETERMINE THE iTH ROW OF THE LEAD FIELD BASIS B∞

eeg, B∞
meg

MULTIPLY THIS ROW BY U∞, I.E., COMPUTE iTH ROW OF L
STORE iTH ROW IN L ∈ R

s×r

end for
USE L FOR INVERSE METHODS ON DISCRETE PARAMETER SPACE
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Figure 4. The transpose of the matrix U∞ in H-matrix format where each green block is stored in
a data-sparse low-rank format.

for regions X × Y 	 (x, y) where we want to replace the function u∞ by its interpolant
(cf [50]).

Standard geometrically balanced clustering [49] yields a partition of the matrix U∞ as
shown in figure 4. Each green block in figure 4 allows for a data-sparse low rank approximation
while the red (but small) ones are stored in standard dense matrix format. The whole matrix
U∞ can be assembled and stored with cas ∗ log(N) ∗ N operations (81.4 s)—much less than
the c ∗ r ∗ N operations (1026.8 s) needed without the data-sparse H-matrix format. Once the
matrix has been assembled and stored in this (packed) format, it allows for a fast matrix-vector
multiplication with cmv ∗ log(N) ∗ N operations (8.34 s) [49]. Algorithm 4 uses the H-matrix
format and exploits the fast matrix-vector multiplication. The total set-up complexity is

(i ∗ k + cnz + cmv ∗ log(N)) ∗ s ∗ N (5208.4 s)

for the influence matrix L. This is 149 times less than the complexity for the state-of-the-art
approach. The influence matrix L can, of course, be used for any inverse method working on
that specific discrete influence space.

8. Conclusions and perspective

In this paper we presented a new approach to strongly reduce the algorithmic complexity of
EEG/MEG inverse source reconstruction algorithms which are based on the finite element
(FE) volume conductor modelling of the human head. The FE computational complexity of
the state-of-the-art approach can be seen as the main disadvantage of FE compared to multi-
layer sphere [10] or boundary element (BE) [11–13] head modelling. Our approach turns out
to be very effective if the number of EEG/MEG sensors is much smaller than the number
of sources for which a forward computation has to be carried out. This is the case in most
applications, since the number of sensors is about 102, while the number of necessary forward
computations is often beyond 104.

Our approach opens new possibilities concerning the resolution of FE head modelling.
The number of large sparse linear systems that have to be solved per head geometry is now
limited to the number of EEG/MEG sensors in order to compute the EEG/MEG lead field
basis, a matrix with ‘number of EEG/MEG sensors’ rows and ‘number of FE nodes’ columns.
The parallel algebraic multigrid preconditioned conjugate gradient method is an efficient
solver for this set-up phase, as shown in [18, 20, 23, 26]. Each FE forward computation within
inverse methods on both continuous and discrete source parameter space is then reduced to
the multiplication of the FE right-hand side with the lead field basis. In combination with the
blurred dipole model, a FE forward solution is then limited to 2 ∗ s ∗ cnz operations with s the
number of EEG/MEG sensors and cnz the number of neighbours to a FE node.

Furthermore, for the blurred dipole model [4, 18], we presented an algorithm for the
row-wise computation of the influence matrix which only uses one row of the lead field basis
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at a time so that the full lead field basis does not have to be stored at all. This method is
suitable for all inverse methods on discrete source parameter space with high resolutions of
the FE approach and a large number of EEG/MEG sensors.

The treatment of the mathematical dipole in the subtraction method [14, 18, 43] with our
new approach is enhanced by using the data-sparse H-matrix format.

The potential resolution for FE head modelling is now less limited by the complexity of
the FE forward computations, but rather by the memory necessary to save the structures for
the AMG-CG approach and the lead field basis. For very high resolutions, a parallel FE solver
approach [18, 23] and the parallelization of the lead field basis multiplication seems to be
necessary in order to distribute the memory on the computational nodes.

The new approach encourages the use and further development of the SimBio4 mesh
generation tool VGRID [51]. The current version of VGRID generates high-resolution FE
meshes which are especially refined at tissue boundaries. In the future, a follow-up mesher
could be developed in order to refine the FE mesh in areas of diffuse anisotropy.

The methods presented in this paper even motivate the use of the current resolution of the
MR machines as the FE mesh resolution, i.e. FE meshing is no longer necessary at all.
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[12] Fuchs M, Wagner M, Köhler T and Wischmann H A 1999 Linear and nonlinear current density reconstructions

J. Clin. Neurophysiol. 16 267–95
[13] Yvert B, Crouzeix-Cheylus A and Pernier J 2001 Fast realistic modeling in bioelectromagnetism using lead-field

interpolation Hum. Brain Mapp. 14 48–63
[14] Awada K A, Jackson D R, Williams J T, Wilton D R, Baumann S B and Papanicolaou A C 1997 Computational

aspects of finite element modeling in EEG source localization IEEE Trans. Biomed. Eng. 44 736–51

4 SimBio: A generic environment for bio-numerical simulation. IST-programme of the European Commission,
project no 10378, http://www.simbio.de, 2000–2003.



Efficient computation of lead field bases and influence matrix 1115

[15] Ollikainen J, Vauhkonen M, Karjalainen P A and Kaipio J P 1999 Effects of local skull inhomogeneities on
EEG source estimation Med. Eng. Phys. 21 143–54

[16] Weinstein D, Zhukov L and Johnson C 2000 Lead-field bases for electroencephalography source imaging
Ann. Biomed. Eng. 28 1059–66

[17] Haueisen J, Tuch D S, Ramon C, Schimpf P H, Wedeen V J, George J S and Belliveau J W 2002 The influence
of brain tissue anisotropy on human EEG and MEG NeuroImage 15 159–66

[18] Wolters C 2003 Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/MEG-Based Source
Localization in the Human Brain (MP Series in Cognitive Neuroscience no 39) (Leipzig: MPI of Cognitive
Neuroscience)

see also Wolters C 2003 Dissertation University of Leipzig, http://dol.uni-leipzig.de/pub/2003-33
[19] van den Broek S P, Reinders F, Donderwinkel M and Peters M J 1998 Volume conduction effects in EEG and

MEG Electroencephalogr. Clin. Neurophysiol. 106 522–34
[20] Wolters C H, Anwander A, Koch M, Reitzinger S, Kuhn M and Svensén M 2001 Influence of head tissue

conductivity anisotropy on human EEG and MEG using fast high resolution finite element modeling,
based on a parallel algebraic multigrid solver Forschung und wissenschaftliches Rechnen (Contributions
to the Heinz-Billing Award no 58) (Göttingen Gesellschaft für wissenschaftliche Datenverarbeitung mbH)
ed T Plesser, V Macho pp 111–157 See http://www. billingpreis.mpg.de

[21] Marin G, Guerin C, Baillet S, Garnero L and Meunier G 1998 Influence of skull anisotropy for the forward
and inverse problem in EEG: simulation studies using the FEM on realistic head models Hum. Brain Mapp.
6 250–69
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