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Abstract

This chapter describes the basic differential

geometry of isosurfaces and the method of

manipulating the shapes of isosurfaces

within volumes, called level sets. Deform-

able isosurfaces, implemented with level-

set methods, have demonstrated a great

potential in visualization for applications

such as segmentation, surface processing,

and surface reconstruction. This chapter

begins with a short introduction to isosur-

face geometry, including curvature. It con-

tinues with a short explanation of the level-

set partial differential equations. It also

presents some practical details for how to

solve these equations using upwind-

scheme and sparse-calculation methods.

This paper presents a series of examples

of how level-set surface models are used

to solve problems in graphics and vision.

6.1 Introduction

6.1.1 Motivation

This chapter describes mechanisms for analyzing

and processing volumes in a way that deals

specifically with isosurfaces. The underlying phil-

osophy is to use isosurfaces as a modeling

technology that can serve as an alternative to

parameterized models for a variety of important

applications in visualization and computer

graphics. Level-set methods [1] rely on partial

differential equations (PDEs) to model deform-

ing isosurfaces. These methods have applications

in a wide range of fields, such as visualization,

scientific computing, computer graphics, and

computer vision [2,3]. Applications in visualiza-

tion include volume segmentation [4,5,6], surface

processing [7,8], and surface reconstruction

[9,10].

This chapter presents the mathematics and

numerical techniques for describing the geom-

etry of isosurfaces and manipulating their shapes

in prescribed ways. Its starts with a basic intro-

duction into the notation and fundamental

concepts and then presents the geometry of iso-

surfaces. It thendescribes themethodof level sets,

i.e., moving isosurfaces, and presents the math-

ematical and numerical methods they entail.

6.1.2 Isosurfaces

6.1.2.1 Modeling Surfaces With Volumes

When considering surface models for graphics

and visualization, one is faced with a staggering

variety of options including meshes, spline-based

patches, constructive solid geometry, implicit

blobs, and particle systems. These options can be

divided into two basic classes—explicit (para-

meterized) models and implicit models. With an

implicit model, one specifies the model as a level

set of a scalar function,

f: U
x, y, z

7!IR
k

(6:1)

where U � IR3 is the domain of the volume (and

the range of the surface model). Thus, a surface

S is

S ¼ {xjf(x) ¼ k} (6:2)

The choice of k is arbitrary, and f is sometimes

called the embedding. Notice that surfaces de-

fined in this way divide U into a clear inside and

outside—such surfaces are always closed wher-

ever they do not intersect the boundary of the

domain.
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Choosing this implicit strategy begs the ques-

tion of how to represent f. Historically, implicit

models are represented using linear combin-

ations of basis functions. These basis or poten-

tial functions usually have several degrees of

freedom, including 3D position, size, and orien-

tation. By combining these functions, one can

create complex objects. Typical models might

contain several hundred to several thousand

such primitives. This is the strategy behind the

blobby models proposed by Blinn [11].

While such an implicit modeling strategy

offers a variety of new modeling tools, it

has some limitations. In particular, the global

nature of the potential functions limits one’s

ability to model local surface deformations.

Consider a point x 2 S where S is the level

surface associated with a model f ¼
P

i ai,

and ai is one of the individual potential func-

tions that comprise that model. Suppose one

wishes to move the surface at the point x in a

way that maintains continuity with the sur-

rounding neighborhood. With multiple, global

basis functions one must decide which basis

function or combination of basis functions to

alter and at the same time control the effects on

other parts of the surface. The problem is gen-

erally ill posed—there are many ways to adjust

the basis functions so that x will move in the

desired direction, and yet it may be impossible

to eliminate the effects of those movements on

other disjoint parts of the surface. These prob-

lems can be overcome, but the solutions usually

entail heuristics that tie the behavior of the

surface deformation to, for example, the choice

of representation [12].

An alternative to using a small number of

global basis functions is to use a relatively large

number of local basis functions. This is the

principle behind using a volume as an implicit

model. A volume is a discrete sampling of the

embedding f. It is also an implicit model with a

very large number of basis functions, as shown in

Fig. 6.1. The total number of basis functions is

fixed; their positions (grid-points) and extent are

also fixed. One can change only the magnitude of

each basis function, i.e., each basis function has

only one degree of freedom. A typical volume

of size 128� 128� 128 contains over a million

such basis functions. The shape of each basis

function is open to interpretation—it depends

on how one interpolates the values between

the grid-points. A trilinear interpolation,

for instance, implies a basis function that is a

piece-wise cubic polynomial with a value of one

at the grid-point and zero at neighboring grid-

points. Another advantage of using volumes as

implicit models is that for the purposes of analy-

sis we can treat the volume as a continuous func-

tion whose values can be set at each point

according to the application. Once the continu-

ous analysis is complete, we can map the algo-

rithm into the discrete domain using standard

methods of numerical analysis. The sections that
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follow discuss how to compute the geometry of

surfaces that are represented as volumes and

how to manipulate the shapes of those surfaces

by changing the gray-scale values in the volume.

6.1.2.2 Isosurface Extraction and
Visualization

This paper addresses the question of how to use

volumes as surface models. Depending on the

application, however, a 3D grid of data (i.e., a

volume) may not be a suitable model represen-

tation. For instance, if the goal is to make

measurements of an object or visualize its

shape, an explicit model might be necessary.

In such cases it is beneficial to convert between

volumes and other modeling technologies.

For instance, the literature proposes several

methods for scan-converting polygonal meshes

or solid models [13]. Likewise, a variety of

methods exists for extracting parametric models

of isosurfaces from volumes. The most preva-

lent method is to locate isosurface crossings

along grid lines in a volume (between voxels

along the 3 cardinal directions) and then to

link these points together to form triangles and

meshes. This is the strategy of marching cubes

[14] and other related approaches. However,

extracting a parametric surface is not essential

for visualization, and a variety of direct

methods [15,16] are now computationally feas-

ible and arguably superior in quality. This chap-

ter does not address the issue of extracting or

rendering isosurfaces, but rather studies the

geometry of isosurfaces and how to manipulate

them directly by changing the grey-scale values

in the underlying volume. Thus, we propose

volumes as a mechanism for studying and

deforming surfaces, regardless of the ultimate

form of the output. There are many ways

of rendering or visualizing them, and these tech-

niques are beyond the scope of this discussion.

6.2 Surface Normals

The surface normal of an isosurface is given by

the normalized gradient vector. Typically, we

identify a surface normal with a point in the

volume domain D. That is

n(x) ¼ rf(x)

jrf(x)j where x 2 D: (6:3)

The convention regarding the direction of this

vector is arbitrary; the negative of the normal-

ized gradient magnitude is also normal to the

isosurface. The gradient vector points toward

that side of the isosurface that has greater values

(i.e., is brighter). When rendering, the conven-

tion is to use outward-pointing normals, and the

sign of the gradient must be adjusted accord-

ingly. However, for most applications any con-

sistent choice of normal vector will suffice. On a

discrete grid, one must also decide how to ap-

proximate the gradient vector (i.e., first partial

derivatives). In many cases central differences

will suffice. However, in the presence of noise,

especially when volume-rendering, it is some-

times helpful to compute first derivatives using

some smoothing filter (e.g., convolution with a

Gaussian). Alternatively, when calculating high-

order geometry, one should use a polynomial or

spline, with the appropriate degree of continuity

[17]. When using the normal vector to solve cer-

tain kinds of partial differential equations, it is

sometimes necessary to approximate the gradi-

ent vector with discrete, one-sided differences, as

discussed in successive sections.

Note that a single volume contains families of

nested isosurfaces, arranged like the layers of an

onion. We specify the normal to an isosurface as

a function of the position within the volume.

That is, n(x) is the normal of the (single) isosur-

face that passes through the point x. The k value

associated with that isosurface is f(x).

