
A Level-Set Method for Flow Visualization

Rüdiger Westermann†, Christopher Johnson‡, and Thomas Ertl‡

†Scientific Computing and Visualization Group, University of Technology Aachen

‡Scientific Computing and Imaging Institute, University of Utah

‡Visualization and Interactive Systems Group, University of Stuttgart

Figure 1: Dense flow fields are first converted into a scalar field, and then displayed and analyzed by means of level-sets in this field. An
oracle that is based on the discrete curvature of level-sets allows for the automatic separation and extraction of homogeneous streams.

Abstract

In this paper we propose a technique for visualizing steady flow.
Using this technique, we first convert the vector field data into a
scalar level-set representation. We then analyze the dynamic behav-
ior and subsequent distortion of level-sets and interactively monitor
the evolving structures by means of texture-based surface render-
ing. Next, we combine geometrical and topological considerations
to derive a multiscale representation and to implement a method
for the automatic placement of a sparse set of graphical primitives
depicting homogeneous streams in the fields. Using the resulting al-
gorithms, we have built a visualization system that enables us to ef-
fectively display the flow direction and its dynamics even for dense
3D fields.

Keywords: Flow Visualization, Level-Sets, Feature Extraction,
Multiscale Representation, Texture Mapping

1 Introduction and Related Work

Visualizing vector field data is challenging because no existing
natural representation can visually convey large amounts of three-
dimensional directional information. In fluid flow experiments, ex-
ternal materials such as dye, hydrogen bubbles, or heat energy are
injected into the flow. The advection of these external materials can
create stream lines, streak lines, or path lines to highlight the flow
patterns. Analogues to these experimental techniques have been
adopted by scientific visualization researchers. Numerical meth-
ods and three-dimensional computer graphics techniques have been
used to produce graphical icons such as arrows, motion particles,
stream lines, stream ribbons, and stream tubes that act as three-

dimensional depth cues. While these techniques are effective in re-
vealing the flow fields’ local features, the inherent two-dimensional
display of the computer screen and its limited spatial resolution re-
strict the number of graphical icons that can be displayed at one
time.

Additional techniques for flow field visualization include global
imaging techniques. Crawfis and Max [5, 6] proposed direct vol-
ume rendering methods to create images of entire vector fields.
Vector kernels and texture splats are used to construct three-
dimensional scalar signals from the vector data. Van Wijk [28] pro-
posed a Spot Noise method using stretched ellipses to create two-
dimensional textures that can be mapped onto parametric surfaces.
Max et al.[17] further utilized the spot noise method to visualize
three-dimensional velocity fields near contour surfaces. Cabral and
Leedom [3] presented a Line Integral Convolution (LIC) method,
which makes use of a one-dimensional low pass filter to convolve
an input texture along the principal curves of the vector field. Based
on this idea, a number of related techniques have been proposed,
which attempt to optimize the LIC method in terms of computa-
tional cost and image quality, to visualize flow over surfaces, and,
most recently, to visualize 3D flow in a volume [23, 9, 1, 22, 13, 21].

These methods can successfully illustrate the global behavior of
vector fields; however, it is difficult when using such methods to
effectively control stream line density in a way that depicts both
the direction structure of the flowandthe flow magnitude. Further-
more, because of the tremendous information density they produce
and their inherent occlusion effects, LIC methods have difficulty
effectively visualizing 3D flow fields globally.

One approach to overcome these limitations is to interactively
but manually modify the renderable representation in order to high-
light the interesting structures [19]. Although visually pleasant re-
sults can be achieved by exploiting hardware-accelerated 3D texture
mapping, in particular for large-scale vector fields it is difficult us-
ing this approach to detect the relevant structures without explicit
knowledge concerning the underlying flow. Regardless of the in-
herent interactivity, this approach does not guarantee, in general,

that the characteristic flow features are found.
A different approach is to inspect the flow field in order to de-

tect and analyze critical points [11]. In this approach, topological
skeletons, which are defined by those stream lines starting at a crit-
ical point in the direction of the eigenvectors, are extracted and dis-
played. Although these techniques provide an effective tool to de-
termine the topological equivalence of different flows, they some-
times do not yield an intuitive analysis of the principal streams and
their direction.

Other techniques try to reduce the primitives used to depict the
structure of the flow in such a way that the result still sufficiently
represents the original data. While in [26] stream line placement
in 2D flows is guided by visual attributes, in [14] evenly-spaced
stream lines are generated based on a distance criterion but with-
out explicit consideration of the flow topology. On the contrary,
the main concern of the work presented in [10, 25] is to effec-
tively simplify the underlying data without loss of relevant infor-
mation. In general, however, these hierarchical techniques are local
in that they usually consider only the vector field in the geometric
neighborhood around each position, but do not take into account
the global structure of the flow.

