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Abstract —We present a method to extract and visualize vortices that originate from bounding walls of three-dimensional time-
dependent ows. These vortices can be detected using their f ootprint on the boundary, which consists of critical points in the wall
shear stress vector eld. In order to follow these critical p oints and detect their transformations, affected regions of the surface are
parameterized. Thus, an existing singularity tracking algorithm devised for planar settings can be applied. The trajectories of the
singularities are used as a basis for seeding particles. This leads to a new type of streak line visualization, in which particles are
released from a moving source. These generalized streak lines visualize the particles that are ejected from the wall. We demonstrate
the usefulness of our method on several transient uid ow da tasets from computational uid dynamics simulations.

Index Terms —Skin friction, singularity tracking, vortex, generalized streak line, ow visualization, time-dependent vector e Ids.
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1 INTRODUCTION

Simulation and visualization of uid ows plays an important role dur-are parameterized and thus mapped to the plane. The paths of the
ing the design process in engineering practice. Automobiles, turbin&écked sin_gularit.ies depict the loci, Where particles are injected into
motors, and bu||d|ngs are 0n|y few examp|es_ In a broad Variety the three-dimensional ow. These partlcles form a generallzed streak
applications the onset and behavior of vortices as well as their intpe, which re ects the interrelation between wall shear stress and
action with the object under consideration is of great practical sigiree-dimensional ow.
ni cance. For automobiles, vortices have an important in uence on The remainder of the paper is organized as follows. We rst review
the drag coef cient, which affects fuel ef ciency and overall vehi-previous work on topology-based vector eld visualization and in par-
cle performance. In turbines and motors, vortices are critical as thiggular singularity tracking schemes in transient vector elds. Then,
hamper energetic ef ciency, while they impact the durability of talin Section 3, we describe the method we use for singularity tracking
buildings in urban design. In this context, visualization can help #@n curved surfaces. Section 4 introduces our concept of genetalize
nd, analyze and interpret these vortices in the numerical simulatiog&eak lines and explains how we combine singularity tracking with
that are used for their study. Typically, the analysis focuses on tH& new streak line de nition. Section 5 introduces the datasets that
three-dimensional structures present in the ow and on their intera¢ere used to test our method and Section 6 discusses the results. Fi-
tion with the shear stress vector eld. The latter resembles the tangéwlly, conclusions are drawn in Section 7.
tial ow near the surface of an object and forms the patterns that can
be observed in wind tunnel experiments. Vortices, when they interakt RELATED WORK
eld. Vortices tangential to the object boundary drag ow away fromyext.
the surface along lines of strongly hyperbolic skin friction lines known ) ) ]
as separation lines [12]. In contrast, vortices with a core line normal toSingularity Tracking. Topology provides a powerful framework
the surface (see e.g. Fig. 5 right image) or with a certain angle of indift characterize and study the structures of uid ows. It has proven
nation leave singularities at the locations where their vortex core liggiccessful in scienti ¢ visualization and many methods have been pro-
touches the object. It has been shown that the topological struct@sed [24, 14] that leverage its theoretical foundations to achieve ef-
and in particular the singularities of the wall shear stress are esséftive depictions of complex vector elds. Of particular relevance for
tial to characterize the three-dimensional ow structures surroundifige present work are the techniques that permit to track the continu-
the body [2, 26, 27]. A combined structural analysis of the uid owOUS eVOlllmon of the topology as it evolves over time. Improvmg ona
and the shear stress vector eld thus improves the understanding &heme introduced by Helman and Hesselink [11], which graphically
interpretation of the phenomena of interest. reconnects the topological skeletons extracted in successive time steps,
In this paper, new methods are presented to track singularities oV&icocheet al. [30] proposed a scheme that computes the continuous
curved surfaces in time-dependent vector elds and elucidate the pth followed by two-dimensionaingularities(where the ow veloc-
terconnections between the critical points of the wall shear stress diydvanishes) across the space-time domain. Their approach explicitly
the three-dimensional ow. In order to employ ef cient singularitycharacterizebifurcations which correspond to critical changes affect-

tracking schemes for planar settings, selected regions of the surfiige the structure of the topological skeleton. An alternative method
was introduced by Theiset al.[29], that extracts the topological evo-

lution by means of numerical integration over the space-time contin-

) . . . . uum. Extensions to three-dimensional transient ows have been pre-
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(a) Singularity paths on draft tube. (b) LSCM (c) Floater Mean Value Coordinates