6.3 Second-Order Structure

In differential geometric terms, the second-

order structure of a surface is characterized

by a quadratic patch that shares first-and

second-order contact with the surface at a point

(i.e., tangent plane and osculating circles). The

principal directions of the surface are those asso-

ciated with the quadratic approximation, and

Johnson/Hansen: The Visualization Handbook Page Proof 19.5.2004 8:15pm page 93

Q1

Isosurfaces and Level-Sets 93



the principal curvatures k1, k2, are the curvatures

in those directions.

As described in Kindlmann et al. [17], the

second structure of the isosurface can be com-

puted from the first-and second-order structure

of the embedding, f. All of the isosurface shape

information is contained in a field of normals

given by n(x). The 3� 3 matrix of derivatives of

this vector is

N ¼ � [nxnynz] (6:4)

The projection of this derivative onto the tan-

gent plane of the isosurface gives the shape

matrix, b. Let P denote the normal projection

operator, which is defined as

P ¼ n� n ¼ 1

krfk2

f2
x fxfy fxfz

fyfx f2
y fyfz

fzfx fzfy f2
z

0
BB@

1
CCA (6:5)

The tangential projection operator is I � P, and

thus the shape matrix is

b ¼ NT ¼ THfT (6:6)

where Hf is the Hessian of f. The shape matrix

b has 3 real eigenvalues, which are

e1 ¼ k1, e2 ¼ k2, e3 ¼ 0 (6:7)

The corresonding eigenvectors are the principle

directions of the surface (i.e., in the tangent

plane) and the normal, respectively.

The mean curvature is the mean of the two

principal curvatures, which is one-half of the

trace of b, which is equal to the trace of N:

The total curvature, also called the deviation

from flatness D [18], is the root sum of squares

of the two principal curvatures, which is the

Euclidean norm of the matrix b.

Notice these measures exist at every point in

U, and at each point they describe the geometry

of the particular isosurface that passes through

that point. All of these quantities can be com-

puted on a discrete volume using finite differ-

ences, as described in successive sections.

6.4 Deformable Surfaces

This section begins with mathematics for de-

scribing geometric surface deformations on

parametric models. The result is an evolution

equation for a surface. Any term in this geomet-

ric evolution equation can be reexpressed in a

way that is independent of the parameteriza-

tion. Finally, the evolution equation for a para-

metric surface gives rise to an evolution

equation (differential equation) on a volume,

which encodes the shape of that surface as a

level set.

6.4.1 Surface Deformation

A regular surface S � IR3 is a collection

of points in 3D that can be be represented lo-

cally as a continuous function. In geometric

modeling a surface is typically represented as a

two-parameter object in a 3D space, i.e., a sur-

face is local to a mapping S:
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H ¼ k1 þ k2

2
¼ 1

2
Tr(N)

¼
f2

x(fyy þ fzz)þ f2
y(fxx þ fzz)þ f2

z(fxx þ fyy)� 2fxfyfxy � 2fxfzfxz � 2fyfzfyz

2(f2
x þ f2

y þ f2
z )

3=2

(6:8)

The Gaussian curvature is the product of the principal curvatures:

K ¼ k1k2 ¼ e1e2 þ e1e3 þ e2e3 ¼ 2Tr(N)2 � 1

2
kNk

¼

f2
z(fxxfyy � fxyfxy)þ f2

y(fxxfzz � fxzfxz)þ f2
x(fyyfzz � fyzfyz) þ

2(fxfy(fxzfyz � fxyfzz)þ fxfz(fxyfyz � fxzfyy)þ fyfz(fxyfxz � fyzfxx))

(f2
x þ f2

y þ f2
z)

2

(6:9)
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S: V
r

�V
S
7! IR3

x, y, z0
(6:10)

where V � V IR2, and the bold notation refers

specifically to a parameterized surface (vector-

valued function). A deformable surface exhibits

some motion over time. Thus S ¼ S(r, s, t),

where t 2 IRþ. We assume second-order-con-

tinuous, orientable surfaces; therefore, at every

point on the surface (and in time) there is sur-

face normal N ¼ N(r, s, t). We use St to refer to

the entire set of points on the surface.

Local deformations of S can be described

by an evolution equation, i.e., a differential

equation on S that incorporates the position of

the surface, local and global shape properties,

and responses to other forcing functions.

That is,

@S

@t
¼ G(S, Sr,Ss,Srr,Srs,Sss, . . . ) (6:11)

where the subscripts represent partial deriva-

tives with respect to those parameters. The evo-

lution of S can be described by a sum of terms

that depends on both the geometry of S and the

influence of other functions or data.

There are a variety of differential expressions

that can be combined for different applications.

For instance, the model could move in response

to some directional forcing function [19,20],

F: U 7! IR3, that is

@S

@t
¼ F(S) (6:12)

Alternatively, the surface could expand and

contract with a spatially varying speed. For

instance,

@S

@t
¼ G(S)N (6:13)

where G: IR3 7! IR is a signed speed function.

The evolution might also depend on the surface

geometry itself. For instance,

@S

@t
¼ Srr þ Sss (6:14)

describes a surface that moves in a way that

becomes more smooth with respect to its own

parameterization. This motion can be combined

with the motion of Equation 6.12 to produce a

model that is pushed by a forcing function but

maintains a certain smoothness in its shape and

parameterization. There are myriad terms that

depend on both the differential geometry of the

surface and outside forces or functions to con-

trol the evolution of a surface.

6.5 Deformation: The Level-Set
Approach

The method of level-sets, proposed by Osher

and Sethian [21] and described extensively in

Sethian [2], provides the mathematical and nu-

merical mechanisms for computing surface de-

formations as time-varying iso-values of f by

solving a partial differential equation on the 3D

grid. That is, the level-set formulation provides

a set of numerical methods that describe how to

manipulate the greyscale values in a volume, so

that the isosurfaces of f move in a prescribed

manner (Fig. 6.2).

We denote the movement of a point on a

surface as it deforms as dx/dt, and we assume

that this motion can be expressed in terms of the

position of x 2 U and the geometry of the sur-

face at that point. In this case, there are gener-

ally two options for representing such surface

movements implicitly:

Static: A single, static f(x) contains a family

of level-sets corresponding to surfaces as

different times t. That is,

f(x(t)) ¼ k(t)) rf(x) � @x
@t
¼ dk(t)

dt
(6:15)

To solve this static method requires construct-

ing a f that satisfies Equation 6.15. This is a

boundary-value problem, meaning it can be

solved somewhat efficiently, starting with

a single surface using the fast marching

method of Sethian [22]. This representation

has some significant limitations, however,

because (by definition) a surface cannot

pass back over itself over time, i.e., motions

must be strictly monotonic—inward or out-

ward.
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Dynamic: The approach is to use a one-

parameter family of embeddings, in which

f(x, t) changes over time, x remains on the k

level set of f as it moves, and k remains con-

stant. The behavior of f is obtained by

setting the total derivative of f(x(t), t) ¼ k

to zero. Thus,

f(x(t), t) ¼ k) @f
@t
¼ �rf � dx

dt
(6:16)

This approach can accommodate models that

move forward and backward and cross back

over their own paths (over time). However, to

solve this requires solving the initial value

problem (using finite forward differences) on

f(x, t)—a potentially large computational

burden. The remainder of this discussion

focuses on the dynamic case, because of its

superior flexibility.

All surface movements depend on position

and geometry, and the level-set geometry is ex-

pressed in terms of the differential structure of

f. Therefore, the dynamic formulation from

Equation 6.16 gives a general form of the partial

differential equation on f:

@f
@t
¼ �rf � dx

dt

¼ �rf � F(x, Df, D2f, . . . )

(6:17)

where Dnf is the set of order-n derivatives of f
evaluated at x. Because this relationship applies

to every level-set of f, i.e., all values of k, this

equation can be applied to all of U, and there-

fore the movements of all the level-set surfaces

embedded in f can be calculated from Equation

6.17.

