
Algorithms for Implicit Deformable Models

Ross T. Whitaker

European Computer-Industry Research Centre GmbH

81925 Munich, Germany

Abstract
This paper presents a framework for implicit de-

formable models and a pair of new algorithms for solv-
ing the nonlinear partial di�erential equations that re-
sult from this framework. Implicit models o�er a use-
ful alternative to parametric models, particularly when
dealing with the deformation of higher-dimensional ob-
jects. The basic expressions for the evolution of im-
plicit models are relatively straightforward; they follow
as a direct consequence of the chain rule for di�erenti-
ation. More challenging, however, is the development
of algorithms that are stable and e�cient.

The �rst algorithm is a viscosity approximation
which gives solutions over a dense set in the range,
providing a means of calculating the solutions of em-
bedded families of contours simultaneously. The second
algorithm incorporates sparse solutions for a discrete
set of contours. This sparse-�eld method requires a
fraction of the computation compared to the �rst but
o�ers solutions only for a �nite number of contours.
Results from 3d medical data as well as video images
are shown.

1 Introduction
Paradigms that rely on curve and surface evolutions

play an important role in computer vision. In par-
ticular, deformable models combine input data with
internal forces or constraints. Such models typically
employ a minimization process to �nd a compromise
between the internal forces of the model and the shapes
indicated by the input data. The minimization algo-
rithms often take the form of iterative processes that
implement a type of hill-climbing strategy. The liter-
ature indicates a proliferation of algorithms which use
such models for a wide array of problems ranging from
segmentation to tracking.

Parameterized models have several drawbacks
which make them inadequate for certain kinds of appli-
cations. The dependency on parameterization is crit-
ical; it limits the kinds of shapes a model can take.
Models typically do not deform far from their ini-
tial conditions without some reparameterization. Such
reparameterizations are often ine�cient and developed
ad hoc according to heuristics. The parameterization
often makes it di�cult to measure the intrinsic geom-
etry of the model, as with polygonal meshes.

The models presented here, called active blobs [1, 2],
incorporate an implicit, rather than explicit, represen-
tation of shape. These models are characterized by
level sets of dense scalar �elds [3]. Parameterizations of
such dense scalar �elds are easy to manipulate. When

these scalar �elds are sampled on discrete, regular, rec-
tilinear grids, the implicit models can be represented
by greyscale digital images. This paper presents the
basic framework for implicit models and the di�eren-
tial equations that result from this framework. Later
sections describe several algorithms for computing so-
lutions to these equations and show some results for
planar curves and 3d surface models.

2 Parameterized deformable models
2.1 Curve codels

Kass, Witkin, and Terzopoulis [4] propose the ac-
tive contours or \snakes" paradigm, a general frame-
work for deformable models. These models are pa-
rameterized curves that incorporate a set of internal
forces that drive models toward solutions that are rigid
and smooth. This paradigm and its many variations
have proven useful for certain kinds of 2d segmentation
problems.

A parameterized curve that evolves over time is a
function

C :U � IR+ 7! V
s t x; y (1)

where U � IR (typically U = [0; 1] or S1, the unit cir-
cle), s 2 U is the parameterization along the length
of the curve, x and y are positions in the plane, and
V � IR2 is the image space (usually a rectangular
patch). The parameter t indicates time, a convention
that expresses a one parameter family of such curves.

The evolution equation for an active contour is the
weighted sum of the inuences from the various energy
terms being minimized. In [4] they describe several
di�erent smoothing terms as well as an attraction to
some input f(x; y):

@C

@t
= �Css + �Cssss + rf(C); (2)

where f might include feature maps from images as
well as user input. This partial di�erential equation
can be solved using any one of a number of numerical
methods.

2.2 Surface models
The same ideas have been applied with some success

to surface models [5, 6]. A surface is a two-parameter
object in a three-dimensional space, i.e., a surface S is

S :U �U 7! V
r s x; y; z (3)

where V � IR3, and U � IR.