Fig. 1. (a) (left) Singularity paths tracked on surface of upper part of draft tube. The region used for tracking is highlighted. The image shows all
paths extracted by the tracking method using LSCM parameterization. (right) The upper image shows a close up of the same paths. The lower
image shows paths for tracking with mean value parameterization and circular parameter space. The paths computed using LSCM parameterization
are smoother, and fewer arti cial bifurcations show up. Ima ges (b) and (c) show the singularity paths in in the parameter domain over time.

while being simple enough to permit an ef cient and accurate extra8- SINGULARITY TRACKING ON SURFACES

tion Olf the Cﬁrrﬁsponding topology. Yet, in the I:ypical ;ettilr;g of &s mentioned previously, computing the path followed by the seeds
g;ang e mesh the tangent space is constant within each cell but it generalized streak lines requires to track the singularities of the
discontinuous across edges and vertices. Hence, the piecewise lingah siress vector eld over the triangle mesh that models the object
interpolation typically applied over triangle meshes yields d'scom"ﬂ)'oundary. Yet, the piecewise at nature of the geometry makes this an

uous vector values across triangle boundaries. This leads to spurigusoseq” problem. Indeed, the discontinuity of the tangential vector
topological features when standard extraction algorithms are appliegy 4cross edges implies that a singularity leaving a cell will not, in

to wall vector elds. general, be able to resume its motion from the corresponding location
Several approaches have been recently introduced in the compineihe next cell. For instance, no singularity might be present on the
graphics literature to address this problem.etial. [17] proposed a border or in the interior of the neighboring cell at the same instant, or
method that models higher-order singularities and visualizes the its-type might be incompatible with the one of the currently followed
sulting ow on piecewise-linear surfaces. The authors introduced @mgularity in terms of local topology consistency. In any case, the
interpolation scheme on surfaces that exploits a facet-based represemresponding discontinuity challenges the very idea of tracking the
tation of vector elds to permit a piecewise 2D treatment of singularieontinuous transformation of the topology.
ties. However, a feature of this approach is that singularities are con-+ollowing the observations we made in the previous section, a pos-
strained to lie on the vertices of the mesh, which makes it unsuitatsidsle way to tackle this problem consists in parameterizing the mesh
for our problem. A second approach presented by Ztetrey. [33] such that further computation can be carried out in the plane using
de nes an interpolation scheme for vector eld design over surfacdbe algorithms available in this setting. Observe that this transposition
using geodesic polar maps and parallel transport. While this scheisenore than a mere computational x to the tracking problem. Its
supports the design of complex phase portraits, it yields a non-linetgeper motivation lies in the fact that the piecewise linear geometry
vector eld inside each triangle. The Jacobian matrix required foepresentation used for numerical simulations is itself an approxima-
topological analysis must therefore be approximated through a lot@n of what in reality is a smooth object surface. Using the available
linear t, which seriously complicates the type of analysis required bgliscrete information, our goal is therefore to bring the problem back
our method. Additionally, schemes have been proposed in the grapha setting where surface topology and the continuous transformation
ics community that exploit principles fromiscrete Exterior Calcu- thereof are well-de ned and applicable concepts, as they are in the
lus[10] to create tangent vector elds in the limit of a subdivision prophysical realm. We provide in this section a description of our track-
cess [31], or to permit the interactive editing of a discrete tangentialg algorithm and discuss possible limitations. In particular, to avoid
vector eld over a triangle mesh [3]. the dif culty of computing a smooth global parameterization of the
whole surface, we choose to restrict our analysis to subregions of the
triangle mesh. With that assumption, our algorithm consists of 4 main

Surface Parameterization A way to circumvent the challenge steps.

posed by the construction of a suitable interpolation on a polygonal
surface consists in transporting the problem to the planar domain by
computing a parameterization of the mesh. This subsequently allow® ~ parameterize subregion in the plane and express vector eld in
for the straightforward application of 2D methods. However, for the  parameter space

body surfaces typically used in numerical simulations this mapping

involves cuts and distortion, which in turn requires caution in the in- 3. Perform 2D singularity tracking in parameter space

terpretation of the results. Various techniques have been proposed in

the graphics literature. A discussion of available methods is clearly be4. Map nodes of singularity paths back onto the triangle mesh for
yond the scope of this paper and we refer the interested readers to the visualization

existing surveys [5, 6]. Most relevant to the present paper are Fate

Mean Value Coordinatesiethod [4] and Leviet al’s Least Squares ~ We detail each of these steps in the following and proceed with con-
Conformal MadlB] On arelated note, observe that the recenﬂy intr@iderations linked to the visualization of the topological information.
duced image-based ow visualization approach [15, 32] is essentiall . .