The level-set representation has a number of

practical and theoretical advantages over con-

ventional surface models, especially in the con-

text of deformation and segmentation. First,

level-set models are topologically flexible; they

can easily represent complicated surface shapes

that can, in turn, form holes, split to form mul-

tiple objects, or merge with other objects to

form a single structure. These models can in-

corporate many (millions) of degrees of free-

dom, and therefore they can accommodate

complex shapes. Indeed, the shapes formed by

the level sets of f are restricted only by the

resolution of the sampling. Thus, there is no

need to reparameterize the model as it under-

goes significant deformations.

Such level-set methods are well documented

in the literature [21,23] for applications such as

computational physics [24], image processing

[25,26], computer vision [27,5], medical image

analysis [4,5], and 3D reconstruction [28,29].
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For instance, in computational physics, level-

set methods are a a powerful tool for model-

ing moving boundaries between different

materials (see Osher and Fedkiw [24] for a nice

overview of recent results). Examples are

water–air and water–oil interfaces. In such

cases, level-set methods can be used to compute

deformations that minimize surface area while

preserving volumes for materials that split and

merge in arbitrary ways. The method can be

extended to multiple, nonoverlapping objects

[30].

Level-set methods have also been shown to

be effective in extracting surface structures

from biological and medical data. For instance,

Malladi et al. [5] propose a method in which

the level-sets form an expanding or contracting

contour that tends to cling to interesting fea-

tures in 2D angiograms. At the same time the

contour is also influenced by its own curvature,

and therefore remains smooth. Whitaker et al.

[4,31] have shown that level sets can be used to

simulate conventional deformable surface

models, and demonstrated this by extracting

skin and tumors from thick-sliced (e.g., clinical)

MR data, and by reconstructing a model of a

fetus from 3D ultrasound. A variety of authors

[32,33,26,34] have presented variations on the

method and presented results for 2D and 3D

data. Sethian [2] gives several examples of

level-set curves and surfaces for segmenting

CT and MR data.

6.5.1 Deformation Modes

In the case of parametric surfaces, one can

choose from a variety of different expressions

to construct an evolution equation that is ap-

propriate for a particular application. For each

of those parametric expressions, there is a cor-

responding expression that can be formulated

on f, the volume in which the level-set models

are embedded. In constructing evolutions of

levels-sets, there can be no reference to the

underlying surface parameterization (terms

depending on r and s in Equations 6.10 through

6.14). This has two important implications: i)

only those surface movements that are normal

to the surface are represented—any other move-

ment is equivalent to a reparameterization; ii)

all of the derivatives with respect to surface

parameters r and s must be expressed in terms

of invariant surface properties that can be de-

rived without a parameterization.

Consider the term Srr þ Sss from Equation

6.14. If r, s is an orthonormal parameterization,

the effect of that term is based purely on surface

shape, not on the parameterization, and the

expression Srr þ Sss is twice the mean curvature,

H, of the surface. The corresponding level-set

formulation is given by Equation 6.8.

Table 6.1 shows a list of expressions used in

the evolution of parameterized surfaces and

their equivalents for level-set representations.

Also given are the assumptions about parame-

terization that give rise to the level-set expres-

sions.

6.6 Numerical Methods

By taking the strategy of embedding surface

models in volumes, we have converted equa-

tions that describe the movement of surface

points to nonlinear, partial differential equa-

tions defined on a volume, which is generally a

rectilinear grid. The expression un
i, j, k refers

to the nth time step at position i, j, k, which

has an associated value in the 3D domain of

the continuous volume f(xi, yj, zk). The goal

is to solve the differential equation consisting

of terms from Table 5.1 on the discrete grid

un
i, j, k.

The discretization of these equations raises

two important issues. First is the availability of

accurate, stable numerical schemes for solving

these equations. Second is the problem of com-

putational complexity and the fact that we have

converted a surface problem to a volume prob-

lem, increasing the dimensionality of the

domain over which the evolution equations

must be solved.
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The level-set terms in Table 6.1 are combined,

based on the needs of the application, to create

a partial differential equation on f(x, t). The

solutions to these equations are computed

using finite differences. Along the time axis,

solutions are obtained using finite forward dif-

ferences, beginning with an initial model (i.e.,

volume) and stepping sequentially through a

series of discrete time steps (which are denoted as

superscripts on u). Thus, the update equation is

unþ1
i, j, k ¼ u n

i, j, k þ DtDun
i, j, k (6:18)

The term Du n
i, j, k is a discrete approximation to

@f=@t, which consists of a weighted sum of

terms such as those in Table 5.1. Those terms

must, in turn, be approximated using finite dif-

ferences on the volume grid.

6.6.1 Upwind Schemes

The terms in Table 6.1 fall into two basic cat-

egories: the first-order terms (items 1 and 2) and

the second-order terms (items 3 through 5). The

first-order terms describe a moving wave front

with a space-varying velocity (expression 1) or

speed (expression 2). Equations of this form

cannot be solved with a simple finite forward

difference scheme. Such schemes tend to over-

shoot, and they are unstable. To address this

issue, Osher and Sethian [1] proposed an upwind

scheme. The upwind method relies on a one-

sided derivative that looks in the upwind direc-

tion of the moving wave front, and thereby

avoids the overshooting associated with finite

forward differences.

We denote the type of discrete difference

using superscripts on a difference operator,

i.e., d(þ) for forward differences, d(�) for back-

ward differences, and d for central differences.

For instance, differences in the x direction on a

discrete grid ui, j, k with domain X and uniform

spacing h are defined as

d(þ)
x ui, j, k � (uiþ1, j, k � ui, j, k)=h, (6:19)

d(�)
x ui, j, k � (ui, j, k � ui�1, j, k)=h, and (6:20)

dxui, j, k � (uiþ1, j, k � ui�1, j, k)=(2h), (6:21)

(6:22)

where we have left off the time superscript for

conciseness. Second-order terms are computed

using the tightest-fitting central difference oper-

ators. For example,

dxxui, j, k � (uiþ1, j, k þ ui�1, j, k

� 2ui, j, k)=h
2,

(6:23)

dzzui, j, k � (ui, j, kþ1 þ ui, j, k�1

� 2ui, j, k)=h
2, and

(6:24)

dxyui, j, k � dxdyui, j, k (6:25)

The discrete approximation to the first-order

terms in Table 5.1 are computed using

the upwind scheme proposed by Osher and

Sethian [21]. This strategy avoids overshoot-

ing by approximating the gradient of f using a

one-sided difference in the direction that
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Table 6.1 A list of evolution terms for parametric models has a corresponding expression on the embedding, f, associated
with the level-set models.

Effect

Parametric

Evolution

Level-Set

Evolution

Parameter

Assumptions

1 External force F F � rf None

2 Expansion/contraction G(x)N G(x)jrf(x, t)j None

3 Mean curvature Srr þ Sss Hjrfj Orthonormal

4 Gauss curvature Srr � Sss Kjrfj Orthonormal

5 Second order Srr or Sss H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � K
p� �

jrfj Principal curvatures
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is upwind of the moving level-set, thereby en-

suring that no new contours are created in

the process of updating un
i, j, k (Fig. 6.3). The

scheme is separable along each axis (x, y, and z).

Consider Term 1 in Table 5.1. If we use

superscripts to denote the vector components,

i.e.,

F(x, y, z) ¼ (F (x)(x, y, z), F (y)(x, y, z),

F (z)(x, y, z)),
(6:26)

the upwind calculation for a grid-point un
i, j, k

is

F(xi, yi, zi) � rf(xi, yj , zk, t) �X
q2{x, y, z}

F (q)(xi, yi, zi)

dþq un
i, j, k F (q)(xi, yi, zi) > 0

di
qu

n
i, j, k F (q)(xi, yi, zi) < 0

8<
:

(6:27)

The time steps are limited—the fastest-moving

wave front can move only one grid unit per

iteration. That is,

DtF �
1P

q2{x, y, z} supi, j, k2X{jrF (q)(xi, yj , zk)j}
(6:28)

For Term 2 in Table 5.1 the direction of the

moving surface depends on the normal, and

therefore the same upwind strategy is applied

in a slightly different form.

