
���������
	���������������������������
���! "��#%$&	('��� �)+*,�!-"	�-������.��#0/1�2)3	���#%�4��*65%��)879 ��:���<;�=?>
Won-Ki Jeong Tolga Tasdizen Ross Whitaker

School of Computing, University of Utah

@BADCFE GIHKJ.L8H4ME N�OPE Q�RFG.E H4CSHKTVUXWYE Z4[KJ�\E WK] ^_OX`YJa`
Let h b x c y d and N b x c y d be the height field and its unit length surface
normal vectors, respectively. For feature preserving diffusion of h ,
we use the two step algorithm described in [Tasdizen and Whitaker
2003]:

Step 1. Anisotropic Diffusion of Face Normals : Anisotropic
diffusion of a given vector field N can be implemented by the
following system of non-linear PDE

∂N
∂ t e ∇ fIb c∇N dIg

The conductance value, c, is large for areas of the vector field
with low curvature and small for areas with high curvature.
This smoothes the vector field while preserving sharp edges.
This PDE can be linearized and solved using semi-implicit
integration. Stepping forward in time by an amount ∆t we getb I h ∆tL b c did N j e N (1)

where L b c d is the linear operator with fixed conductances.

Step 2. Mesh Refitting to Normals : We minimize the following
energy to refit the height field h b x c y d to the normal field N j
resulting from equation 1:k b M f M d 1

2 h�b M f N j d dxdy

where M is the normal vector of the current height field h.lnmpo�qsr%R] JIE Z4L8E ^utvHw] xyWzL�T3HFLPADCE GIHKJ.L8H4MFE NSo�OV{wG
Multigrid approaches are widely used for solving various PDE
problems [Briggs et al. 2000]. However, previous GPU multigrid
solvers [Goodnight et al. 2003] cannot be used directly to solve the
equation 1 due to the spatially varying c term. We solve this prob-
lem by pre-computing the conductance values on the finest grid and
restricting these values to the coarse grids. The initial conductance
values are computed as follows:

c b e d e exp |�}�~ 1 � n1 � n2 �
k � 2

where n1 and n2 are face normals adjacent to the edge e and k is
a diffusion constant. Once conductance values are computed, they
are stored and reused in later V-cycles. Pseudo code for the main
algorithm for multigrid solver and a recursive definition of V-cycle
are as follows:�a�����I�+���I�i�I�������i�a����_�X�+�a�I�I�����I�i���I�9���a�a�i�"�.���.�� �?�9�a���i���.�������.�����a�y���� ¡ �£¢&�a���¤ �¦¥i���i�a�Y�
§ ���"¨Y�©�I �¢§�ª��a�I�.�I«+���a�i�� ¢��a�V¬.�I�i.�i�a�y�®¢Y¯��K¯©�. ±°²�a���������a���"³.�I��.�a�a�p�a�I���i�"�i���.¬.���I�I�.«�a�����i�����I����¬.�I�i.�i�a�y�®¢Y¯��K¯©�. � �£¢&�a�9�.�a�a�i¢z�´¢Y¯��� ¡ �?���z�©�+�.�a�.���I���a��¬.�a�"ª&�i�a�i��«i�I«����a��¬.�a�� ¤ � ���a�p���"¨Y�©�I �¢µ � ���a�V�.�I«��a���a���K�¶�� V�a������¥9�
�a« � �I�a��¬.�a�"�a��¥.���· � �"�a�V�.�I«��a���a���K�©�I V�a������¥��&�a« � �I�a��¬.�a�"�a��¥.���¸ � ¢Y¹D�a�V¬.�.��.�i�a�Y�´ºY¯¶�z¯3�I »�a���+�������a�a�������.«a«Vº¼ � ¢Y¹D�a�"�+�.�.���i���I�a���.�y�®¢Y¹3 p�a������¥"¢Y¹½�a« � �a�a��¬.�I�p�����������¾ � ¢��a��¢"¿&¢Y¹À �£¢&�a�9�.�a�a�i¢z�´¢Y¯��� � ºK�Á�.���i�I�a��¢

We employed full-weighting (using 8 neighbors) and injection
schemes for restriction/interpolation [Briggs et al. 2000]. For con-
ductance restriction, we developed a circuit-like downsampling
method for faster convergence (about 2x).

Figure 1: Conductance restriction using circuit-sampling. Left : fine level
grid, Middle two : star circuit to delta circuit, Right : coarse level grid

All computations are done on a single 32bit float pixel buffer with
multiple surfaces (double buffers + four AUX buffers) to avoid GL
context switch overhead. All shader programs are written in ARB
vertex/fragment assembly language. FRONT buffer contains results
of relaxation, AUX0 contains residuals, and AUX1 contains con-
ductance values. BACK and AUX2 buffers are used as temporary
buffers. Several surfaces can be bound at the same time as multiple
textures, and any bound surface cannot be used for rendering target.Â ÃÄWYG�R4] JaG
A single multigrid V-cycle on 513x513 dataset takes about 0.2 sec
on Nvidia FX 6800 Ultra graphics card. The multigrid solver con-
verges after seven V-cycles and takes about 3.5 sec including the re-
fitting step for the figure 3 (∆t e 100, k e 0 g 05), about 10x speeding
up compared with the CPU implementation [Tasdizen and Whitaker
2003].

Figure 2: Comparison of smoothing results. Our method (right) preserves
sharp creases after smoothing. Left : input noisy mesh, Center : isotropic
smoothing, Right : anisotropic smoothing

Figure 3: Feature-Preserving Smoothing of Height Field Data. Left : input
height field data (513x513), Right : result of anisotropic smoothingÃÅWÆT3WKL3WKCFNÆWyG
BRIGGS, W., HENSON, V., AND MCCORMICK, S. 2000. A Multigrid Tutorial. SIAM.

GOODNIGHT, N., WOOLLEY, C., LEWIN, G., LUEBKE, D., AND HUMPHREYS,
G. 2003. A multigrid solver for boundary value problems using programmable
graphics hardware. In Proceedings of Graphics Hardware, 1–11.

TASDIZEN, T., AND WHITAKER, R. 2003. Feature preserving variational smoothing
of terrain data. In Proceedings of IEEE Workshop on Variational, Geometric and
LevelSet Methods in Computer Vision.