The image energy term, the one that forces the sur-
face toward regions of interest, is essentially the same
for surfaces as for curves, but the smoothing of sur-
faces is not a trivial generalization of the smoothing
for curves. In previous work [1, 2], I have proposed
an invariant, second-order ow that produces desirable
behavior for smoothing surfaces in a wide range of ex-
amples. This work is beyond the scope of this paper,
and for now I use the average second-order ow with
respect to the two parameters in the domain, realizing
that this ow has some severe limitations. The results
in later sections rely on a weighted-curvature ow as
described in [2]. The internal constraints of an active
surface incorporate both free parameters, r and s:

dEsmooth = Sss + Srr and (4)

dEimage = �rf(S); (5)

where dE indicates that these terms are derived from
the �rst variation of the corresponding energy terms.

A gradient descent algorithm yields an evolution
equation for the surface:

@S

@t
= �dEsmooth + �dEimage; (6)

where � and � are user-de�ned parameters that control
the relative inuence of the internal constraints and
the input data.

Equations 2 and 4{6 describe the evolution of a
model in terms of its parameterization. The precise
behavior of the model depends on the particular pa-
rameterization. Often surface parameterizations are
limited by topology. For instance, 3d parameteriza-
tions of a sphere are generally not compatible with
a torus. In addition, as models evolve and undergo
large deviations from their original shapes, surface pa-
rameterizations often introduce de facto constraints.
For instance the expansion of polygonal models cre-
ates a kind of coarseness which prevents the model
from capturing smaller structures; thus the evolution
of polygonal models requires the creation and deletion
of polygons [6].

The continuous mapping described by Eq. 3 repre-
sents only a limited class of surfaces; global parame-
terizations of surfaces are very restrictive and are dif-
�cult to manipulate as the surface deforms. A more
general de�nition is that of a regular surface which
is a subset of 3-space: S � IR3, such that for each
point p 2 S a neighborhood V of p there exists a map
x : U 7! V \ S, where U � IR2 is an open set and x
is a di�erentiable homeomorphism that is one-to-one
on U . Thus, the surface S can be represented locally
as a function, x(r; s) = x(r; s); y(r; s) z(r; s). Reg-
ular surfaces provide a means of looking only at the
local structure of surfaces without a need for a global
parameterization. In the following section a local pa-
rameterization is expressed in terms of the intrinsic
geometry of the surface in order to do away with the
parameters r and s entirely.

3 Embedding deformable models
There is an intrinsic geometry to such objects which

depends only on their shape in the range, V , rather

than a particular parameterization. Thus, the intrinsic
geometry of a surface can be captured implicitly by
embedding the surface as level sets of scalar functions.
This strategy removes the parameterization from the
model, leaving only the intrinsic geometry. Embedding
active contours consists of four steps.
1 Express the equations of motion for a deformable
model in terms of some unspeci�ed parameteriza-
tion (as was done in Sect. 2).

2 Describe the parameterization in terms of the dif-
ferential structure of the model.

3 Assume the model is the level set of a function F
(which is an image or volume for planar curves or
surfaces respectively).

4 Express the geometry of the level set in terms of
the di�erential structure of F , and create an evo-
lution equation for F .

To apply this strategy to deformable manifold
M � IRn, represent M as a level set of an n di-
mensional scalar function, F : IRn � IR+ 7! IR, which
evolves over time. The evolution equation of the in-
dividual level surfaces speci�es a corresponding evolu-
tion equation for the scalar function F (x; t), which is
a dense set of data in the domain of the model.

A subclass of all parameterized deformable models,
M(s; t) where s 2 U � IRn�1, can be represented by

M(t) = fxjF (x; t) = kg: (7)

The manifoldM remains a level set of F over time, so
the time derivative is zero:

0 =
@F (M; t)

@t
+rF (M; t) �

@M

@t
; (8)

where

rF (x)
def
=

@F

@x1
; � � � ;

@F

@xn
: (9)

Thus,

@F

@t
= �rF �

@M

@t
= �jrF j

@M

@t
�N; (10)

where N is the normal to the level set.
For surfaces, x = x; y; z, and the evolution of S(r; s)

is expressed in terms of derivatives of F under the
assumption of an orthonormal parameterization, i.e.,
jSrj = jSsj = 1 and Sr �Ss = 0. The terms of the evolu-
tion equation can be written as di�erential expressions
on F :

Srr �N = �
Fuu
jrF j

; Sss �N = �
Fvv
jrF j

; (11)

and rf �N = rf �
rF

jrF j
;

where the subscripts in u and v represent directional
derivatives with respect to the directions Sr and Ss
respectively.