G(xi, yj , zk)jrf(xi, yj , zk, t)j �X
q2{x, y, z}

G(xi, yi, zi)

max2 (dþq un
i, j, k, 0)þmin2 (d�q un

i, j, k, 0)

G(xi, yi, zi) > 0

min2 (dþq un
i, j, k, 0)þmax2 (d�q un

i, j, k, 0)

G(q)(xi, yi, zi) < 0

8>>><
>>>:

(6:29)

The time steps are, again, limited by the fastest-

moving wave front:

DtG �
1

3supi, j, k2X{jrG(xi, yj , zk)j}
(6:30)

To compute the approximation of the update to

the second-order terms in Table 5.1 requires

only central differences. Thus, the mean curva-

ture is approximated as

Hn
i, j, k ¼

1

2
dxu

n
i, j, k

� �2

þ dyu
n
i, j, k

� �2

þ dzu
n
i, j, k

� �2
� ��1

�

dyu
n
i, j, k

� �2

þ dzu
n
i, j, k

� �2
� �

dxxu
n
i, j, k

�

þ dzu
n
i, j, k

� �2

þ dxu
n
i, j, k

� �2
� �

dyyu
n
i, j, k

þ dxu
n
i, j, k

� �2

þ dyu
n
i, j, k

� �2
� �

dzzu
n
i, j, k

�2dxu
n
i, j, kdyu

n
i, j, kdxyu

n
i, j, k�2dyu

n
i, j, kdzu

n
i, j, kdyzu

n
i, j, k

�2dzu
n
i, j, kdxu

n
i, j, kdzxu

n
i, j, k	 (6:31)
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Such curvature terms can be computing by

using a combination of forward and backward

differences as described by Whitaker and Xue

[35]. In some cases this is advantageous, but the

details are beyond the scope of this paper.

For the second-order terms, the time steps are

limited, for stability, by the diffusino number, to

DtH �
1

6
(6:32)

When combining terms, the maximum number

of time steps for each term is scaled by one over

the weighting coefficient for that term.

6.6.2 Narrow-Band Methods

If one is interested in only a single-level set, the

formulation described previously is not efficient.

This is because solutions are usually computed

over the entire domain of f. The solutions,

f(x, y, z, t) describe the evolution of an embed-

ded family of contours. While this dense family

of solutions might be advantageous for certain

applications, there are other applications that

require only a single surface model. In such

applications the calculation of solutions over a

dense field is an unnecessary computational

burden, and the presence of contour families

can be a nuisance because further processing

might be required to extract the level-set that is

of interest.

Fortunately, the evolution of a single level-set,

f(x, t) ¼ k, is not affected by the choice of em-

bedding. The evolution of the level-sets is such

that they evolve independently (to within the

error introduced by the discrete grid). Further-

more, the evolution of f is important only in the

vicinity of that level-set. Thus, one should per-

form calculations for the evolution of f only in a

neighborhood of the surface S ¼ {xjf(x) ¼ k}.

In the discrete setting, there is a particular subset

of grid-points whose values control a particular

level set (Fig. 6.4). Of course, as the surface

moves, that subset of grid points must change

to account for its new position.

Adalsteinson and Sethian [36] propose a

narrow-band approach, which follows this line

of reasoning. The narrow-band technique con-

structs an embedding of the evolving curve or

surface via a signed distance transform. The

distance transform is truncated, i.e., computed

over a finite width of only m points that lie

within a specified distance to the level set. The

remaining points are set to constant values to

indicate that they do not lie within the narrow

band, or tube, as they call it. The evolution of

the surface (they demonstrate it for curves in the

plane) is computed by calculating the evolution

of u only on the set of grid-points that are within

a fixed distance to the initial level-set, i.e., within

the narrow band. When the evolving level-set

approaches the edge of the band (Fig. 6.5), they

calculate a new distance transform (e.g., by

solving the Eikonal equation with the fast

marching method), which creates a new embed-

ding, and they repeat the process. This algo-

rithm relies on the fact that the embedding is

not a critical aspect of the evolution of the level-

set. That is, the embedding can be transformed

or recomputed at any point in time, so long as

such a transformation does not change the pos-

ition of the kth level set, and the evolution

will be unaffected by this change in the embed-

ding.

Despite the improvements in computation

time, the narrow-band approach is not optimal
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for several reasons. First it requires a band of

significant width (m ¼ 12 in the examples of

Adalsteinson and Sethian [36]) where one

would like to have a band that is only as wide

as necessary to calculate the derivatives of u

near the level-set (e.g. m ¼ 2). The wider band

is necessary because the narrow-band algorithm

trades off two competing computational costs.

One is the cost of stopping the evolution and

computing the position of the curve and dis-

tance transform (to sub-cell accuracy) and de-

termining the domain of the band. The other is

the cost of computing the evolution process

over the entire band. The narrow-band method

also requires additional techniques, such as

smoothing, to maintain the stability at the

boundaries of the band, where some grid points

are undergoing the evolution and nearby neigh-

bors are static.

6.6.3 The Sparse-Field Method

The basic premise of the narrow-band algo-

rithm is that computing the distance transform

is so costly that it cannot be done at every

iteration of the evolution process. Another

strategy is to use an approximation to the dis-

tance transform that makes it feasible to recom-

pute the neighborhood of the level-set model at

each time step. Computation of the evolution

equation is done on a band of grid-points that is

only one point wide. The embedding is extended

from the active points to a neighborhood

around those points that is precisely the width

needed at each time. This extension is done via a

fast distance transform approximation.

This approach has several advantages. First,

the algorithm does precisely the number of cal-

culations needed to compute the next position

of the level curve. It does not require explicit

recalculation of the positions of level sets and

their distance transforms. Because the number

of points being computed is so small, it is feas-

ible to use a linked list to keep track of them.

Thus, at each iteration the algorithm visits only

those points adjacent to the k-level curve. For

large 3D data sets, the very process of incre-

menting a counter and checking the status of

all of the grid-points is prohibitive.

The sparse-field algorithm is analogous to a

locomotive engine that lays tracks before it and

picks them up from behind. In this way the

number of computations increases with the sur-

face area of the model rather than the resolution

of the embedding. Also, the sparse-field ap-

proach identifies a single level-set with a specific
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set of points whose values control the position

of that level-set. This allows one to compute

external forces to an accuracy that is better

than the grid spacing of the model, resulting in

a modeling system that is more accurate for

various kinds of model-fitting applications.

The sparse-field algorithm takes advantage of

the fact that a k-level surface, S, of a discrete

image u (of any dimension) has a set of cells

through which it passes, as shown in Fig. 6.4.

The set of grid-points adjacent to the level set is

called the active set, and the individual elements

of this set are called active points. As a first-

order approximation, the distance of the level

set from the center of any active point is pro-

portional to the value of u divided by the gradi-

ent magnitude at that point. Because all of the

derivatives (up to second order) in this ap-

proach are computed using nearest-neighbor

differences, only the active points and their

neighbors are relevant to the evolution of the

level-set at any particular time in the evolution

process. The strategy is to compute the evolu-

tion given by Equation 6.17 on the active set

and then update the neighborhood around the

active set using a fast distance transform. Be-

cause active points must be adjacent to the level-

set model, their positions lie within a fixed dis-

tance to the model. Therefore, the values of u

for locations in the active set must lie within

a certain range. When active-point values

move out of this active range, they are no

longer adjacent to the model. They must be

removed from the set, and other grid-points,

those whose values are moving into the active

range, must be added to take their place. The

precise ordering and execution of these oper-

ations is important to the operation of the algo-

rithm.