built upon an interactive parameterization of the visible portion of ng Region Selection

mesh through simple projection, which permits the extension of den&s pointed out above, our method is designed to track singularities on
visualization techniques designed for planar ows to curved surfacesubregions of a surface. To be able to compute the parameterization of

. Select an interesting subregion



the space-time continuum and, along the way, detect bifurcations that
cause the creation and annihilation of singularities, as well as their
type change. Refer to the original papers for additional details. The
2D-tracking provides us with a polygonal description of the singular-
ity paths in the parameter space, along with associated bifurcations.
This information can then be mapped back in the physical space using
the parameterization function and its linear nature inside each triangle.
It is important to note that the reformulation of the tracking prob-
lem in the parameterization domain can generate artifacts in the form
of spurious topological features that have no practical signi cance. |
our case however, we choose the regions in such a way that these arti-
facts should be minimized. More importantly, because of the ill-posed
Fig. 2. Singularity paths on the surface of ellipsoid tracked using LSCM  character of the tracking problem in the rst place, we do not have a
parameterization. left: Paths for all time steps on surface of ellipsoid. ~ ground truth with which to compare our results. Therefore we adopt
right: Paths in parameter domain with time as third dimension. a more pragmatic approach. First, we apply ltering criteria to the re-
sulting singularity paths that are designed to prune insigni cant topo-
logical features to which we expect artifacts to belong. Second, the

a region our current implementation imposes some restrictions. Firgdlidation of our singularity paths comes from their use as seed points

we require the region to be homeomorphic to a disc. Second, assunf@fﬂthe generalized streak lines described below. Ultimately our re-
ana priori knowledge about the area in which a particular singularit§ults are deemed valid if they show good correlation with the transient
exists, we choose the region such that the singularity stays suf cienffjree-dimensional ow structure.

far to the region boundary over the whole course of its motion. Third,

we impose that the region does not contain sharp edges of the geomé- Visualization

try. This last requirement is primarily motivated by the fact that shargg,alizing the paths of singularities moving on surfaces is not a trivial
edges in the design will typically createatural ow discontinuities aqk  There are at least three types of information that are necessary

which the parameterization should not attempt to arti cially sSmootfyy 410w a scientist to interpret the paths: positions of nodes, type of
out. . . L the singularity represented by a path and the time the singularity is lo-
_Note that because our implementation uses parameterization alggea at a certain position. If the paths are simply drawn as lines on the
rithms designed for regions homeomorphic to a disc, we impose tigface, all information about their temporal extent and distribution is
criterion to the regions that we select. Hence, we are not currenfly; which makes it very hard to interpret the resulting images. In-
able to track singularities that would travel over more complex surfaggporating temporal information in the line visualization by encoding
regions. This is not an intrinsic limitation of our approach, howevef,e advancing time as changing the color is not feasible because color

since parameterization plays the role of a black box in our meth@d,siher used to describe the type of the singularity.

and more advanced, smooth global parameterization techniques exis,gor 2D time-dependent elds the third dimension is used to illus-

(e.9.[13, 21]) that could be used instead. See also the correspondipge the advancing time. This yields 3D representations of the chang-

discussion in Section 7. ing topology. Unfortunately, it is not possible to apply this approach
3.2 Parameterization directly to time-dependent vector elds on surfaces as these are of
three-dimensional nature themselves.

To map the .Shef’” stress vector eld to a .2D vector eld we compute Instead, we decided to apply the standard 2D visualization approach
a parameterization of the surface subregion under consideration. Fé)

the two-dimensional space we use for the tracking. This results in a
that purpose we have experimented with Eieater Mean Value Co- : . : . -
ordinatesparameterization method [4] and theast Squares Confor- o o' c schematic representation of the developing topology (see Figs. 1,

