
Using Growing Cell Structures for Surface Reconstruction

I.P. Ivrissimtzis W-K. Jeong H-P. Seidel
Max-Plank-Institut f̈ur Informatik, Stuhlsatzenhausweg 85,

Saarbr̈ucken, D-66123, Germany
{ivrissimtzis, jeong, hpseidel}@mpi-sb.mpg.de

Abstract

We study the use of neural network algorithms in sur-
face reconstruction from an unorganized point cloud, and
meshing of an implicit surface. We found that for such ap-
plications, the most suitable type of neural networks is a
modified version of the Growing Cell Structure we propose
here. The algorithm works by sampling randomly a target
space, usually a point cloud or an implicit surface, and ad-
justing accordingly the neural network. The adjustment in-
cludes the connectivity of the network. Doing several exper-
iments we found that the algorithm gives satisfactory results
in some challenging situations involving sharp features and
concavities. Another attractive feature of the algorithm is
that its speed is virtually independent from the size of the
input data, making it particularly suitable for the recon-
struction of a surface from a very large point set.
Keywords: neural networks; growing cell structures; sur-
face reconstruction; mesh generation; shape modeling.

1 Introduction

Neural Networkis a general term describing machines
designed as a set of interconnectednodes, each one of which
can store and process some information. The nodes commu-
nicate with the neighboring nodes, receiving and transmit-
ting information with connections called synapses. Often,
these connections also store some information, usually in
the form of scalar weights.

The term Neural Network reflects some apparent simi-
larities with the way the neural cells are interconnected in
the human brain. Although, in principle, a neural network
can be implemented as hardware, with real nodes and con-
nections, in practice the most of the neural networks we use
are simulated by the software.

A neural network can process the input data in several
ways. For example, it can directly perform some computa-
tions, receiving an input signal, processing it on its nodes,
and outputting the result, or it can be ”trained” in alearning

process. In the latter case the neural network processes the
input signal by adjusting itself, and the state of the network
is considered the output. The adjustment of the network
during the learning process can include changes in the in-
formation stored on the nodes and the connections, as well
as changes in the architecture of the network. That is, the
network adapts its state to the input signals by creating new
nodes and connections, or by pruning the existing ones.

The last two decades neural networks have found a lot
of applications in such diverse areas, as pattern recognition,
bio-informatics and finance, to mention only few of them.
A typical application for a neural network, as for example
the hand-writing recognition, is a simple problem which the
human brain almost effortlessly solves, while the computer,
despite its computational power, faces unexpected difficul-
ties and requires sophisticated software for sometimes not
very satisfactory results.

Here we use neural networks, in particular an adapta-
tion of Fritzke’s Growing Cell Structures, for mesh genera-
tion for surface reconstruction. Our results show that shape
modeling is an area very well suited for the use of neural
networks. Indeed, neural networks can give satisfactory an-
swers in some challenging conditions, like the existence of
sharp features, noisy data, or, very large scale data.

1.1 Related Work

The Neural Networks were introduced as a concept in
the 40’s, but the first practical applications started to emerge
only in the last two decades. One of the main obstacles for
their acceptance was that the software simulation of a neural
network requires a computational power which only in the
80’s was available. A comprehensive introduction into the
mathematical theory of neural networks can be found in [3].

The last years there was a proliferation of Neural Net-
work types, and the learning processes, that is, the way the
Network adjusts to the input signals, can also be found in
many different forms. One of the most widely used in prac-
tical applications is Kohonen’s Self Organizing Maps [12].
A Self Organizing Map adjusts itself to the input signals,

Figure 1. The Max-Planck model reconstructed incrementally from an unorganized cloud of 100K
points. From left to right, the number of vertices of the constructed mesh is 20, 100, 1K, 2K and 8K.

learning gradually the space of the input data. It can reveal
patterns of that input data space that the human brain cannot
detect, either because of the nature of these data, like high
dimensionality, or because of their size and complexity.