Multiplying by jrF j and adding the energy terms
gives

@F

@t
= � (Fuu + Fvv) � � (rF � rf) : (12)

Note that Fuu + Fvv is twice the mean curvature of
the level set which is invariant to rotations (within
the tangent plane) of the u-v coordinate system. This
means that the particular choice of r and s does not
a�ect the result of the evolution. Indeed, this invari-
ance should be a requirement of any energy term used
in such models.

The mean curvature (as well as the Gaussian curva-
ture and bending energy [2]) can be computed directly
from the �rst- and second-order structure of F , i.e.,

@F

@t
= � (Fxx + Fyy + Fzz � Fww)� �rF � rf; (13)

where the subscript w indicates a derivative in the nor-
mal direction; e.g., Fw = jrF j. The directional deriva-
tives Fw and Fww can be computed directly from �rst-
and second-order �nite di�erence schemes.

Equation 13 is (at any particular instant in time)
equivalent to an active surface with an explicit param-
eterization r, s, in which r and s are given in units of
arc length and have perpendicular tangents. Thus the
evolution of the implicit surfaces in Eq. 13 is equivalent
to a parametric model if one performs a reparameter-
ization locally at each time step.

4 Numerical algorithms
The previous section describes the continuous math-

ematics for embedding active surfaces, but it does not
address the practical problems of solving these equa-
tions in the discrete domain. In general the scalar
function F is not a continuous mapping from the im-
age space, V � IR3, to the real numbers, but rather it
has some discrete representation in a digital computer.
There are many options for representing F : V 7! IR;
for this work I represent F as a discretely-sampled im-
age that is sampled on a �nite, Cartesian grid. For
curves, F is 2d digital image, and for surfaces F is a set
of voxels that form a 3d volume. The strategy of em-
bedding active contours does not depend on this par-
ticular discrete representation; I choose this represen-
tation because it provides a mechanism for performing
numerical di�erentiation at multiple scales. Deriva-
tives of F are measured using �nite di�erences with
the \tightest �tting" kernels of a particular order [7].
All derivatives are measured in the directions x, y (and
z) that are associated with the discrete grid. Direc-
tional derivatives (in local coordinates) are calculated
from these discrete Cartesian derivatives, using a dot
product with a unit vector in the desired direction.

4.1 Viscosity solutions
The evolution equations for the embedded contours

have the form of a Hamilton-Jacobi equation, i.e.,

@F (x; t)

@t
= G(x; t)jrF (x; t)j; (14)

where x = x; y; z. Discrete solutions using �nite for-
ward di�erences in time are generally not stable. A �-
nite forward di�erences scheme on a discrete grid gives

F (x; t+�t) = F (x; t) +
@F (x; t)

@t
�t: (15)

Such equations can overshoot [3] near sharp edges
causing ringing and instability.

Stable solutions of Eq. 14 can be computed by using
a viscosity approximation. Osher and Sethian [3] pro-
pose an up-wind scheme which incorporates piecewise
continuous approximations to F and utilizes one-sided
(or up-wind) derivatives in approximations to jrF j.
Instead of an up-wind scheme I use a second-order dif-
fusion term for computing stable solutions to Eq. 14.

This viscosity solution can be shown to be stable
by considering a Fourier analysis on a class of one-
dimensional signals. I �rst show that the forward �-
nite di�erence scheme is unstable and then use the
same analysis to show that a second-order term con-
trols this instability. Finally, this one-dimensional al-
gorithm is generalized to higher dimensions by consid-
ering a Gauge coordinate representation of F (aligned
with the level sets) and introducing a nonlinear dif-
fusion which is a natural extension of the one dimen-
sional case (which happens to be linear). The insight
that drives this analysis is the fact that the ow lines
of F can be treated as one-dimensional functions when
solving Hamilton-Jacobi systems.

Consider a one-dimensional, monotonic function �;
i.e., � : U 7! IR, where U � IR and �x(x) > 0 8x 2 U .
A discrete forward time di�erence gives:

�(x; t+�t) = � +G�x�t: (16)

Assume for the time being a constant G(x) = �
where �1 < � < 1. Then the Fourier transform asso-
ciated with an incremental time step is,

F [�(t+�t)] = T (!)F [�(t)]; (17)

where T (!) is the transfer function. For the forward
time scheme given in Eq. 16 this transfer function is

T (!) = 1 + ��t
�
e�{! � e{!