. 2 and 7). Although it does not re ect the geometry of the surface, we

elieve that this schematic representation in combination with draw-

library CGAL [22]. The Sha.‘pe .Of the parameter space IS a circle f% the paths on the surface, achieves the best overview possible with a
the mean value parameterization and a free boundqry n the.cas%t Eic visualization. Allowing the user to mark regions in the schematic
LSCM. The LSCM parameterization produces less distorted trianglgs, o sentation and highlighting the corresponding parts of the paths on
in the parameter space and thus_, a better parameterization. Its d “surface in a focus and context fashion improves the utility of this
back, hqwever, is that the mapping cannot be guaranteeq to b.e &thod (Figs. 7(b), 7(f)). In the images of Fig. 7 we additionally em-
to-one (in contrast to mean value coordinates) although it typically,, ;e the paths of the sinks, as these are important for the general-
IS [5. 6]'. For planar regions in 3.D we 0by|0u3|y use the canonic ed streak lines. In combination with Itering out paths of short-lived
(isometric) parameterization obtained by simply de ning a local C00%Lng thus insigni cant singularities, this results in much less cluttered

dinate system directly on the surface. . : . .
Once the considered region has been parameterized, its COI’I’eSng more insightful images (compare Fig. 7(a) to 7(c)-7(d)).

ing (time-dependent) vector values must be transformed accordinqlé Il gures (except Figs. 7(b)-7(d).7(f)) showing singularity paths

Obtaining 2D coordinates for those vectors amounts to projecting e e the fr(])IIO\;wr.]gkcolor scheme.dPaths OJ saddlesblarelidrawn gs rehd
3D vector attached to a vertex of the mesh onto the basis vectors oqu s, paths of sinks (attracting nodes) are drawn as blue lines and paths

: . o . o@l Sources (repelling nodes) are drawn as green lines. Bifurcatiens a
xﬁﬁlftéagenéglfm%'ndlggztirk])gti'fgl?ﬁ:;gﬁggﬁiﬁgﬁﬁ'ﬁg'thsepgg ggl_lyepresented by spheres. Red spheres indicate creation of singylarities
rameter domain to the surfaGandp 2 U, Q 2 Ssuch thaf(p) = Q, blue spheres annihilation of singularities and yellow spheres indicate

. . . Hopf bifurcations.
the vectony, in parameter space correspondiny¢pin 3D has the 2D
coordinatesp = (Vq: ﬂ% p;VQi ;777{, p)- 4 GENERALIZED STREAK LINE

) ) . In this section, we introduce a generalization of streak lines. For this
3.3 Singularity Tracking in the Plane purpose, we review the mathematical de nitions and interpretations of
To track the singularities of the resulting transient planar vector elgtreak lines and path lines. Let R® U R! RS be a Lipschitz
we use the technique proposed by Tricoehal. [30]. Alternatively, continuous time-dependent vector eld. L&2 R3 be the position of
the same results can be achieved withReature Flow Fieldapproach a particle in space and le2 U be a certain time. We begin with path
of Theiselet al.[29]. In a nutshell, both schemes follow the trajectolines, as streak lines can be expressed in a very simple way using path
ries described by the singularities over a continuous reconstructionlioes.



Fig. 3. Overview of draft tube dataset. left: Parts of the ow topology on the surface of the lower part of th e turbine draft tube. Sinks (blue) and
separatrices (white lines) on top of LIC texture indicate the existence of three vortices on the top and the right side of the tube. right: Isosurfaces
of | , seeded near singularities on side wall show vortices causing the singularities on the wall. Streamlines show the vortical behavior.

Path lines are integral curvgs,(t) of time-dependent vector 4.1.1 Singularity Paths as Particle Source
elds, which are tangential to the vectors of a eld's domain. They
are the trajectories of massless particles moving in a ow de ned biXs mentioned earlier, vortices in the three-dimensional ow leave sin-

the vector eld. Mathematically, this reads as follows: gularities of the shear stress eld as footprints on a body's surface. Th
singularities are spiral sources if the ow attaches to the surface and
t 7' pal(t) spiral sinks if ow leaves the surface, i.e. when particles are ejected
Pat,(to)) = a from the surface into the volume. Indeed, all singularities on the
body surface correspond to half-saddles in the three-dimensional o
MPaiy ) = V(pay(t);1); around the body. The 2D ow around the singularities on the body
Tt ' are the unstable (sources) or stable (sinks) 2D-manifolds of the three-

dimensional saddles, i.e. the manifolds coincide with the body surface.

whereto is the seed time. The remaining separatrix resides in the three-dimensional ow. Itis a

Streak linesg are imaginary lines connecting the locations of parg;, 1o manifold for sources and an unstable manifold for sinks on the

ticles that were released into a ow from a certain location at con-
e ; u[face.