The values of the points in the active set can

be updated using the upwind scheme for first-

order terms and central differences for the

mean-curvature flow, as described in the previ-

ous sections. In order to maintain stability, one

must update the neighborhoods of active grid-

points in a way that allows grid-points to enter

and leave the active set without those changes

in status affecting their values. Grid-points

should be removed from the active set when

they are no longer the nearest grid-point to

the zero crossing. If we assume that the embed-

ding u is a discrete approximation to the dis-

tance transform of the model, then the distance

of a particular grid-point xm ¼ (i, j, k), to the

level-set is given by the value of u at that grid-

point. If the distance between grid-points is

defined to be unity, then we should remove a

point from the active set when the value of u at

that point no longer lies in the interval � 1
2
, 1

2

� �
(Fig. 6.6). If the neighbors of that point main-

tain their distance of 1, then those neighbors

will move into the active range just as xm is

ready to be removed.

There are two operations that are significant

to the evolution of the active set. First, the

values of u at active points change from one

iteration to the next. Second, as the values of

active points pass out of the active range, they

are removed from the active set and other,

neighboring grid-points are added to the active

set to take their place. Whitaker [29] gives some

formal definitions of active sets and the oper-

ations that affect them, definition which show

that active sets will always form a boundary

between positive and negative regions in the

image, even as control of the level-set passes

from one set of active points to another.

Because grid-points that are near the active

set are kept at a fixed value difference from the

active points, active points serve to control the

behavior of nonactive grid-points to which they

are adjacent. The neighborhoods of the active

set are defined in layers, Lþ1, . . . LþN and

L�1, . . . L�N , where the i indicates the distance

(city-block distance) from the nearest active

grid-point, and negative numbers are used for

the outside layers. For notational convenience,

the active set is denoted L0.

The number of layers should coincide with

the size of the footprint or neighborhood used

to calculate derivatives. In this way, the inside

and outside grid-points undergo no changes in

their values that affect or distort the evolution

of the zero set. Most of the level-set work relies
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on surface normals and curvature, which require

only second-order derivatives of f. Second-

order derivatives are calculated using a

3� 3� 3 kernel (city-block distance 2 to

the corners). Therefore, only five layers are

necessary (2 inside layers, 2 outside layers,

and the active set). These layers are denoted

L1, L2, L�1, L�2, and L0.

The active set has grid-point values in the

range � 1
2
, 1

2

� �
. The values of the grid-points in

each neighborhood layer are kept 1 unit from

the layer next closest to the active set (Fig. 6.6).
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Thus the values of layer Li fall in the interval

i � 1
2
, i þ 1

2

� �
. For 2N þ 1 layers, the values of

the grid-points that are totally inside and out-

side are N þ 1
2

and �N � 1
2
, respectively. The

procedure for updating the image and the

active set based on surface movements is as

follows:

1. For each active grid-point, xm ¼ (i, j, k), do

the following:

(a) Calculate the local geometry of the

level-set.

(b) Compute the net change of uxm,

based on the internal and external

forces, using some stable (e.g., up

wind) numerical scheme where neces-

sary.

2. For each active grid-point xj add the change

to the grid-point value and decide if the new

value unþ1
xm falls outside the � 1

2
, 1

2

� �
interval.

If so, put xm on lists of grid-points that are

changing status, called the status list;

S1 or S�1, for unþ1
xm > 1 or unþ1

xm < �1, re-

spectively.

3. Visit the grid-points in the layers Li in the

order i ¼ �1, . . .�N, and update the grid-

point values based on the values (by adding

or subtracting one unit) of the next inner

layer, Li
1. If more than one Li
1 neighbor

exists, then use the neighbor that indicates a

level curve closest to that grid-point, i.e., use

the maximum for the outside layers and

minimum for the inside layers. If a grid-

point in layer Li has no Li
1 neighbors,

then it gets demoted to Li�1, the next level

away from the active set.

4. For each status list S�1, S�2, . . . , S�N , do

the following:

(a) For each element xj on the status list

Si, remove xj from the list Li
1 and add

it to the list Li, or, in the case of

i ¼ �(N þ 1), remove it from all lists.

(b) Add all Li
1 neighbors to the Si�1 list.

This algorithm can be implemented efficiently

using linked-list data structures combined with

arrays to store the values of the grid-points and

their states, as shown in Fig. 6.7. This requires
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only those grid-points whose values are

changing, the active points and their neighbors,

to be visited at each time step. The computation

time grows as mn�1, where m is the number of

grid-points along one dimension of u (some-

times called the resolution of the discrete sam-

pling). Computation time for dense-field

approach increases as mn. The mn�1 growth in

computation time for the sparse-field models is

consistent with conventional (parameterized)

models, for which computation times increase

with the resolution of the domain, rather than

the range.

Another important aspect of the performance

of the sparse-field algorithm is the larger time

steps that are possible. The time steps are

limited by the speed of the fastest moving level

curve, i.e., the maximum of the force function.

Because the sparse-field method calculates the

movement of level-sets over a subset of the

image, time steps are bounded from below by

those of the dense-field case, i.e.,

sup

x 2 A � X

(g(x)) � sup

x 2 X

(g(x))
(6:33)

where g(x) is the space-varying speed function

and A is the active set.

Results from previous work by Whitaker [29]

have demonstrated several important aspects of

the sparse-field algorithm. First, the manipula-

tions of the active set and surrounding layers

allow the active set to track the deformable

surface as it moves. The active set always div-

ides the inside and outside of the objects it

describes (i.e., it stays closed). Empirical results

show significant increases in performance rela-

tive to both the computation of full domain and

the narrow-band method, as proposed in

the literature. Empirical results also show that

the sparse-field method is about as accurate as

both the full, discrete solution and the narrow-

band method. Finally, because the method pos-

itions level-sets to sub-voxel accuracy, it avoids

aliasing problems and is more accurate than

these other methods when it comes to fitting

level-set models to other surfaces. This sub-

voxel accuracy is an important aspect of the

implementation and will significantly impact

the quality of the results for the applications

that follow.

6.7 Applications

This section describes several examples of how

level-set surface models can be used to address

problems in graphics, visualization, and com-

puter vision. These examples are a small

selection of those available in the literature.

All of these examples were implemented using

the sparse-field algorithm and the VISPack

library.

6.7.1 Surface Morphing

This section summarizes the work of Breen

and Whitaker [8], which describes the use of

level-set surface models to perform 3D shape

metamorphosis. The morphing of 3D surfaces

is the process of constructing a series of 3D

models that constitute a smooth transition

from one shape to another (i.e., a homotopy).

Such a capability is interesting for creating ani-

mations and as a tool for geometric modeling

[37,38,39,40,41,42].

Level-set models provide an algorithm for 3D

morphing, which is a natural extension of the

mathematical principles discussed in previous

sections. The strategy is to allow a free-form

deformation of one surface (called the initial

surface) using the signed distance transform of

a second surface (the target surface). This free-

form deformation is combined with an under-

lying coordinate transformation that gives

either a rough global alignment of the two sur-

faces, or one-to-one relationships between a

finite set of landmarks on both the initial and

the target surfaces. The coordinate transform-

ation can be computed automatically or using

user input.

The distance transform gives the nearest Eu-

clidean distance to a set of points, curve, or

surface. For closed surfaces in 3D, the signed

distance transform gives a positive distance for

points inside and negative for points outside
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(one can also choose the opposite sign conven-

tion). If two connected shapes overlap, then the

initial surface can expand or contract using the

distance transform of the target. The steady state

of such a deformation process is a shape consist-

ing of the zero set of the distance transform of

the target. That is, the initial object becomes the

target. This is the basis of the proposed 3D

morphing algorithm.