In this paper, we present a novel approach for the analysis and
display of stationary vector field data, which includes effective
techniques for the classification, segmentation and smoothing of
flow fields. Rather than analyzing the flow field as such, we first
convert it into a scalar field and then analyze the spatial and tempo-
ral evolution of level-sets or time surfaces in this field. In particu-
lar, we show how to obtain the flow data at ever coarser resolution
by dispersing small disturbances across the time surfaces. In ad-
dition, we introduce two beneficial extensions of 3D texture-based
iso-surface rendering, which allow for the simultaneous display of
multiple, two-sided lighted surfaces and their dynamics using color
table animations.

The goal of our approach is twofold: to obtain better visualiza-
tion of the underlying structures by automatically placing a sparse
set of graphical primitives depicting homogeneous streams in the
flow and to generate a multiscale representation, which provides
improved methods for particle tracing. In the latter case, the fo-
cus lies on developing an effective scheme that allows one to obtain
accurate particle traces but with fewer total integration steps.

The remainder of this paper is organized as follows. First, we
introduce the basic idea of converting the vector field data into a
level-set representation and describe our extensions for interactive
display of multiple level-sets via 3D textures. We then propose an
explicit scheme for the smoothing of flow fields and demonstrate
how to automatically select and place the graphical primitives de-
picting homogeneous streams. We conclude with a detailed discus-
sion of results illustrating our approach applied to real data sets.

2 Flow Surfaces

In fluid dynamics, flow surface techniques have become important
to the investigation of the dynamics of vector field data. A flow
surface can be seen as a variation of path lines in non-stationary
flows where several lines are joined to form a surface. A dense set
of particles is released into the flow, and their subsequent positions,
as well as the distortions of the so-defined surfaces, are monitored.

In computational flow visualization, techniques for simulating
different kinds of flow surfaces have been developed in the past
[12, 27, 4]. In its most general form, flow surfaces are simulated by
placing an initial surface in the flow and then by successively mov-
ing all vertices defining the surface within constant intervals along
the integral curves of the flow. The integral curves emanating at a
given position are the solutions to the ordinary differential equation

dr(t)

dt
= v(r, t) (1)

with initial boundary conditionr(t0) = r0. Here,r(t) denotes
the position of a particle at timet, andv(r, t) represents the in-
stationary velocity field. Notice in particular that this technique
can be extended to the stationary case, in which a time-independent
velocity field is considered and its integral curves are defined with
respect to any other parameterization.

In general, flow surfaces can be placed everywhere in the flow;
however, without loss of generality let us assume that particles are
initially released at the inflow boundaries and at every source into
all possible directions of the velocity at that source. Thus, the evolv-
ing surfaces formed by connecting particles at timetn contain all
positions within the domain that can be reached from a source in
that time. In other words, any particle that is released from this sur-
face and traverses its integral curve backward will reach a source
or the boundary of the domain in that time. We will subsequently
call these kinds of particlesanti-particles, and this particular kind
of flow surface thetime surface.

A particular time surface in a flow is described by the implicit
equationT (x, y, z) = tn, whereT is the time the anti-particle re-
leased at position (x, y, z) requires to reach a source or the bound-
ary. Therefore, a time surface can be computed either by distorting
the initial surface with respect to the flow field or by computing the
scalar functionT for all necessary positions and by fitting the sur-
face using traditional techniques. The first approach has two major
limitations: that it requires the generation and display of a large
number of primitives, and that the generated surfaces are likely to
become non-manifold and potentially self-intersect. In comparison,
the second, implicit approach, which will be outlined in the follow-
ing sections, has various advantages.

2.1 Level-set representation of time surfaces

We aim to construct a volumetric representation in which the time
surfaces implicitly exist as level-sets. We define the level set off
at a particular value of time,t, as the set of all points(x, y, z) such
thatf(x, y, z) = t. Another name for this is the contour curve of
f at levelt. For an excellent introduction to level set methods and
additional applications, see [20].

Therefore, for each grid point an anti-particle is released and its
integral curve is traced until a source or the boundary of the domain
is reached. This procedure is equivalent to the backward tracing ap-
proach proposed in [29] for the calculation of stream surface func-
tions. We employ a fourth-order Runge-Kutta scheme with adap-
tive step-size control in order to find successive points along the
curves. Prior to this procedure we determine critical points in the
flow where the magnitude of the velocity vanishes. Thus, during
run-time we detect anti-particles reaching a critical point, at which
they must be stopped in order to avoid nonterminating traces. Addi-
tionally, a stopping criterion is employed for anti-particles moving
on closed orbits, for which no valid time value can be assigned.