secutive time steps. Thus, when dye or some other marking materia

is discharged slowly at some xed point in a moving uid, the visi- The unstable manifold in the three-dimensional ow is the reason

ble line produced in the uid is a streak line (see e.g. Batchelor [1{yhy we will consider only spiral sinks here. Our aim is to elucidate

Lugt [18]). The lines can be observed when looking at the particles\ahich parts of the domain are reached by particles that leave the sur-

a certain time. face through the vortex, or better where these particles are at a certain
time. This gives information about which regions of the ow are in u-
s 71 lat(s) = pas(t) enced by the vortex corresponding to the sinks. It is also interesting,
when considering vorticity transport, as some of the vorticity which is
Note thatt is xed andsis the varying seed time. present at a certain position is advecteg particles passing the posi-

Although we have not found it in the literature, our generalizaion, and thus is transferred to other regions of space. This is especially
tion of streak lines is straight forward. Instead of releasing particlé®portant since for incompressible ows vorticity can only be gener-
from a stationary source, we consider particles released from a m@ated at walls or enter the uid from an open boundary [1]. In other
ing source. Thuggeneralized streak lindg; are de ned as imaginary words, it cannot be generated inside the uid. This does not mean that
lines connecting the locations of particles that were released into a o%@rtices cannot develop in the ow, which actually may be the case,
from a locationa(s) continuously moving along a pathat consecu- When vorticity concentrates at some point in space. It means that the
tive time steps. The line can be observed when looking at the particksticity has either to be presentin the ow right from the beginning of

at a certain time. observation time or that vorticity is advected or diffused into the ow
from the boundary.
s 7 lat(9) = Pais(t) Motivated by the aims mentioned in the previous paragraph, we fol-
o ) low the particles ejected into the ow from a sink on the surface and
Againtis xed andsvaries. with them a portion of the vorticity present at the boundary. We use

As far as we know, this type of streak lines has not been treatedtfe positions along a singularity path as particle source for the gener-
the visualization literature yet. This may be the case, as in experimegfiged streak line integration. Natural start and stop positions for the
the creation of streak lines from moving sources is not a simple tagfarticle injection are given by the bifurcations bounding a singularity
It becomes even harder, when trying not to in uence the ow by th@ath as a singularity is created, destroyed or changes its type there.

movement of the source. Beginning at a creation point or a Hopf bifurcation we move along the
) ) ) line in time and space, and release particles until we reach the next
4.1 Singularity Streak Lines bifurcation where we stop releasing particles. However, this does not

The generalized streak lines considered throughout this paper usefgan that the streak line stops its evolution. We continue tracking
locations of moving singularities as locations of the particle sourdBe present particles. As the particles move away from their initial
(particle injection points). We call these special streak lisiagu- Position, the streak line separates from the singularity path. After sep-
larity streak lines While moving sources in general may be achievaration the streak line still consists only of particles that originate from
able for experiments, moving sources with singularities is impossibl&g singularity on the surface.

One would have to detect the singularities in the experiment and at

the same time move the source accordingly. This is not possible. We

will discuss the importance and meaning of streak lines starting from visualization techniques for vorticity transport (diffas and advection)
singularities in the following. where presented by Sadbbal. [23].




4.1.2 Issues Concerning Starting Particles Near Singularities

We mentioned above that the singularities on the surface correspond to
3D half-saddles in the volume. Itis well known that starting streamline
integration at saddle points in order to obtain separatrices is problem-
atic. Itis a standard problem that has to be handled by any implemen-
tation trying to extract the topological graph of a steady vector eld.

It is not possible to start the streamline exactly at the position of the
saddle as the velocity is zero there. All implementations have to take a
small step away from the saddle to obtain non-singular starting points
for separatrices.