Let D(x) be the signed distance transform of

the target surface, B, and let A be the initial

surface. The evolution process, which takes a

model S from A to B, is defined by

@x

@t
¼ ND(x) (6:34)

where x(t) 2 St and St¼0 ¼ A. The free-form de-

formations can be combined with an underlying

coordinate transformation. The strategy is to use

a coordinate transformation (e.g., a translation

and rotation) to position the two surfaces near

each other. These transformations can capture

gross similarities in shape as well as user input. A

coordinate transformation is given by

x0 ¼ T(x, a) (6:35)

where 0 � a � 1 parameterizes a continuous

family of these transformations that begins

with identity, i.e., x ¼ T(x, 0). The evolution

equation for a parametric surface is

@x

@t
¼ ND(T(x, 1)) (6:36)

and the corresponding level-set equation is

@f(x, t)

@t
¼ jrf(x, t)jD(T(x, 1)) (6:37)

This process produces a series of transition

shapes (parameterized by t). The coordinate

transformation can be a global rotation, transla-

tion, or scaling, or it might be a warping of the

underlying 3D space [40]. Incorporating user

input is important for any surface morphing

technique, because in many cases finding the

best set of transition surfaces depends on con-

text. Only users can apply semantic consider-

ations to the transformation of one object to

another. However, this underlying coordinate

transformation can, in general, achieve only

some finite similarity between the warped initial

model and the target, and even this may require a

great deal of user input. In the event that a user is

not able or willing to define every important

correspondence between two objects, some

other method must fill in the gaps remaining

between the initial and target surfaces. Lerios et

al [40] propose alpha blending to achieve that

smooth transition—really just a fading from one

surface to the other. We are proposing the use of

the free-form deformations, implemented with

level-set models, to achieve a continuous transi-

tion between the shapes that result from the

underlying coordinate transformation. We have

also experimented with ways of automatically

orienting and scaling objects, using 3D

moments, in order to achieve a significant cor-

respondence between two objects.

Fig. 6.8 shows a 3D model of a jet that was

built using Clockworks [43], a CSG modeling

system. Lerios et al. [40] demonstrate the transi-

tion of a jet to a dart, which was accomplished

using 37 user-defined correspondences, roughly

100 user-defined parameters. Fig. 6.9 shows the

use of level-set models to construct a set of

transition surfaces between a jet and a dart.

The triangle mesh is extracted from the volume

using the method of marching cubes [14].

The application in this section shows how

level-set models moving according to the first-

order term given in expression 2 in Table 6.1 can

fit other objects by moving with a speed that

depends on the signed distance transform of the

target object. The application in the next section

relies on expression 5 of Table 6.1, a second-

order flow that depends on the principal curva-

tures of the surface itself.

6.7.2 Surface Editing

This section gives a brief summary of the results

in Museth et al. [44], who describe a system for

surface editing based on level sets. The creation

of complex models for such applications as

movie special effects, graphic arts, and com-

puter-aided design can be a time-consuming,
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tedious, and error-prone process. One of the

solutions to the model creation problem is 3D

photography [?], i.e., scanning a 3D object dir-

ectly into a digital representation. However, the

scanned model is rarely in a final desired form.

The scanning process is imperfect and intro-

duces errors and artifacts, or the object itself

may be flawed. In order to overcome these diffi-

culties, one can use a level-set approach to im-

plementing operators for locally and globally

editing closed surfaces.

In [44] they describe a number of surface-

editing operators within the level-set framework

bydefininga collectionofdifferent level-set speed

functions. The cut-and-paste operator gives the

user the ability to copy, remove, and merge level-

set models (using volumetric CSG operations)

and automatically blends the intersection

regions. The smoothing operator allows a user

to define a region of interest and smooths the

enclosed surface to a user-defined curvature

value. They also describe a point-attraction

operator, in which a regionally constrained

portion of a level-set surface is attracted to a

single point. By defining line segments, curves,

polygons, patches, and 3D objects as densely

sampled point sets, the single-point attraction

operator may be combined to produce a more

general surface-embossing operator. Morpho-

logical operators, such as opening and closing,

can also be implemented in a level-set framework

[45]. Such operations are useful for performing

global blending (closing) and smoothing (open-

ing) on level-set models. Because all of the oper-

ators accept and produce the same volumetric

representation of closed surfaces, the operators

may be applied repeatedly to produce a series of

surface-editing operations, as shown in Fig. 6.10

6.7.3 Antialiasing Binary Volumes

This section presents a summary of results from

Whitaker [46], whose article addresses the ques-

tion of using level sets to reduce aliasing artifacts

in binary volumes. Binary volumes are interest-

ing for several practical reasons. First, in some

cases, such as medical imaging, a volume dataset

can be segmented to produce a set of voxels that

correspond to some particular object (or anat-

omy). This segmentation can be manual, in

which case a user identifies (usually with the aid

of aGUI) all of the voxels that belong to a certain

object. The segmentation can also be automated,

relying on methods such as pattern classification,

flood fill, and morphological watersheds, which

produce segmentations that are hard, i.e., binary.

Binary volumes are also important when using a

3D imaging device that produces data with very

high contrast. In such cases the measured data is

essentially binary with regard to both the infor-

mation it contains and the problems it presents in

rendering. Binary volumes can be important

when visualizing mathematical expressions,

such as fractals, that cannot be evaluated as con-

tinuous functions. Binary volumes are also inter-

esting because they require so little data, and,

with the use of run length encoding, are very

well suited to compression.

The strategy presented here is related to the

work of Gibson [47], who uses a deformable-

surface approach to reducing aliasing artifacts.

Gibson dealt with problem of extracting sur-

faces from binary volumes with an insightful

strategy: treat the binary data as a constraint

on a surface that is subject to a regularization

process. She proposes a several-step algorithm
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Figure 6.8 A 3D model of a jet that was built using Clock-

works, a CSG modeling system.
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Figure 6.9 The deformation of the jet to a dart using a level-set model moving with a speed defined by the signed distance

transform of the target object.
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called constrained surface nets that embodies

this strategy. The algorithm begins by extract-

ing a surface mesh from the volume. This

initial mesh consists of a vertex in each cell

(an eight-voxel neighborhood arranged in

a cube) whose corners indicate a transition

from inside to out. This mesh undergoes an

iterative process of deformation, where each

vertex moves to the mean of its neighbors

but is prohibited from moving outside of its

original cell. The resulting surface can be con-

verted back into a volume by computing a dis-

crete sampling of the distance transform to the

set of triangles associated with the final

mesh.

Constrained surface nets have some very

useful properties. They are essentially the solu-

tion of a constrained minimization of surface

area. Constrained surface nets are capable of

creating flat surfaces through sequences of dis-

tant terraces or jaggies, which are not easily

spanned by a filter or interpolating function.

The final solution is guaranteed to lie within

a fixed distance of the original mesh, thus

preserving small details, and even discon-

tinuities, that can be lost through other anti-

aliasing techniques such as those that rely on

filtering [48,49] or surface approximation

[50,51,52].

Using level sets, one can implement the basic

philosophy of constrained surface nets while

eliminating the need for an intermediate surface

mesh—i.e., operate directly on the volume. The

result is a transformation of a binary volume to

a grey-scale volume, and thus it is a kind of

nonlinear filtering process. The zero set of the

volume that results from the algorithm has the

desirable properties of the constrained surface

net. However, the algorithm makes no explicit

assumptions about the topology of the surface,

but instead allows the topology of the surface to

develop from the constrained minimization

process.

Binary volumes are often visualized through

treatment as implicit functions and render-

ing of the surfaces that correspond to the

zero sets of interpolated version of B :D 7!
{� 1, 1}, the binary volume. Alternatively,

one could treat a binary volume, regardless

of its origins, as a threshold (or binarization)

of a discrete sampling of an embedding. That

is,

f(x, y, z) �!descretization
fi, j, k �!threshold Bi, j, k (6:38)

From this point of view, the problem of

extracting surfaces from a binary volume is

really the problem of estimating either f or f,

and extracting surfaces from one of those func-
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Figure 6.10 a) Positioning the (red) wing model on the dragon model. b) The models are pasted together (CSG union

operation), producing sharp, undesirable creases, a portion of which is expanded in the box. c) Same region after automatic

blending based on mean curvature. The blending is constrained to only move outwards. The models are rendered with flat-

shading to highlight the details of the surface structure.
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tions. However, the loss of information (i.e.,

projection) associated with the binary sampling

leaves the inverse problem ill posed—that is, for

a given binary volume, there are infinitely many

embeddings from which it could have been

derived.