A similar approach to the Self Organizing Maps is the
Growing Cell Structures of Fritzke [8]. A Growing Self
Structure is a neural network that grows incrementally. We
start with a very simple network, and, responding to the in-
put signals we add new nodes, one by one. For a discussion
on the incrementally growing networks, and their advan-
tages over the non-incremental self-organizing networks,
see [7].

Applications of the neural networks in Computer Graph-
ics related problems include [18], where Self Organizing
Maps were used in surface reconstruction, and [4], where
the Growing Cell Structures are employed for Finite Ele-
ment mesh generation. The [4] can also serve as an intro-
duction to the Growing Cell Structures.

Although the Neural Networks is a powerful, emerg-
ing technology, and the investigation of its applicability in
Computer Graphics problems has an interest by its own,
we found that in many aspects our results are compara-
ble with those of the established non-neural methods, like
[10, 2, 13, 1, 15, 11, 5].

Finally, because of the intuitive character of the Neural
Networks, most of their applications have a constant point
of reference to some Physics related methods. In our case
our work is similar in the spirit with the snakes and active
surfaces [16, 17].

1.2 Motivation

Although many algorithms have already been proposed
for mesh generation from an unorganized point cloud and
for the polygonization of an implicit surface, there is still a
lot of active research in this area, showing that there are still
problems which have not been addressed properly.

For example, in mesh generation from a point cloud there
are situations where many algorithms will not give a per-
ceptually correct answer. In fact, most of the methods do
not cope very well with sharp features and concavities, and
require sophisticated modifications allowing them to detect
such features and adapt. Another common source of prob-
lems is the size of the data set. Todays, data sets consisting
of hundreds of millions of points are common, especially in
cultural heritage projects like the Digital Michelangelo, and
the most of the existing algorithms can not deal with such
an amount of data.

The neural network approach, although it has some
drawbacks itself, gives some interesting solutions to the
above problems. As the input data set is not processed itself
but it is only sampled, one point at a time, and given that the
sampling process is not the bottleneck of our computations,
we may assume that the time performance of the algorithm
is practically independent of the size of the input data set.
Also, our implementation of the Growing Cell Structures
shows a particular flexibility, and we have found experi-
mentally that it can handle satisfactory the sharp features
and the concavities of the reconstructed surface. Finally,
its stochastic nature makes it resilient to noisy or corrupted
data.

1.3 Overview

Here, we give a brief description of one step of our ver-
sion of the Growing Cells Algorithm. The network is our
mesh, and its nodes are the mesh vertices. The informa-
tion stored in a node is a 3-dimensional vectorv, giving the
position of that vertex, and a scalar value, called thesig-
nal counter, measuring the activity of that vertex during the
learning process. The connections between the nodes cor-
respond to the edges of the mesh and they do not carry any
information other than connectivity.

In one step of the algorithm we sample our target space

Figure 2. The target space P is denoted by the
dotted line and the signal sampled from P by
a circle. The current state of the network is
denoted by the solid line. The best matching
node, denoted here by the large disk, moves
towards the signal while its direct topological
neighbors also adjust their position.

P, which is a point cloud or an implicit surface, thought
here as a probability distribution. The sample is a single
point s, seen here as a signal that will be processed by the
neural network. We select the node of the network which
is the nearest to the sample, and we move that node and
its direct topological neighbors towards the sample. This
way the nodes move towards the target space, adapting their
position to its geometry, see Fig. 2. Then, we update the
signal counters of the nodes, increasing the counter of the
best matching node to reflect its recent activity. The fact that
only the best matching node and its topological neighbors
respond to a signal can be seen as a kind of competition
between the nodes and, traditionally, this kind of process is
calledcompetitive learning.