The singularities we treat have a two-fold nature. They live on the
surface as 2D sinks and in 3D as half-saddles. We have to take a small
step along the unstable manifold living in 3D. A rst very simple ap-
proximation is to take the step normal to the surface. Small numerical
inaccuracies introduced by stepping away along the normal vector and
not along the actual unstable manifold, are compensated by the strong
hyperbolicity of the ow along the manifold. All streamlines around
the unstable manifold converge to it. Another possibility is to extract a
singularity of the projected ow on an offset surface having a distance
of one cell layer from the actual surface. The singularity in the pro-
jected ow of this layer is very close to the original singularity. OnlyFig. 4.  Visualization of important vortices around BMW car.
the projected ow vanishes there, the original 3D vector at the positidfP: Overview of dataset showing car with streamlines started near right
of the singularity can be used to start a particle’s motion. side mirror and vortex core Iir_1es. left: Clqst_e up with I__IC and topology

The correct direction is given by the eigenvector corresponding ##Ph on surface near side mirror. The swirling behavior of the stream-
the largest real eigenvector of the Jacobian of the 3D singularity. fges nicely correlates with the vortex core lines. right: Streamlines start
be able to use this vector the 3D singularity belonging to the 2D siff€ctly from singularities in surface shear stress  eld.
has to be identi ed. This is possible using an interpolation scheme for
incompressible ow proposed by Peiket al.[20].

As we found it to be suf ciently accurate, our implementation use also available qp the web site. The ow enters the simulation region
the normal vector direction for the step. with a velocity of 87. The velocity data is stored as a vector eld
on a 100 100 100 rectilinear grid. We use 1355 time steps that
> DATASETS represent 100 seconds of physical time. As can be seen by examining
We present results of applying our methods to four different CFihie stream surface in Fig. 5, the ow behavior behind the cuboid is
datasets in Section 6. The datasets are described shortly in this sgite chaotic. It is dominated by a large number of vortices that orig-

tion. inate from the edges and faces of the cuboid. The LIC texture and the
topology graph on the surface of the cuboid (Fig. 5 middle) show the
5.1 BMW footprints of separation structures and the mentioned vortices. The im-

The BMW dataset stems from a steady simulation around the right hagfe on the right (Fig. 5) shows the connection between a vortex and its
of the car while assuming a ow symmetry plane along the middle aforresponding attracting spiral node by some streamlines started near
the car. Fig. 4 gives an overview of some of the important features 6 node. The streamlines lead away from the surface as the vortex
the dataset. The red lines represent vortex core lines extracted bydregs particles away from the cuboid.

algorithm of Sujudi and Haimes [25] in the parallel vectors version of

Roth and Peikert [19]. The strongest vortices appear behind the ga llinsoi

the tires, the side mirror and at the windscreen. We will go into detait Ellipsoid

about the relevance of thiteadydataset in the results section. A ow around an ellipsoid at Reynolds numbRe= 10000 was sim-
52 Draft Tube ulated to ob_tain_this dataset. We use every tenth of th_e computed time
) steps resulting in a total number of 600 steps capturing 3 seconds of
This dataset represents the draft tube of a Francis turbine, in whighysical time. The surface of the ellipsoid is a triangular grid which
the runner is spinning in the inlet part of the turbine (see Fig. 3, uppgas a cut at the front side shown in the left image of Fig 2. Thus the
left corner of left image). The runner induces a spinning motion in theurface is homeomorphic to a disc and ready for the application of our
water, which leaves the turbine (right part of left image) after passingrameterization. The ow around the ellipsoid develops two main
through the tube. The inlet of the lower part of the tube is split intgortices in the beginning (see Fig. 9 left image). These vortices inter-
two channels. The upper part is dominated by one main vortex, whiet and evolve into a more complex yet symmetric pattern. The main
the ow develops several distinguished vortices that are connectedrifiation axis of the vortices in later time steps is orthogonal to the axis
the boundary in the lower part. There are 300 time steps representgighe early vortices. This is nicely depicted by the streak line in last
0.4 seconds of physical time available to us. two images of Fig. 9. We will discuss the evolution of the singularity

. streak line in the results section.
5.3 Cuboid

The cuboid dataset results from direct numerical simulation of uid

ow around a cuboid at a Reynolds numberRé= 1000. The simula- 6 RESULTS
tion was carried out with the NaSt3D&Rw solver. A version of the
NaSt3DGP code, as well as related information and documentatio
available for download dtttp://wissrech.iam.uni-bonn.
de/research/projects/NaSt3DGP/index.htm .Weused a
slightly modi ed version of theow past an obstaclexample, which

The aim of our method is to analyze the interaction of the wall shear
Uress with the three-dimensional ow. Especially we are interested
in singularities belonging to vortices originating from the wall and the
vorticity transported by the particles ejected from the wall at the singu-
larities. This is accomplished in three steps: surface parameterization,

2NaSt3DGP was developed by the research group in the Divisicgci- — Singularities tracking, and visualization of generalized streak lines and
enti ¢ Computing and Numerical Simulation at the University®dénn. Itis related structures. The results of the individual steps are explained in
essentially based on the code described in a book by GritlaI[9]. the following.