If the distance from pointpi to point pi+1 is di, then the time
an anti-particle needs to travel frompi to pi+1 is ti = di · 1

|v(pi)| .
Integrating the distances along the path yields the time the anti-
particle needs to move from the grid point it was released from
until it leaves the domain or reaches a critical point. A unique time
is assigned to those grid points located in closed orbits. Thus, by
storing all times at each grid point we have converted the vector
field into a scalar field,. This provides alternatives for display and
analysis of the flow (see Figure 2).

2.2 Interactive display of level-sets

In order to effectively analyze a flow field by means of time sur-
faces, we need to interactively display the continuous evolution of
these surfaces. As we have already pointed out, a geometric ap-
proach fails, in general; but once the flow field has been converted

Figure 2: In the left image, the ocean flow is depicted by means of
LIC. On the right, the traveling times of anti-particles to the bound-
aries or sources are shown as scalar values at each grid point.

into a level-set representation, we can exploit texture mapping hard-
ware in order to show the intrinsic dynamic behavior. Though in
the following we will shift emphasis to 3D flow fields, the basic
approach can be utilized for the visualization of 2D vector fields as
well.

Volume rendering via 3D texture maps has become a powerful
tool to interactively display and thus analyze complex scalar data
sets [2]. Interpreting volume rendering as the re-sampling of a dis-
crete 3D texture map on cutting planes parallel to the viewing plane
allows one to efficiently use hardware-supported texture interpola-
tion to simulate the physics of light transport in semi-transparent
media. The same principal technique can also be used to display
lighted iso-surfaces [30] by re-sampling 3D gradient maps which
store the pre-scaled gradients and the scalar data samples in a RGB
andα texture, respectively.

The common procedure employed in ray tracing for iso-surface
rendering, where the ray is traced until the first intersection with
the surface is found, can now be simulated by means of OpenGL
per-fragment operations. Combining alpha- and depth-tests during
re-sampling guarantees that only those texture samples closest to
the viewpoint and above/below a user-defined threshold are drawn
into the frame buffer. Per-pixel diffuse lighting is accomplished
by multiplying the RGBα components, which now store the gra-
dient vector, with a color matrix [18] as available on SGI IR and
Octane systems. This matrix has to be initialized properly to per-
form scaling, modelview rotation and the scalar product calculation
with the light source direction vector. Key features of this extended
approach are illustrated in Figure 3.

2.2.1 Multiple animated time surfaces

The method described in [30] allows only for the rendering of solid
objects. Even more importantly, this method makes impossible
the simultaneous display of surfaces corresponding to different iso-
values or time-steps in the current application. Therefore we mod-
ified the algorithm by letting theα-values of texture samples be
replaced by the contents of the texture color table before the per-
fragmentα-test is performed. Thus, by allowing texture samples to
be drawn only if theα-value is greater than zero, we can render ar-
bitrary time surfaces by simply windowing the appropriateα-range
in the color table. This range can be arbitrarily scaled in order to
change the thickness of the surfaces to be extracted.

In order to simulate the dynamics of the current flow, we have
implemented cyclic shifts of the contents of theα-components in
the texture color table. Now, we can show the direction in which
the evolving structures proceed, as well as their speeds relative to
each other.

2.2.2 Two sided lighting

We developed a two-pass approach that allows for the two-sided
lighting of time surfaces. Therefore, we consecutively modulate
pixel values with two different color matrices as shown below. Note
that we show only that part of the matrices that is needed to perform
diffuse lighting on the already scaled and rotated gradients. The
first matrix,M0, includes light source direction(Lx, Ly, Lz) and
its inverse to obtain the contributions from front- and back-sided
lighting in the Red and Green pixel components, respectively. Note
that negative values will be clamped to zero before they are drawn
into the frame buffer. Thus, either the Red or the Green channel will
be zero and can now be added in order to take over the appropriate
values by multiplying the color components of each pixel with the
matrixM1 in the second pass.

M0 :




Lx Ly Lz 0
−Lx −Ly −Lz 0

0 0 0 0
0 0 0 1


 M1 :




1 1 0 0
1 1 0 0
1 1 0 0
0 0 0 1




In order to perform the color matrix multiplication and thus copy
the frame buffer only once, we further optimized the outlined tech-
nique. The first row in matrixM0 is duplicated into the 2nd and
3rd row. Now, after the color matrix has been applied we obtain
color components in the range of(−1, 1). Fortunately, prior to
OpenGL clamping, these components can be scaled, biased, and
finally mapped into the post color matrix lookup table. Thus, by
issuing a scale and a bias of 0.5, and by initializing the color table
with a two-sided ramp that ranges from one to zero in the first half
and from zero to one in the second half, we arrive at the correct
results. Although the accuracy of the results is limited by the width
of the color table, in our tests no visual degradation of the image
quality could be observed.