After a certain number of iterations of the step described
above, we perform some operations that change the size
and the connectivity of the mesh. We split the most ac-
tive vertices and we remove by an edge collapse the most
inactive. The reason is that the most active vertices are near
a part ofP which is currently under-represented by the net-
work, while the most inactive vertices are near a part ofP
which is over-represented by the network, or it even hap-
pens that these inactive vertices are totally misplaced. With
these connectivity changing operations, the representation
of the target space by the network improves and some pre-
vious mistakes are corrected.

The rest of the paper is organized as following. In Sec-
tion 2 we describe in detail the Growing Cells Algorithm,
following mainly [8], highlighting the modifications we
propose to make it more suitable for the surface reconstruc-
tion problem. We also discuss in more detail the heuristic
justification of the algorithm, explaining why it gives a good
quality mesh representing fairly the reconstructed surface.

In Section 3 we experiment with different input data sets
and we find that the algorithm copes particularly well with

the difficult situations described in 1.2.

2 The Growing Cell Algorithm for Surface
Reconstruction

First we introduce some notation we will need in a more
detailed description of the algorithm. As we mentioned
above, the mesh generated by the algorithm is the neural
network itself. Thus, for simplicity, both the neural net-
work and the mesh will be denoted byM. The set of the
network nodes, as well as the set of vertices of the mesh will
be denoted byV. If v ∈ V is a vertex, the signal counter
measuring its activity will be denoted byτv. If M, is the
mesh at a given stage of the algorithm, then the mesh after
one step will be denoted byM′, and the same notation will
hold for the vertices and their signal counters. The target
space that the network has to learn, thought here as a prob-
ability distribution inR3, will be denoted byP. One point
sampled fromP will be denoted bys.

The main steps of the algorithm are the following:

1. Sample one points from the target spaceP.

2. Find the best matching node of the network (thewin-
ner), that is, find the vertexvw ofM with the shortest
distance froms.

3. Update the position ofvw and its direct topological
neighbors.

4. Update the signal counters of all the vertices ofM.

5. After a number of iterations of the above 1-4 steps,
split the vertex with the highest signal counter.

6. After a number of iterations of the above 1-5 steps,
remove the most inactive vertices ofM with an edge
collapse.

We explain each step in more detail:
1. The target spaceP is a point set, which can also be
seen as a probability distribution. IfP as point set is a point
cloud, we make it a discrete uniform probability space by
assigning to all the points an equal probability

p(v) =
1
|V|

, v ∈ V (1)

If the target space is an implicit surface we assume that the
distribution is uniform with respect to the area.
2. We use an octree-based searching tree to find the nearest
neighbor of a given signal. Each node of the tree contains a
bounding box of the vertices in the node, and it is split re-
cursively when the number of vertices in the node exceeds a
given constant. Since some of the vertices ofMwill change

Figure 3. Up: The algorithm can converge
towards a local minimum. The dotted line
shows the target space. The solid line is the
neural network. Notice that the three no-filled
nodes can not be winners, nor one of their
topological neighbors can. Therefore they
will stay inactive. These local minima are re-
solved by the step 6 of the algorithm. Down:
A fold-over may also occur. It is more difficult
to be resolved, but a conservative strategy in
the expansion of the network will prevent it.

position by step 3, the nodes of the tree should be updated
on every iteration. Insertion or removal of a vertex is done
only at the leaf level, and the updating of the tree is per-
formed inO(log n) time, wheren is the number of vertices
of the final mesh. As each new vertex of the mesh inserted
by step 5 requires a constant time of iterations of step 2, the
total computational cost of step 2 isO(n log n).
3. The position of the best matching vertexvw is updated
as a linear combination of itself and the samples

v′w = (1− αw)vw + αws (2)

whereαw is a constant. A relatively large value ofαw will
increase the mobility of the vertices of the mesh and will
make more probable the occurrence of some unwanted ef-
fects as convergence to local minima or fold-overs. See Fig.
3.