�
(18)

= 1� 2�{ sin(!)�t:

The \overshooting" associated with the numerical
scheme of Eq. 16 is understood by examining the
absolute value of the transfer function, jT (!)j2 =
1 + (�! sin(!)�t)2, which is greater than one for all
! 6= �=2. Thus, the forward di�erence scheme consis-
tently increases certain frequencies over time creating
unstable behavior.

The numerical scheme is made stable by the intro-
duction of second-order di�usion term, i.e.,

�(x; t+�t) = (19)

�(x; t) + � [j�x(x; t)j+ ��xx(x; t)]�t:

In order to choose � consider the resulting transfer
function,

T (!) = 1� 2 [�� � �� cos(!) + �{ sin(!)]�t; (20)



and note that on the complex plane this function is
an ellipse which is o�set from the origin by an amount
1 � 2���t. This ellipse can be made to lie entirely
inside the unit circle by setting

� = (1=2) Sign (�) = (1=2)(�=j�j) and �t < 1:

Putting this back into the numerical scheme gives

�(x; t+�t) = �(x; t)+ (21)�
�j�x(x; t)j+

1

2
j�j�xx(x; t)

�
�t:

The result can be generalized from constant � to
space-varying G(x) by incorporating the assumption
jG(x)j�t < 1 and using the results from � = �1 to
bound the results for G(x). This gives the one dimen-
sional numerical scheme

�(x; t+�t) = �(x; t)+ (22)�
G(x)j�x(x; t)j+

1

2
jG(x)j�xx(x; t)

�
�t:

In one dimension, this formulation is identical (ex-
cept at extrema, which must be handled as special
cases) to the �rst-order up-wind scheme proposed by
[3]. However the formulation I use here generalizes
to higher dimensions in a rotationally invariant man-
ner (to within the coarseness of the underlying grid),
whereas the up-wind approaches typically assume that
the velocity of a moving wave front is in one of the car-
dinal directions, i.e., aligned with the grid on which F
is sampled.

Equation 23 generalizes to functions F (x) with n-
dimensional domains by considering local parameteri-
zations ofF along ow lines. Flow lines are the integral
paths of the gradient, rF . These lines are perpen-
dicular to the level sets of F which represent implicit
curves, surfaces, or hypersurfaces (depending on n).
These ow lines are the one dimensional sub-space to
which the previous one-dimensional analysis applies.
Thus, the multi-dimensional numerical scheme is:

F (x; t+�t) = F (x; t)+ (23)�
G(x)jrF (x; t)j+

1

2
jG(x)jFww(x; t)

�
�t;

where Fww is the second derivative in the direction
of the gradient of F . This value is computed from
the �rst and second derivatives of F , i.e., Fww =
(rF )(D2F )(rF ), and D2F is the matrix of second
derivatives, or the Hessian, of F .

Solutions to Eq. 24 require some speci�cation of the
boundary conditions on the image space V . For the re-
sults in this paper I use FNN(x) = 0 8x 2 @V , where
@V is the boundary of the image space, and N is the
direction normal to the boundary. These boundary
conditions enable level sets to move across the bound-
aries unimpeded.

This second-order viscosity scheme requires time
steps �t that are inversely proportional to the velocity

Figure 1: One slice from an MRI data set containing
22 \thick" slices.

of the fastest moving wave front;

�t �
1

supx2V fjG(x; t)jg
; (24)

which is required in order to maintain the assumption
that jG(x; t)j�t < 1. The mean and weighted curva-
ture ows are stable when using forward di�erences in
time and centralized di�erences in space. Therefore,
the jG(x; t)j term used for the viscosity solution in-
cludes only the inuence of the image energy dEimage;
the second-order smoothing term is included without
the viscosity approximation.