Figure 3: These images illustrate the extensions we developed for
3D texture-based surface rendering. Multiple time surfaces with
different thickness are rendered using one- and two-sided lighting.

2.3 Stream boundaries

As we have claimed in the introduction, our approach should be
effective in revealing homogeneous streams in the flow, which, in
general, cannot be determined by just analyzing the vector data lo-
cally. Even if the vector data is locally homogeneous in terms of
directionand speed, we will find regions where different streams
proceed parallel to each other over a certain distance but will be
separating again. As a solution to this problem, we have developed
a local technique that takes into account global information by ac-
cumulating flow quantities along the integral curves.

Therefore, let us picture flux by treating it like the flow of a liq-
uid, an imperfect analogy that is nonetheless useful for visualiza-

tion purposes. Let us consider the unsteady flux, and let us as-
sume that the magnitude of the vector field, in some sense, gives
us a measure of how much flux or matter is transported. Then, the
time distribution we compute as proposed in Section 2.1 just indi-
cates the net inward flux at a certain position along the line after a
particular time. Since at each position we add the total incoming
matter to the actual contribution, the difference between adjacent
values on neighboring lines now indicates how much the accumu-
lated matter along the line differs. Consequently, within homoge-
neous streams the distortions of level-sets corresponding to equal
accumulated amounts are small in general, whereas they are high
between different streams. We will subsequently call these kind of
boundaries thestream boundaries.

Stream boundaries as introduced are defined by those positions
where we have high variation in the changes of the flux at a certain
time. Mathematically, this corresponds to positions where the Ja-
cobian of the flux,J = dΦ

dx
, has high variation. Since the integral

curves of the vector field, on the other hand, are the solutions to the
differential equation∂Φ(x,t)

∂t
= v(Φ(x, t)) with initial boundary

conditionΦ(x0, 0) = x0, J can be computed with respect to the
following differential equation:

∂

∂t
J =

∂

∂t
[
dΦ

dx
] =

d

dx
v(Φ(t, x)) = Jv(Φ(t,x))

dΦ

dx
= Jv(t) · J

with initial boundary conditionJ(0) = I , whereI is the identity.
Note that the right hand side is time-dependent. In fact, the Jaco-

bian of the vector fieldJv along the whole path influences the Jaco-
bian of the flow at a specified positionx and timet. The Jacobian
depends on the history along the path, thus leading to a non-trivial
solution forJ . In the next paragraph we will propose an analogue
for computingJ by curvature based measure.

If we change the inflow situation in terms of position, then the
time until stream boundaries are formed changes as well. However,
since we depict the variation of the flow with respect to the dynamic
evolution along the streams and relative to each other, the feature
lines will be featured independently of the inflow situation. Thus,
by changing the inflow setting, we will also appropriately change
the distribution of the scalar fieldT , while retaining boundaries
between different streams.

2.4 Curvature based analysis of time surfaces

The study of time surfaces is of particular interest because they ef-
fectively visualize the geometric and topological modifications of
their evolving structures. By helping us to discriminate among ar-
eas of flow showing different characteristics, these modifications
should allow us to more accurately analyze the flow under consid-
eration. As a consequence, we need to develop a measure for the
variations of the flux as specified above that can be used to indicate
the presence and the importance of stream boundaries.

One approach to detect and characterize ‘surface features’ in ge-
ometric modeling is to analyze the local curvature across the sur-
face. Methods for the efficient calculation of the curvature can be
found in many text books e.g. [8]. The use of this kind of informa-
tion in surface fairing [24, 15, 7] is strongly related to our approach.

In the present scenario, the local curvature of the time surfaces
tells us where distortions of these surfaces with respect to the in-
fluence of the flow field are most significant. Based on these ob-
servations, we want to derive a method that allows us to locally
estimate the curvature of any iso-surfaceT (x, y, z) = tn. Since
we have already converted the flow field into the discrete level-set
representation, we restrict our attention to the question of how to
estimate the curvature of the trilinear interpolant within each cell of
the underlying grid.

Therefore, let us assume that any time surface is defined as an
elevation over the(x, y) plane and can thus be parameterized by the

equation(x, y) 7→ [x, y, φ(x, y)]. Here, we assume that a function
φ(x, y) exists in the vicinity of[x, y, z] such that

T (x, y, φ(x, y)) = tn.