The strategy in this section is to construct a

discrete sampling of a f that could have given

rise to B. An estimate of the embedding, f̂f, is

feasible if

f̂f(x)Bx � 08x 2 D (6:39)

i.e., Bx and f̂f(x) must have the same sign at

the grid-points of D. This is the same

as saying that the zero set of f̂f must enclose

all of those points indicated by the binary

volume as inside and none of the points that

are outside.

The ill-posed nature of the problem is

addressed by imposing some criterion, a regu-

larization, to which f̂f must conform. In the

case of surface estimation, a natural criterion

is to choose the surface with minimal area.

Often, but not always, surfaces with less

area are qualitatively smoother. In the level-

set formulation, the combined surface area

of all of the level-sets of f is the integral of

the level-set density (which is the gradient mag-

nitude of f) over the domain D. Thus, using

level-sets, the constrained minimization prob-

lem for reconstructing surfaces from binary

data is

f̂f ¼ arg min
f

Z
D

jrf(x)jdx

� 	

such that f(x)Bx � 08 x 2 D
(6:40)

Using the method of undetermined multipliers,

construct the Lagrangian:

F (f,l) ¼
Z

D

jrf(x)jdxþ
X
xi2D

lif(xi)Bxi (6:41)

where li � 0.

The Kuhn-Tucker [53] conditions describe

the behavior of the solution. For points in the

domain that are not on the grid, the level-sets of

the solution are flat or hyperbolic (saddle

points) with the principle curvatures offsetting

one another. For points in the domain that fall

on one of the grid-points, there are two cases:

the level-sets of f are convex at places with

B(xi) > 0 and concave where B(xi) < 0, which

is consistent with a solution that is stretched

around the positive and negative constraints.

Also, when the curvature is non zero at a grid-

point,

B(xi)f(xi) ¼ �f(xi) ¼ 0 (6:42)

which means that the zero set falls through grid-

points of D except in those areas where the

solution is flat.

This analysis leads to a gradient-descent strat-

egy with an evolution parameter t. Starting with

an initial estimate that is feasible, one can

update f in such a way that it minimizes

the surface area but does not violate the

constraints:

@f
@t
¼

0 For x¼xi 2D,f(x)¼0

and H(x)Bx>0

H(x) otherwise

8<
: (6:43)

Because the solution must remain near the con-

straints, the full sparse-field solution is uneces-

sary, and one can instead use a static, narrow

band. The appropriate narrow-band algorithm

is as follows:

1. Construct an initial solution u0
i, j, k ¼ Bi, j, k.

2. Find all of the grid-points in u0
i, j, k that

lie adjacent to one or more grid-points of

opposite sign. Call this set A0.

3. Find the set all of the grid-points that

are adjacent to A0 and denote it A1.

Repeat this for A2,A3, . . . ,AM , to create a

band that is 2M þ 1 wide. The union of

these sets, A ¼ [M
i¼0Ai, is the active set.

4. For each (i, j, k) 2 A calculate Dun
i, j, k using

a central difference approximation to the

mean curvature.

5. For each (i, j, k) 2 A update the value of

unþ1
i, j, k according to Equation 6.43.

6. Find the average change for points in the

active set:
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cn ¼ 1

jAj
X
A

unþ1
i, j, k � un

i, j, k




 


2
 !1

2

: (6:44)

7. If cn is below some predefined threshold,

then the algorithm is complete; otherwise,

increment n and go to step 4.

Figures. 6.11a and 6.11b show the zero sets of

grey-scale and binary volumes of a cube. The

grey-scale volume is the distance transform. The

cubes shown are rotated 22.58 around each axis

(in order to create significant aliasing artifacts in

the binary version), and each cube edge has a

length of 50 grid units. Figure 11c shows the

zero set of the solution to the constrained mini-

mization problem with a stopping threshold of

0.002 using a narrow band of M ¼ 4. These

results show significant improvements in the

aliasing, especially along the flat faces where

the minimum-surface-area approach is most

appropriate. On the corners and edges, artifacts

remain, because the algorithm is trying to

stretch the minimal surface across the con-

straints, which contain jaggies. The algorithm

converges rapidly, in about 20 iterations.

Experiments show that the choices of band

width and stopping threshold do not affect the

results in any significant way, provided that

the width is sufficiently large and the stopping

threshold is sufficiently small.

Figure 12 shows a series of before (left)

and after (right) isosurface renderings. Gener-

ally the algorithm succeeds in reducing aliasing

artifacts with a minimal distortion of the

shapes. For some shapes, such as the low-

resolution torus, the aliasing is reduced, but

only marginally so, which demonstrates a fun-

damental limitation of the proposed algorithm;

the minimal surface criterion does not always get

the solutions close to the ideal. Instead, the solu-

tion is stretching across the rather coarse fea-

tures formed by the binary volumes. This is

especially bad in cases such as a torus, which

includes points for which one principal curva-

ture is significantly greater than the other, caus-

ing the surface to pucker inward, leaving

pronounced aliasing artifacts. On flat surfaces

or those with higher resolution, the aliasing

effects are virtually eliminated.

6.7.4 Surface Reconstruction and
Processing

The ability to compute free-form surface

deformations independent of topology or com-

plexity opens up new possibilities in reconstruct-

ing and processing surfaces. For instance, in

building 3D models from multiple laser range

(ladar) images, one can express the likelihood of

a closed surface as a function of an integral over
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Figure 6.11 a) An ideal grey-scale embedding of a cube (i.e., distance transform) results in a smooth, accurate isosurface. b) A

binary volume yields significant aliasing artifacts. c) The surface estimation from the binary data with M ¼ 4 and a stopping

threshold of 0.002 shows a quality that is comparable to the ideal.
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the enclosed solid [29,54]. Using a gradient des-

cent to minimize the likelihood gives rise to a

data-driven deformation that fits a surface

model to a collection of noisy ladar data. Com-

bining the likelihood with an area or curvature-

based prior and embedding the motion in the

level-set framework generates a PDE for 3D

surface reconstruction:

@f
@t
¼ jrfjG(x, nf)þ bjfjP (6:45)

where G, the fitting term, depends on the set of

input data and a sensor model, while P, which

depends on derivatives of f, is the first variation

of the log prior. For examples, P is the mean

curvature in the case of a surface area prior. Fig.

6.13 shows a surface rendering of noisy range
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Figure 6.12 Left) Binary input volumes. Right) Results of surface estimation. Top) low-resolution torus. Bottom) higher-

resolution torus.
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data and a 3D reconstruction using a level-set

model and the curvature-based prior described

Tasdizen and Whitaker [55]. The ability to sys-

tematically combine data from different points

of view and incorporate a smoothing prior that

preserves creases results in 3D reconstructions

that exceed the accuracy of the laser range finder.

This same strategy applies to other imaging

modalities. For instance, the problem of recon-

structing 3D interfaces from tomographic pro-

jections leads to a formulation very similar to

Equation 6.45, in which the data term depends

on the set of input data and the shape of the

surface estimate [9]. This is an important prob-

lem in situations where one is given limited or

incomplete tomographic data, such as in trans-

mission electron microscopy. Fig. 6.14 shows a

TEM surface reconstruction of a spiny dendrite
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Figure 6.13 a) A surface rendering of a noisy range image. b) A 3D reconstruction obtained by fitting a level-set model to 12

noisy range images from different points of view.

Figure 6.14 a) An initial model constructed from a back projection. b) The model deforms to minimize the descrepancy with

the projected data, and forms new connections in the process.
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using this strategy. The application of level-sets

for this problem is important, because the com-

plex topology of this model changes during the

fitting process.