Notice that in a Self Organizing Map [12] the termαw
is a variable that tends to 0, guaranteeing the convergence
of the algorithm. In contrast, in a Growing Cell Structure
this term is constant and therefore, for any given number
of nodes there is no convergence. Nevertheless, the algo-
rithm converges as the number of nodes increases. Indeed,
as the number of vertices ofM increases, they coverP
more densely, and the probability that the network’s best
matching vertexvw is in the close vicinity of the samples
increases too.

At every step we also update the position of the topolog-
ical neighbors ofvw. This is a balancing step performed in
a way that will improve the distribution of vertices in the
neighborhood ofvw for the given connectivity. For everyvi
in the 1-ring ofvw we measure the Laplacian [14]L of vi
by

L(vi) =
1

valence(vi)

∑
vk∈1−ring(vi)

(vk − vi) (3)

and we updateM by a fraction of the tangential component
of L

Lt(vi) = L(vi)− (L(vi) · n)n (4)

M ′ = M + αnLt (5)

wheren is the approximated vertex normal ofvi, andαn
is a constant. This tangential smoothing of the topological
neighbors ofvw is repeated a certain number of times, 5 in
our implementation. It efficiently prevents fold-overs and
convergence to local minima and also gives a fairer distri-
bution of the vertices.
4. The signal counters of the vertices of the initial mesh
are set to 0. After the processing of the samples we update
the signal counter of thevw by

τ ′vw = τvw + 1 (6)

and then we decrease the signal counter of all the nodes by

τ ′v = ατv, v ∈ V (7)

whereα is a constant. The signal counters give an indi-
cation of how active is a node, that is, how many times it
was the best matching node, with the most recent signals
counting more than the older.

Notice that Eq. (7), although is just a single multiplica-
tion, still, introduces in the algorithm an element ofO(n2)
complexity. Also, notice that ifc is the smallest integer such
that

(1− α)c = 0 (8)

in the machine’s accuracy, then all the vertices that had not
been best matches in the lastc calls will have signal counter
equal to zero. Therefore, in practice we only have to main-
tain a list of at mostc vertices with non-zero signal counter
to reduce the complexity toO(n).
5. This step is called everyλ iterations of the steps 1-4,
whereλ is a constant integer. First, we find the node with
the highest signal counter. Then, we find the longest edgee
adjacent tovi and by traversing both directions equally we
find the edgese1, e2 that split the star ofvi approximately
at half, see Fig. 4. We perform the vertex split alonge1, e2

positioning the new vertex at the middle ofe. The signal
counter ofvi is split between the two vertices proportion-
ally to their Voronoi regions. We approximate the Voronoi
region of a vertex by the square of the average length of the
adjacent edges.

e2

e1

e2

e1

e e

Figure 4. Left: A vertex of valence 8 has the
largest signal counter and has to be split.
Right: The vertex split is performed in a way
that will distribute the valences as evenly as
possible.

Intuitively, the signal counter measures the activity of a
vertex, and the most active vertices are in an area of the
target spaceP which is currently under-represented by the
nodesM. Thus, we perform a vertex split to create one
more vertex in that area ofP.
6. This step of the algorithm is called everyµ · n itera-
tions of the steps 1-4, whereµ is constant integer andn the
number of nodes of the network. Because of the machine
accuracy problems caused by Eq. (7) we can not use the
signal counter to find the less active nodes. Instead, we re-
move all the nodes that have not been active in the lastµ · n
iterations of the steps 1-4. If the nodes ofM are uniformly
distributed inP, then, inµ · n calls of the steps 1-4 we ex-
pect a nodev to be the winnerµ times in average. The con-
stantµ is a threshold beyond which, an inactive node will
be considered misplaced and will be removed. The removal
of the redundant vertices is done by an edge collapse. Since
an edge collapse changes the valences of the incident trian-
gles’ vertices, we collapse the edge that gives the smallest
regularity error, measured by

1
3

√
(a+ b− 10)2 + (c− 7)2 + (d− 7)2 (9)

wherea, b, c andd are the valences of the vertices before
the edge collapse, see Fig. 5.