Fig. 5. Depictions of the ow in the cuboid dataset after 50 se conds of physical time. left: Stream surface showing turbulent behavior behind
cuboid. middle: LIC and topological structures of shear stress eld on cuboi d. right: Swirling streamlines indicating existence of vortex above
shear stress eld sink (sink is located in lower right part of middle image).

6.1 Parameterization When interpreting the tracking results, attention has to be payed to
éhe choice of parameterization. In Fig. 1(top/left) the resulting tracks
qfhg]ean value and LSCM parameterization are displayed. Insigni -
caNt, spontaneous changes of the singularity type appear in the middle
iiw'age along the path of the repelling node in the lower part of the im-

e. Note that this does not mean appearance or disappearance of sin
|gglarities. These changes are due to the deformations induced by the
fnean value parameterization, and can be prevented using the LSCM
p&r_ameterization, which produces smoother results.

In order to apply ef cient tracking algorithms for planar settings th
surface is parameterized and thus can be mapped to the plane.
2D-mappings of the datasets are visualized in Figs. 1, 2(right) and
For the draft tube the subregion highlighted as triangulated grid
Fig. 1(a) is parameterized using mean value and LSCM paramet
zation. LSCM has a free boundary, whereby the relation to the 3
patch is clearly visible. As explained in Section 3.2, LSCM param
terization is sometimes not applicable and the mean value parame
ization has to be used, which maps the subregion to a disk. Despite . ) .
the potential confusion introduced by the parameterization proced@e Generalized Streak Lines and Vortices
which can substantially deform the considered spatial region (see S§@.1  Steady Vector Fields

tion 3.2), visualizing singularity paths in the parameter space allows

for an effective user interaction when combined with the simultaneofé® discuss the steady BMW dataset here, because it nicely shows
depiction of the selected information directly on the surface. the connection between the singularities on the surface and the vor-

tex generation in a common real world setting. For a steady vector
eld there is no difference between streamlines, path lines and streak
lines. Thus the streamlines shown in the images are identical to streak
After the surface is parameterized, 2D singularity tracks can be cofiives. Moreover, the streamlines are identical to the singularity streak
puted. As explained in Section 3.4, the visualization of the trajectorifies as singularities do not move in the steady case. The streamlines,
of the singularities directly on the 3D surface can be rather confusingus, identify regions that are in uenced by the particles emanating
Thus, we shift the visualization to the 2D parameter space. The spafian the singularity on the surface and the corresponding vortex. The
location is given in 2D and the third dimension is used to encode timgorticity transported with particles is distributed all along the stream-
as visualized in Figs. 1(right), 2(right), and 7. lines and contributes to the persistence of the vortical behavior or even
Moreover, the visualization in parameter space gives a gotslthe creation of new vortices in the neighborhood of the streamlines.
overview over the dynamics of the ow. The turbulent behavior of the Our discussion will focus on the region around the side mirror as it
cuboid dataset is clearly re ected in the complex topological structufe quite obvious that vortices develop behind such a protruding part of
and its evolution (Fig. 7(e)). Before the turbulence develops, the sifire geometry. The lower images of Fig. 4 show a LIC texture and the
gularity paths exhibit a clear, nearly symmetric shape. A large numhepology graph (white lines) of the surface ow near the side mirror.
of singularities appear suddenly when the ow develops the turbulemhe orange streamlines originating from the spiral sinks swirl around
behavior. These effects decay after the ow reaches a certain @motke vortex cores lines. The vortex core line belonging to the lower of
of turbulence. Displaying the paths of the upper part of the draft tulige two vortices is not captured completely by the extraction method.
in the parameter space (Fig. 1) nicely shows the quasi periodic behppwever, at some distance from the surface the streamline nicely re-
ior of the rotating ow as a repeating pattern in the singularity pathSembles the vortex core line.
(two layers with the same pattern).
As can be seen in the cuboid example (Fig. 7), the temporal struc-
ture of the trajectories can become very complex, hampering the se-
lection of interesting singularities. We use two different techniques to
enhance the visualization. First, an advantageous color coding can be
used. When looking for boundary induced vortices, sink paths are of
special interest as explained in Section 4.1. The corresponding trajec-
tories are highlighted in a dominant color, while all other singularity
paths are displayed as smaller tubes in a paler color to provide con-
text. If only a certain range of time-steps is of interest, color coding
is employed to highlight temporal intervals (Fig. 7(b)). Second, IterFig. 6. Ellipsoid dataset: singularity streak line with volume rendering of
ing can be used to extract singularity paths ful lling certain propertiesz-criterion (left) and vorticity (right).
e.g., the singularities are located in a certain region, or as in our case,
the trajectories are present for a minimal amount of time. Thus, the
number of trajectories is signi cantly reduced, simplifying the selecz .
tion of relevar{t singularitiesg(compa);e Figs. 7(c) ar?df%,(d?). Addition-'s'2 Unsteady Vector Fields
ally, it can be useful to show the strength of the vortical behavior alorig the unsteady case, a singularity streak line can be computed and
the paths. visualized after selecting an interesting singularity path. The images