4.2 Results of viscosity solutions
Figure 1 shows an MRI data set of a human head,

which consists of 22 slices. The sampling in the z
(transversal) direction is less dense than the x and y
directions. The slices are thick in the z direction and
so attempts to reconstruct the head with a linear in-
terpolation (Fig. 2(a)) show the \wedding cake" e�ect.
In this example the active blob models are used to con-
struct models of both the head and the tumor. These
models are produced with a 3 to 1 supersampling in
the z direction and a 2 to 1 subsampling in the x and y
directions. This sampling is used because it produces
models that resemble more closely the proportions of
the actual anatomy. Figure 2(b) shows the initial mod-
els that were used to do the segmentation of the head
and tumor. Figure 2(c) shows the resulting models.

4.3 Sparse-�eld solutions
The viscosity solutions described in the previous

sections give solutions for implicit models over the en-
tire range of the models. These solutions describe the
behavior of an embedded family of contours, e�ectively
representing a contour density at each point. In this
section I describe an alternative numerical algorithm
that computes the geometry of only a small subset of
points in the range and requires a fraction of the com-
putation time required by the previous algorithm.

When solving for only a single level set, F (x; t) = k,
the evolution of F is important only in the vicinity of
that level set. The evolution of the implicit models is
such that the level sets evolve independently (to within
the error introduced by the discrete grid). Thus, one
should perform calculations for the evolution of F only
in some neighborhood of the set fxjF (x) = kg. The
di�culty is keeping track of this neighborhood as the
k-level sets of F move in the range.



(a) (b) (c)

Figure 2: (a) An isosurface rendering of a 3 to 1 linear interpolation (to account for the thickness of the slices)
from the data in Fig. 1, (b) the ellipsoidal models that were used as the initial conditions for segmenting the head
and tumor, (c) the pair of models after 40 iterations, produced with identical parameters � and � but di�erent
initial conditions.

Malladi, Sethian, and Vemuri [8] construct an em-
bedding of the evolving curve (via a signed distance
transform) that has a �nite width of m pixels. The
evolution of the curve is calculated only on this set of
pixels that are within the embedding. The algorithm
presented here is even more sparse and does precisely
the number of calculations needed to compute the next
position of the level curve. It is very e�cient and at
each iteration visits only those pixels through which
the k-level curve passes.

The sparse-�eld algorithm takes advantage of the
fact that a k-level curve, C, of a discrete image (of
any dimension) has a set of pixels through which it
passes (Fig. 3). I call this set of pixels the active set.
The distance of the curve from the center of any ac-
tive pixel is proportional (to within �rst order) to the
intensity of that pixel and the gradient magnitude of
F at that point. Because all of the derivatives (up
to second order) in this approach are computed using
nearest neighbor di�erences, only the active set and
their immediate neighbors are relevant to the evolu-
tion of this curve (at a particular point in time). The
active set can be kept in a separate list (the active list)
which gives their indices into the volume data. The list
is constructed so that pixels can be added and removed
from the active set in an e�cient manner.

The evolution of the curve C is independent of the
embedding F , so I choose a particular F outside of
the active set that allows e�cient computation. As-
suming, without loss of generality, that k is zero; then
F consists of values inside the active set, which are 1,
values outside, which are -1, and the active set, which
ranges between -1 and 1 (inclusive).

The sparse �eld algorithm involves visiting each ac-
tive pixel once during each iteration and spreading the
activity to other pixels (or \cells") as the level set
moves from one pixel to another. The calculations for
each active pixel at each time step involve the following
algorithm.
1 Calculate the local geometry (�rst and second
derivatives using centralized di�erences) for the
current active pixel.

2 Compute the net change, based on the input data
and model forces, to the value of F at that posi-
tion.

3 Add this change to the pixel and decide if the new
value F (t+�t) falls outside the [�1; 1] interval.

Figure 3: A level curve of 2d scalar �eld passed through
a �nite set of pixels. Only those pixels and their
nearest neighbors are relevant to the evolution of that
curve.

If F (t+�t) � 1 set it to 1, make it inac-
tive, and set all neighboring, inactive, exter-
nal pixels as active.

If F (t+�t) � �1 set it to -1, remove it from
the active list, and set all neighboring, inac-
tive, internal pixels as active.

Because solutions of F are constrained to lie in the
[�1; 1] interval, the overshooting associated with for-
ward �nite di�erences algorithms is not a problem, and
there is no need for the second-order viscosity term de-
scribed in the algorithm of Sect. 4.1.