A problem with relating the reconstruction is

that of surface processing, which has gained

importance as the number of 3D models

grows. One would like to have the same set of

tools for manipulating surfaces as exists for

images. This would including cutting and

pasting, blending, enhancement, and smooth-

ing. This is especially important in visualization,

where the 3D models are oftened derived from

measured data and are therefore noisy or in-

complete or somehow imperfect. Level-set

models provide some mechanisms for filtering

surfaces in a way that does not depend on a

particular parameterization or topology. Tasdi-

zen et al. [7] describe a strategy for filtering

level-set surfaces that relies on processing a

fourth-order geometric flow. Using this strategy

one can generalize a wide range of image-

processing algorithms to surfaces. Fig. 6.15

shows a generalization of anisotropic diffusion

[56] to surfaces in a way that enhances sharp

creases. Fig. 6.16 shows a generalization of un-

sharp masking (a form of high-boost filtering),

which brings out surface detail.

6.8 Summary

Volumes provide a powerful tool for modeling

deformable surfaces, especially when one is deal-

ing with measured data. With measured data,

the shape, topology, and complexity of the sur-

face are dictated by the application rather than

the user. Implicit deformable surfaces, imple-

mented as level-sets, provide a natural mechan-

ism for processing such data in a manner that

relieves the user of having to decide on an under-

lying parameterization. This technology easily

handles the many degrees of freedom that are

important to capturing the fine detail of meas-

ured data. Furthermore, the level-set approach

provides a powerful mechanism for constructing

geometric flows, which results in output that

depends only on the shape of input (and the
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Figure 6.15 a) A noisy isosurface obtained from an MRI volume. b) Processing with feature-preserving smoothing alleviates

noise while enhancing sharp features.
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resolution) and does not produce artifacts that

are tied to an arbitrary, intermediate parameter-

ization.
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T. Möller. Curvature-based transfer functions
for direct volume rendering: methods and appli-
cations. In Proc. IEEE Visualization 2003 (to
appear), October 2003.

18. J.J. Koenderink. Solid Shape. Cambridge,
Mass, MIT press, 1990.

19. M. Kass, A. Witkin, and D. Terzopoulos.
Snakes: active contour models. International
Journal of Computer Vision, 1:321–323, 1987.

20. D. Terzopoulos and K. Fleischer. Deformable
models. The Visual Computer, vol. 4, pages 306–
331, December 1988.

21. S. Osher and J. Sethian. Fronts propagating
with curvature-dependent speed: algorithms
based on Hamilton-Jacobi formulations. Jour-
nal of Computational Physics, 79:12–49, 1988.

22. J.A. Sethian. A fast marching level set method
for monotonically advancing fronts. Proc. Nat.
Acad. Sci., 93(4):1591–1595, 1996.

23. J.A. Sethian. Level Set Methods: Evolving Inter-
faces in Gometry, Fluid Mechanics, Computer
Vision, and Material Sciences. Cambridge Uni-
versity Press, 1996.

24. S. Osher and R. Fedkiw. Level set methods. an
overview and some recent results. Tech. Rep.
00–08, UCLA Center for Applied Mathematics,
Department of Mathematics, University of
California, Los Angeles, 2000.

25. L. Alvarez and J.-M. Morel. A morphological
approach to multiscale analysis: from principles
to equations. In Geometry-Driven Diffusion in
Computer Vision (B.M. ter Haar Romeny, ed.),
pages 4–21, Kluwer Academic Publishers, 1994.

26. V. Caselles, R. Kimmel, and G. Sapiro. Geo-
desic active contours. In Fifth International Con-
ference on Computer Vision, pages 694–699,
IEEE Computer Society Press, 1995.

27. R. Kimmmel and A. Bruckstein. Shape offsets
via level sets. Computer Aided Design,
25(5):154–162, 1993.

28. R. Whitaker and D. Breen. Level-set models for
the deformation of solid objects. In The Third
International Workshop on Implicit Surfaces,
pages 19–35, Eurographics, 1998.

29. R.T. Whitaker. A level-set approach to 3D
reconstruction from range data. International
Journal of Computer Vision, pages 203–231,
1998.

30. T. Chan and L. Vese. A multiphase level set
framework for image segmentation using the
Mumford and Shah model. International Jour-
nal of Computer Vision, 50(3):271–293, 2000.

31. R.T. Whitaker. Algorithms for implicit deform-
able models. In Fifth International Conference
on Computer Vision, IEEE Computer Society
Press, 1995.

32. S. Kichenassamy, A. Kumar, P. Olver, A. Tan-
nenbaum, and A. Yezzi. Gradient flows and
geometric active contour models. In Fifth Int.
Conf. on Comp. Vision, pages 810–815, IEEE
Computer Society Press, 1995.

33. A. Yezzi, S. Kichenassamy, A. Kumar, P. Olver,
and A. Tannenbaum. A geometric snake
model for segmentation of medical imagery.
IEEE Transactions on Medical Imaging, vol.
16, pages 199–209, April 1997.

34. L. Lorigo, O. Faugeraus, W. Grimson, R. Ker-
iven, and R. Kikinis. Segmentation of bone in
clinical knee MRI using texture-based geodesic
active contours. In Medical Image Computing
and Computer-Assisted Intervention (MICCAI
’98) (W. Wells, A. Colchester, and S. Delp,
eds.), pages 1195–1204, October 1998.

35. R. Whitaker and X. Xue. Variable-conductance,
level-set curvature for image denoising. In IEEE
International Conference on Image Processing,
pages 142–145, October 2001.

36. D. Adalsteinson and J.A. Sethian. A fast level
set method for propogating interfaces, Journal
of Computational Physics, pages 269–277, 1995.

37. J. Kent, W. Carlson, and R. Parent. Shape
transformation for polyhedral objects. Com-
puter Graphics (SIGGRAPH ’92 Proceedings),
vol. 26, pages 47–54, July 1992.

38. J. Rossignac and A. Kaul. AGRELS and BIPs:
metamorphosis as a bezier curve in the space of
polyhedra. Computer Graphics Forum (Euro-
graphics ’94 Proceedings), 13(9):C-179–C-184,
1994.

39. J. Hughes. Scheduled fourier volume morphing.
Computer Graphics (SIGGRAPH ’92 Proceed-
ings), 26(7):43–46, 1992.

40. A. Lerios, C. Garfinkle, and M. Levoy. Feature-
based volume metamorphosis. In SIGGRAPH
’95 Proceedings, pages 449–456, August 1995.

41. B. Payne and A. Toga. Distance field manipula-
tion of surface models. IEEE Computer Graphics
and Applications, 12(1):65–71, 1992.

42. D. Cohen-Or, D. Levin, and A. Solomivici.
Three-dimensional distance field metamor-
phosis. ACM Transactions on Graphics, 17(2):
117–140, 1998.

43. P. Getto and D. Breen. An object-oriented
architecture for a computer animation system.
The Visual Computer, 6(3):79–92, 1990.

44. K. Museth, D. Breen, R. Whitaker, and A. Barr.
Level-set surface editing operators. In ACM
SIGGRAPH, pages 330–338, 2002.

Johnson/Hansen: The Visualization Handbook Page Proof 19.5.2004 8:15pm page 116

Q15

Q16

116 The Visualization Handbook



45. P. Maragos. Differential morphology and image
processing. IEEE Transactions on Image Pro-
cessing, 5(6):922–937, 1996.

46. R. Whitaker. Reducing aliasing artifacts in iso-
surfaces of binary volumes. In IEEE Symp. on
Volume Visualization and Graphics, pages 23–32,
October 2000.

47. S. Gibson. Using distance maps for accurate
surface representation in sampled volumes. In
1998 Symposium on Volume Graphics, pages 23–
30, ACM SIGGRAPH, 1991.

48. S. Wang and A. Kaufman. Volume-sampled 3D
modeling. IEEE Computer Graphics and Aplica-
tions, 14(5):26–32, 1994.

49. S. Wang and A. Kaufman. Volume-sampled
voxelization of goemetric primitives. In Pro-
ceedings of the 1993 Symposium on Volume Visu-
alization, pages 78–84, ACM SIGGRAPH,
October 1993.

50. U. Tiede, T. Schiemann, and K. Höhne. High
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