These edge collapses are instrumental in improving the
quality of the mesh. First they resolve most of the situations
where the neural mesh converges towards a local minimum.
In Fig. 3 the three totally inactive vertices will be deleted
at some stage, exactly because they are totally inactive, re-
solving this way the local minimum. The second effect is
that we remove vertices which are not so useful, in the sense
that this partP is over-represented by the mesh.

b

d

c

a

Figure 5. An edge with valence a, b ends col-
lapses, creating a vertex of valence a+ b− 4.
The two vertices opposite to that edge had
valences c, d before the collapse and have va-
lences c− 1, d− 1 after.

The algorithm stops when some criteria are matched.
Here we stop the algorithm after a certain number of nodes
is reached.

2.1 Differences with the Growing Cell Structures

In the steps 1-4 of the algorithm the main difference with
the original Growing Cell Structures, is the way the neigh-
bors of the winning nodevw adjust their position. In [8] this
is done as linear combination of the samples and the posi-
tion of the corresponding node, while here they are updated
by a fraction of the tangential component of their Lapla-
cian. Such an adjustment improves the quality of the mesh
and prevents the surface from stacking to a local minimum
or folding over.

The other difference is in the operations changing the
connectivity of the mesh. In steps 5 and 6, we use ver-
tex split and edge collapse, instead of edge split and ver-
tex removal. These two operations, vertex split and edge
collapse, which can be thought as inverse, are nearer to a
Computer Graphics approach, see [9]. The advantage of the
vertex split against the edge split, is that it tends to distribute
more evenly the valences, improving the connectivity of the
mesh, see Fig. 4.

The main advantage of an edge split, namely, that it eas-
ily generalizes into higher dimensions is not very relevant
in our context.

The edge collapse, which complements the vertex split,
is used here because it preserves the topology of the mesh,
while a vertex removal may create boundaries and multiple
connected components. As a result, using a topologically
safe operation, we are able to employ a more aggressive
strategy for the removal of the inactive vertices, improving
this way the quality of the final mesh.

Using only topology preserving operations it also means

that the topology of the final mesh will be the same with
the topology of the initial network. The adaptation of the
algorithm so that it dynamically recognizes the topology of
the target space, in the spirit of [6], is left as future work.

2.2 Performance related heuristics

Intuitively, the algorithm works by moving gradually the
vertices of the network towards the target spaceP. In our
experiments we also noticed that the connectivity of the fi-
nal mesh is usually very good. In a typical situation, about
half of the vertices have valence 6, and only around 5% of
the valences are different than 5,6,7, see Table 1. The good
quality of the connectivity can also be confirmed by visual
inspection of the wireframe view of the constructed meshes,
see Fig. 6. Here we give some heuristic arguments, explain-
ing why we expect the algorithm to give, in general, good
quality meshes.

Figure 6. The wireframe view of the Bunny
model with 1K vertices and the Max-Planck
model with 2K vertices.

We notice that the target spaceP can be thought both
as a probability distribution and as a smooth surface which
is sampled. As the network converges to that surface, each
triangle approximates a part of the probability distribution,
and we can define an approximating probability measure on
the triangles. This measure is equal to the probability that a
random sample fromP lies inside that triangle.

Intuitively, we expect that the probability measures of
the triangles tend to become equal. Indeed, large probabil-
ity measure means high probability that a sample is in the
interior of that triangle, and the processing of such a sam-
ple will make the triangle to shrink, see Fig. 7. We expect
that this intuitive claim can be rigorously proved with the

Figure 7. Left: A triangle with high probabil-
ity measure (grey triangle) is more likely to be
sampled in its interior and shrink as a result.
Right: A triangle with low probability mea-
sure is more likely to expand as a result of a
sample near to one of its vertices but outside
the triangle.

standard mathematical theory of neural networks, but such
a proof is beyond the scope of this paper.

