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1 Introduction

The problem of body fitting meshes that are both adaptive and geometrically
accurate is important in a variety of biomedical applications in a multitude
of clinical settings, including electrocardiology, neurology, and orthopedics.
Adaptivity is necessary because of the combination of large-scale and small-
scale structures (e.g. relatively small blood vessels spanning a human head).
Geometric accuracy is important for several reasons. In some cases, such as
computational fluid dynamics, the fine-scale structure of the fluid domain is
important for qualitative and quantitative accuracy of the solutions. More
generally, finite element approximations of elliptic problems with rough coef-
ficients require increased spatial resolution normal to material boundaries [3].
The problem of constructing meshes from biomedical images is particularly
difficult because of the complexity and irregularity of the structures, and thus
tuning or correcting meshes by hand is quite difficult and time consuming.
Many researchers and, indeed, commercial products simply subdivide the un-
derlying hexahedral image grid and assign material properties to tetrahedra
based on standard decomposition of each hexahedron into tetrahedra.

This paper presents a small case study of the results of a recently developed
method for multimaterial, tetrahedral meshing of biomedical volumes [6]. The
method uses an iterative relaxation of surface point point positions that are
constrained to subsets of the volume that correspond to boundaries between
different materials. In this paper we briefly review the method and present
results on a set of MRI head images for use in bioelectric field simulation and
source localization.

2 Mesh Generation Methodology

The goal of this paper is to examine the problem of forming anatomy-
conforming tetrahedral meshes from segmented, three-dimensional MRI im-
ages of the human head for the purposes of finite element simulations of the
electric fields. The pipeline for generating tetrahedral meshes from images
consists of three parts: volume preprocessing, surface meshing, and volume
meshing. This meshing method is presented in [6], but we briefly review it
here for completeness.

We represent interfaces in a multimaterial dataset using a model that de-
scribes each material with a smooth, volumetric indicator function, fi [4]. A
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set of N indicator functions F = {fi|fi : V 7→ <} represents n materials. In
practice these functions are formed by smooth interpolations of the output of
segmented volumes or label maps, such as shown in Figure 1. For this work, we
process each label map using a level-set implementation of the grayscale mor-
phology algorithm proposed by Williams and Rossignac [10] called tightening,
which limits the radius of curvature of the resulting boundary.
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Fig. 1: (a) Multimaterial volumes, such as this segmentation of a head MRI are used to generate
3D meshes. (b) Generically, in 2D, two or three materials can meet (up to four in 3D). (c)–(d)
Four material junctions are not generic, and result in generic conditions with small perturbations.
(e) The generic case can be represented through smooth indicator functions.

A material label i is assigned to a point x ∈ V if (and only if) fi(x) >
fj(x) ∀ j 6= i. In the case where N > 2, the boundaries that separate ma-
terials are not necessarily manifold, and can form sharp corners and edges.
We characterize each material interface in terms of the number of material
indicator functions that are maximal (and equal) at that junction. After this
preprocessing, we can define inside/outside (IO) functions for each material
so that the boundaries boundaries between different materials, represented as
zero sets of the IO functions, coincide. We define these functions:

f̃i = fi −
n

max
j=1,j 6=i

fj . (1)

Material junctions occur at points where two or more of the indicator
functions (fi) have equal, maximal value. We characterize the order of the
junction by the number of coincident materials. For V ⊂ <2, 2-junctions and
3-junctions occur generically, as shown in Figure 1 (b–c), while a 4-junction
is a nongeneric case, as shown in Figure 1 (d–e). For V ⊂ <d each K-junction
forms a subset of V that is topologically equivalent (homeomorphic) to a
P -disk, where P = d − K + 1. Thus each type of material junction can be
considered a P -cell, as described in the literature on discrete topology [1].
Generically, for d = 3 we have 4-junctions (0-cells), points; 3-junctions (1-
cells), and 2-junctions (2-cells) or surfaces. For the case of the head data in
this paper, we use six materials: grey matter, white matter, CSF, skin, bone,
and air. Thus we have the possibility of 15 different types of 2-junctions (2-
cells), 20 types of 3-junctions (1-cells), and 15 types of 4-junctions (0-cells).
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The meshing method uses a set of points, which we call particles whose
positions are updated along the gradient of a objective function that prefers
regular configurations. In previous work, we have shown that these objective
functions can be constructed to adaptive, high-quality sampling of implicit
surfaces [5]. In this work each particle is constrained to a particular material
junction. This formulation for each type of cell includes a set of projection
operators that force particle motions to remain in the tangent space of the as-
sociated material boundary. A hierarchy of particle systems then samples each
type of generically occurring material junction such that each junction is rep-
resented in the final mesh. That is, in 3D the 0-cells (points) are sampled first,
followed by the 1-cells (curves), and concluding with the 2-cells (surfaces). Fi-
nally, a simple labeling algorithm extracts the multimaterial surface meshes as
a subset of a Delaunay tetrahedralization of the samples, as described below.