6.2 Singularities Tracking



in Fig. 8 are taken from an animatibof the cuboid dataset that shows
the evolution of the particles emitted from one of the attracting spiral
nodes on the surface. The images show (from left to right) how the
starting position of the streak line moves along the singularity path
(turquoise). In the third image the singularity has become a source
(repelling) through a Hopf bifurcation. Thus, it does not emit any
particles into the 3D ow anymore. We stop particle injection at this
point and allow the streak line to separate from the surface (see last
image). The images cover only a relatively short period of time (24.5
seconds) but already show a large amount of winding and bending
of the streak line, which is due to the turbulent behavior behind the
cuboid.
Additionally, the streak line experiences strong stretching over time.
It covers nearly the complete region behind the cuboid in later time
steps. We do not show an image of such a time step as it strongly suf-
fers from clutter. However, after careful investigation it turns out that
the streak line forms coherent patterns. One can observe the shape of
hairpin vortices in these patterns. In fact, comparison with isosurfaces
of |, shows that hairpin vortices evolve behind the cuboid and are
fully developed shortly before the ow leaves the simulation domain.
It is quite intelligible that the particles of the streak line agglomerate
in a vortex as they transport vorticity and a vorticity concentration is, . . . . .
one of the characteristics of a vortex. Fig. 7. Singularity paths for right rear cuboid face. (a) Paths in parameter
Images from an animatidrof our second singularity streak line ex-SPace: Grey axis indicates time. (b) Sink paths are marked blue and
ample, the ellipsoid, are shown in Fig. 9. The origin of the streak lind!S'" radius is increased. Other paths in grey. Sink paths in time interval
i.e. the sink path in the lower left part of the images (blue), lies in of interest highlighted by dark blue in contrast to light blue. (c) Without

. . : 3 hlighting but Itered by length of time of paths. (d) The s ame with a
area of low pressure (rst two images). The streak line winds aroun&fger time threshold. (e) Projection along one spatial axis. Time and

. . . |
a region of low pressure in the fourth and fth image. Low pressurgmaining spatial axis shown. (f) Paths directly on the surface of the

can serve as vortex indicator in many cases. Indeed the regions of |QWoiq instead of in the parameter space. Interval of interest highlighted.
pressure in our dataset are co-located with vortices. Fig. 6 illustrates

the vortices by volume rendering b$ and vorticity in comparison to

@ (b)

(© (d)

(€) ®

the streak line [ Dataset [ cells timesteps timeséq |
' Cuboid side face 368 1355 30

6.4 Performance Draft tube upper part (Mean)| 8.8k 300 26
. ) ) . .| Drafttube upper part (LSCM) 8.8k 300 32

We list the computation time for performing the complete trackin J Ellipsoid (LSCM) 39.4k 400 276

procedure on our datasets in Table 1. This includes transforming the
vector into parameter space, tracking, sorting of the line segments to
tracks, sorting the tracks by arclength and displaying all paths on the
surface. The computations were carried out on one core of an AMD
Opteron 2210 (1.8 GHz) with 8 GB main memory. Our software i
written in C++ and runs on Linux.

Table 1. Run times for singularity tracking.

i patches that our current method can handle. Atlas-based methods
. . . like the ones mentioned in the related work (Section 2) may be helpful
The time cost of the tracking depends on the number of time Steps, o " The yisualization of the ow that is ejected from the boundary

the num'b_er qf S|ngular!t|e§ and the number of cells. The number &uld bene t from the availability of a good path surface computation
singularities is of special importance as they are separately traclﬂqéjthod

through the time steps of the dataset.
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