Experiments in 2d (planar curve models) and 3d
(surfaces of solid objects) show that the sparse �eld al-
gorithm is stable and e�cient. The active pixels can be
kept in a linked list data structure so that at each time
step only the active pixels are visited. This decrease in
computation allows curve and surface evolutions to be
computed in reasonable times (tens of iterations per
second) on conventional workstations.

4.4 Results of sparse-�eld solutions
Figure 4(a) shows a greyscale 2d image of a model

engine that must be segmented from the background.
Figure 4(c) shows an initial model that consists of a
hand-placed circle with a radius that appeared to be
similar to the engine size. The circle is represented
as an image with a coarse resolution; it is one quarter
the size of the original image in Fig. 4(a). This model
is allowed to deform (and the resolution increased as



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4: Video image segmentation: (a) An image of a model engine, (b) an initial, coarse-scale model, (c) a
set of edges from the input image, (f) the steady-state model that results from moving downhill (with a smoothing
term, through 3 distinct resolutions) on the distance transform of those edges. Surface evolution: A cube model
moves downhill on the distance transform of a torus. From the top left: (e) 0 iterations, (f) 10 iterations, (g) 20
iterations, and (h) 30 iterations.

it settles) so that it moves downhill on the distance
transform associated with edge maps computed from
the original image. Figure 4(b) shows the edge map at
the �nest resolution and 4(d) shows the steady state
of the model at the same resolution. While the model
is capable of a reasonable �gure/ground separation, it
su�ers from some of the problems typically associated
with deformable models. In particular, it is attracted
to local minima.

The sparse-�eld algorithm proved to be very e�-
cient, with on the order of 200 active pixels in the
course-scale calculations and 600 active pixels in the
�ner-scale calculations. The evolution for all three lev-
els combined took several seconds on a SPARCstation
20, a shorter time than required for the edge calcula-
tions.

Figures 4(e){(h) show how the sparse-�eld solutions
can provide topological exibility for surface models.
The initial model is a cube (represented as a binary
32 � 32 � 32 voxel image) which moves downhill on
the distance transform of a torus. There were approx-
imately 2500 active pixels and the entire evolution pro-
cess took about a minute on a SPARCstation 20.

Acknowledgments
Thanks to the University of North Carolina Depart-

ment of Computer Science for providing computing re-
sources and data to assist this work. This work is sup-
ported by Bull SA, ICL Plc, and Siemens AG.

References
[1] R. T. Whitaker and D. T. Chen, \Embedded active sur-

face for volume visualization," in SPIE Medical Imaging

1994, (Newport Beach, California), 1994.

[2] R. T. Whitaker, \Volumetric deformable models: Ac-
tive blobs," in Visualization In Biomedical Computing

1994 (R. A. Robb, ed.), (Mayo Clinic, Rochester, Min-
nesota), pp. 122{134, SPIE|The International Society
for Optical Engineering, 1994.

[3] S. Osher and J. A. Sethian, \Fronts propogating
with curvature-dependent speed: Algorithms based on
Hamilton-Jacobi formulations," Journal of Computa-

tional Physics, vol. 79, pp. 12{49, 1988.

[4] M. Kass, A. Witkin, and D. Terzopoulis, \Snakes: Ac-
tive contour models," International Journal of Com-

puter Vision, vol. 1, pp. 321{323, 1987.

[5] D. Terzopoulos and D. Metaxas, \Dynamic 3d mod-
els with local and global deformations: Deformable su-
perquadrics," IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 13, no. 7, pp. 703{714,
1991.

[6] J. Miller, D. Breen, W. Lorensen, R. O'Bara, and
M. Wozny, \Geometrically deformed models: A
method for extracting closed geometric models from
volume data," in SIGGRAPH 1991, pp. 217{226, ACM
Press, 1991.

[7] T. Lindeberg, Discrete Scale-space Theory and the

Scale-space Primal Sketch. PhD thesis, Royal Insti-
tute of Technology, Department of Numerical Analysis
and Computing Science, Royal Institute of Technology,
S-100 44 Stockholm, Sweden, 1991. TRITA-NA-P9108.

[8] R. Malladi, J. Sethian, and B. Vemuri, \Evolutionary
fronts for topology-independent shape modeling and re-
covery," in Third European Conference on Computer

Vision (J.-O. Eklundh, ed.), pp. 3{13, Springer-Verlag,
1994.