As a consequence, ifP is the uniform discrete probabil-
ity on a point cloud, then the area of each triangle reflects
the density of points at that part ofP. That is, we have many
small triangles covering the parts ofP with large concen-
tration of points and few large triangles covering the areas
where the points are sparse. IfP is an implicit surface sam-
pled uniformly with respect to its area, then the network will
tend to have triangles of equal size.

Another important consequence is that the nodes with
high valence are generally more active and there is a high
probability that they will split, improving this way the con-
nectivity of the network. Indeed, if the triangles have equal
probability measure, then the probability measure of the
Voronoi region around a high valence vertex, generally, will
be greater than that of a low valence vertex. Fig. 8.

2.3 Discussion

When compared with the standard non-neural methods
for surface reconstruction, one of the main differences of
the above algorithm, is that the target spaceP is only sam-
pled, one point at each step, and there are no calculations
performed directly onP. As a result the algorithm treats in
a simple unified way different objects, such as point clouds,
implicit surfaces, parametric surfaces, it is resilient to noisy
or corrupted data and most importantly, its speed is not af-
fected by the size of the data.

The algorithm treats the data in a very simple and basic
way, that is, as stochastic signals. Many times this interpre-
tation is quite near to the real nature of the data, as it is the
case, for example, with the unorganized point clouds from
scanned objects. And one may think of applications that re-

Figure 8. The high valence vertices are more
active than the low valence vertices. The rea-
son is that the Voronoi region of a vertex with
high valence, generally, has greater probabil-
ity measure than that of a low valence vertex.
As a result the algorithm tends to split high
valence vertices improving the connectivity
of the mesh.

quire the use of such kind of neural algorithms because we
can not express the data in any other form than that of a set
of stochastic signals.

Regarding the drawbacks of the algorithm, the main one
is the speed which, especially for small data sets, is lower
than that of the most existing algorithms.

3 Examples

In this section we present the results of several experi-
ments. We used the set of constants

αw = 0.06, αn = 0.05, α = 0.95, λ = 100 (10)

that were experimentally found and proposed in [8]. Some-
times we usedλ = 70 to speed up the process without notic-
ing any side-effect. We used the valueµ = 20, but we do
not claim that this value is optimal in any sense.

The initial mesh was always a tetrahedron and the final
mesh a closed surface of genus 0. The result are shown at
the end of the paper.

In the first experiment the target space is a sphere. It is
defined implicitly and the sampling is almost uniform with
respect to the area of the sphere. The other experiments
were with point clouds obtained from some standard polyg-
onal meshes. The Max-Planck model with 100K vertices is
shown, in Fig. 1 in the beginning of the paper. The Stanford
Bunny with 35K vertices, the dinosaur with 42K vertices,
and the teeth with 116K vertices are shown at the end of the
paper.

Table 1 gives the valence distribution for some of the
reconstructed meshes, showing that the algorithm produces
meshes with very good connectivity.

Table 1. Valence distribution for typical
meshes. Notice that the distribution is almost
independent from the shape of the model and
the size of the constructed mesh.

Valence
4 5 6 7 8 other

Sphere 1K 2 296 470 184 44 5
Bunny 1K 7 274 490 186 42 2
Max 2K 11 571 941 390 73 15
Teeth 2K 5 576 932 411 69 8

Sphere 5K 10 1451 2330 999 177 34
Bunny 5K 22 1416 2364 987 177 35
Dino 5K 24 1447 2307 1001 190 32
Teeth 5K 17 1481 2244 1043 189 27
Max 8K 36 2337 3652 1608 323 45

4 Conclusion and Future Work

We presented an adaptation of the Growing Cell Struc-
tures for surface reconstruction. Experimenting, we found
that the algorithm works satisfactorily in many different
situations, sometimes outperforming algorithms based on
more transitional approaches, especially in issues related to
mesh quality.