To represent the interface between sets of materials, we define a cell indi-
cator function that identifies points in V where a set of IO functions evaluate
to zero, such as the material interface between materials 1 and 2 shown as
the red dashed line in Figure 1. For a set of materials M (where 2 ≤ |M | ≤ 4
generically in 3D), we have

JM =
∑
i∈M

f̃2
i , (2)

and the zero set of this function is the cell defined by the interface of the
materials M .

We use the particle system framework of Meyer et. al [5, 6] for placing
points along each material junction. This is an iterative algorithm that relaxes
the particle positions, prior to a triangulation or meshing, in order to minimize
an energy function that favors equal distributions of points or particles. This
framework uses a sizing field that informs particles of how far they should
be from their neighbors. We set this sizing field to be proportional to the
local feature size (LFS) [2], which is the distance to the nearest point on the
medial axis. In this way, the sizes of triangles on the surface meshes will
be proportional to the sizes of the tetrahedra that will be needed to fill the
adjacent volumes. We generate a sizing field volume, at the same resolution as
the input data, for a multimaterial dataset, by first computing an approximate
medial axis of each IO function. We then store at each grid point in the sizing
field volume the minimum LFS for the set evaluated at the grid point location.
We smooth this field using a gradient-limiting PDE proposed by Persson [7].

For the tetrahedral meshing we use the open-source software package Tet-
gen1. We run Tetgen in a constrained-Delaunay mode so that it adds points
to the volume interior but does not add points to the surface. This Delau-
nay tetrahedralization (DT) uses the constrained DT method proposed in [9].
The Tetgen software includes a Delauney refinement approach [8] for ensur-
ing mesh quality, as measured by edge-radius ratios, which does not, unfortu-

1http://tetgen.berlios.de
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nately, penalize slivers. Tetgen does include a sliver removal step, consisting
of edge-flips and peeling away of slivers near the boundary, which is only
moderately effective.

3 Case Studies

In this section we present a small set of case studies that demonstrates the
use of this meshing strategy for indicator functions derived from smoothed
label maps of segmented, 3D, MRI images. The three data sets are from two
pediatric patients suffering from neurological symptoms (e.g. seizures), ages
12 and 15, and a single normal volunteer, age 28, which we call cases 1, 2,
and 3, respectively. The segmentations come from a semiautomated tissue
classification algorithm followed by a manual inspection and hand editing of
mislabeled pixels.

(a) (b) (c)

Fig. 2: (a) A particle distribution for Case 2 shows the adaptivity of the particles for thin regions
of the skin/skull. (b) The tetrahedral mesh for Case 2. (c) The tetrahedral mesh for cortex and
CSF of Case 2b, showing higher resolution.

Cases 1 2 2b (high res) 3

Num tris 265,989 450,945 3,510,322 321,532

Num tets 1,067,541 1,765,216 15,561,759 1,190,125

Tris RR avg(min) 0.89(0.031) 0.89(1.8× 10−4) 0.93(2.6× 10−4) 0.89(7.6× 10−5)

Tets RR avg(min) 0.61(0.013) 0.61(1.0× 10−5) 0.64(2.0× 10−5) 0.62(5.1× 10−5)

Each material is extracted into a binary volume, and a distance transform
is constructed to the interfaces for that material, and the surface is smoothed
with a tightening of radius 0.5, and approximate medial axes of each material
are constructed by detecting coincidences of foot points on a grid with the
same resolution as the original image. The feature size volume resulting from
the distance to this medial axis is gradient limited (smoothed to enforce max-
imum on gradient values [7]) to a value of 0.5 (unitless), and then multiplied
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by a value ε, which controls the resolution of the final mesh, is 2.5, except
Case 2b, which is the high-resolution version of Case 2, with ε = 1.0. Figure 2
shows surface and tetrahedral meshes that result from the proposed, particle-
based multimaterial meshing method. Table 3 shows quantitative analyses of
the triangles and tetrahedra for the three cases.

The results of this method are quite promising. The triangle mesh quality
is excellent, especially given the adaptivity and high geometric accuracy ex-
hibited by the method. The tetrahedral quality, as measured by radius ratio
(which is indicative of the conditioning of our stiffness matrix in the result-
ing linear system), is not as good, but acceptable for simulations. The worst
tetrahedra are slivers, which are an expected outcome of the use of Tetgen
for the final volumetric step. Particularly important is that the system used
one set of parameters for all three cases and required no manual intervention
after the initial tuning of parameters. Future work will focus on the computa-
tion time, which is 8-12 hours for each of these datasets, and is mostly spent
of preprocessing and distributing particles, and the tetrahedralization, which
would benefit from one of the variety of method that explicitly reduces slivers.
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