In the future we will adapt the algorithm so that it dy-
namically recognizes the topology of the input data space,
and we will also try to find new applications for the algo-
rithm presented here. In general, we think that there is a
great scope for further investigation into novel applications
of the Neural Networks in problems related to Computer
Graphics and Scientific Visualization.

References

[1] N. Amenta, M. Bern, and M. Kamvysselis. A new voronoi–
based surface reconstruction algorithm. InSIGGRAPH 98,
Conference Proceedings, pages 415–422, 1998.

[2] C. L. Bajaj, F. Bernardini, and G. Xu. Automatic recon-
struction of surfaces and scalar fields from 3D scans. In
SIGGRAPH 95, Conference Proceedings, pages 109–118,
1995.

[3] C. M. Bishop. Neural Networks for Pattern Recognition.
Oxford University Press, 1995.

[4] C.-A. Bohn. Radiosity on Evolving Networks. PhD thesis,
Fachbereich Informatik, Universitat Dortmund, Dortmund,
Germany, 2000.

[5] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R.
Fright, B. C. McCallum, and T. R. Evans. Reconstruction
and representation of 3d objects with radial basis functions.
pages 67–76, 2001.

[6] B. Fritzke. A growing neural gas network learns topologies.
In G. Tesauro, D. S. Touretzky, and T. K. Leen, editors,Ad-
vances in Neural Information Processing Systems 7, pages
625–632. MIT Press, Cambridge MA, 1995.

[7] B. Fritzke. Growing self-organizing networks – why? In
ESANN’96: European Symposium on Artificial Neural Net-
works, pages 61–72, 1996.

[8] B. Fritzke. Growing cell structures - a self-organizing net-
work for unsupervised and supervised learning. Technical
Report ICSTR-93-026, International Computer Science In-
stitute, Berkeley, May 93.

[9] H. Hoppe. Progressive meshes. InSIGGRAPH 96 Confer-
ence Proceedings, pages 99–108, 1996.

[10] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. Surface reconstruction from unorganized
points. InSIGGRAPH 92, Conference Proceedings, pages
71–78, 1992.

[11] L. Kobbelt, J. Vorsatz, U. Labsik, and H.-P. Seidel. A shrink
wrapping approach to remeshing polygonal surfaces.Com-
puter Graphics Forum, 18(3):119–130, 1999.

[12] T. Kohonen. Self-organized formation of topologically cor-
rect feature maps.Biological Cybernetics, 43:59–69, 1982.

[13] V. Krishnamurthy and M. Levoy. Fitting smooth surfaces
to dense polygon meshes. InSIGGRAPH 96, Conference
Proceedings, pages 313–324, 1996.

[14] G. Taubin. A signal processing approach to fair surface de-
sign. In SIGGRAPH 95, Conference Proceedings, pages
351–358, 1995.

[15] M. Teichmann and M. Capps. Surface reconstruction with
anisotropic density–scaled alpha shapes. InIEEE Visualiza-
tion 98, Conference Proceedings, pages 67–72, 1998.

[16] D. Terzopoulos. Regularization of inverse visual problems
involving discontinuities. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 8:413–424, 1986.

[17] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elas-
tically deformable models. InSIGGRAPH 87, Conference
Proceedings, pages 205–214, 1987.

[18] Y. Yu. Surface reconstruction from unorganized points using
self-organizing neural networks. InIEEE Visualization 99,
Conference Proceedings, pages 61–64, 1999.

Figure 9. A sphere reconstructed from an implicit surface. The polygonal meshes have 10, 100, 1K
and 5K vertices, corresponding.

Figure 10. The Bunny with 100, 300, 500, 1K and 5K vertices, corresponding.

Figure 11. The Dinosaur with 100, 500, 1K, 1.5K and 2.5K vertices, corresponding.

Figure 12. The teeth model with 20, 100, 1K, 2K and 10K vertices, corresponding.