Thus, we have an implicit description of the time surface at any reg-
ular point in the unit cube[0, 1]3 that allows us to approximate any
curvature measure within each cell. Typical measures for the cur-
vature can be obtained from the first (gij) and second (hij) funda-
mental forms for the surface. With the standard notationTx, Ty, . . .
for the partial derivatives ofT we obtain the total curvature

C = 1
4

(κ2
1 + κ2

2) =

(
TxTyTxy+TxTzTxz+TyTzTyz

)2

(
T2

x+T2
y +T2

z

)3

+
T2

x T2
yz+T2

y T2
xz+T2

z T2
xy

2

(
T2

x+T2
y +T2

z

)2

− TxTyTyzTxz+TxTzTyzTxy+TyTzTxzTxy(
T2

x+T2
y +T2

z

)2

(2)

of the surfaceT (x, y, z) = tn where all partial derivatives are eval-
uated at[x, y, z].

In order to estimate the curvature within a certain cell, we eval-
uate equation 2 at randomly selected points in the interior of that
cell. The maximum value is the curvature measure that will be used
to analyze the time surfaces. High curvature within a cell indicates
that grid points defining that cell belong to different streams. Thus,
a stream boundary that isolates streams from each other passes
through the cell.

As can be seen in Figure 4, the curvature plot naturally leads to
the discrimination of separate streams that flow in different direc-
tions and/or with different speeds. In laminar streams where the
distortions of the time surfaces are low, the curvature will be low
as well. In the next section, we will demonstrate how to use this
information to derive a multiscale representation for flow fields.

Figure 4:Two curvature plots of the time distribution for different
inflow situations are shown. Note that small curvature values have
been removed by thresholding.

3 Multiscale Flow Representation

The new curvature measure we have derived allows us to detect and
separate streams that are homogeneous in terms ofdirection and
speed. The feature lines we extract by means of this measure depict
the boundaries between separable streams; within these streams the
topology of the time surfaces is preserved over time and the main
shape and length of stream lines is similar.

As with discrete fairing of meshes, where the geometry is
smoothed with respect to the local curvature of the mesh, our goal

is to develop a technique that allows us to successively smooth the
flow field with respect to the curvature of the time surfaces. Streams
that have been separated should not be merged, whereas small de-
viations between the stream lines within them should be removed
without significantly degrading their main shape.

3.1 Iterative smoothing scheme

Let us start by assuming that a local smoothing operator is available
that can be employed to compute the incremental update to a flow
vector with respect to its neighbors. Unfortunately, in contrast to the
smoothing of meshes where the topology of the mesh tells us which
of the neighbors have to be considered, this kind of topological in-
formation is not apparent in the flow field. Notice in particular that
including all adjacent grid points into the local smoothing process
results in the dispersion of disturbances across different streams as
well as along the stream lines. However, neither effect is suitable,
since both lead to undesirable smoothing orthogonal to the streams
and equally undesirable distortion of the stream lines’ main shape.
In order to avoid these drawbacks, we have incorporated the local
curvature into the smoothing process.

We start with a Cartesian grid and the initial distribution of the
function valuesT (x, y, z) at each grid point. We subsequently visit
each voxel and locally reconstruct the time surface passing through
that voxel by means of the marching cubes (MC) algorithm [16].
Note that we compute the discrete curvature not from the MC-
surface but from the discrete time distributionT . Reconstruction
is to be discontinued in cells where we have computed high curva-
ture. Thus, we avoid including information from separate streams.
At each vertex spanning the small piece of the time surface, we in-
terpolate the velocity vectorsVj from the original flow field. The
new velocity vector at the current grid point is obtained by inverse
distance weighting with respect to the length of the edgeslj from
this point to allVj :

Vnew =
∑

j

wj · Vj with wj =

1
l2
j∑
i

1
l2
i

Here, if lj < ε then wj = 1, andwj 6=i = 0. We perform the
same procedure to locally smooth the flow magnitudes. Finally,
after processing all grid points, we end up with the smoothed flow
field from which we compute the new valuesT (x, y, z) to be used
in the next iteration.

We conclude by shifting emphasis to a slightly different formu-
lation of the proposed technique. For a certain time surface, a local
smoothing operator as proposed in [24, 7] for the fairing of polygo-
nal meshes could be employed. Given the surface corresponding to
a specific time, the iterative solving scheme

V n+1 = (I − λC)V n

successively diffuses disturbances in the vector field across the time
surface with respect to the damping factorλ and the discrete curva-
tureC as derived in Section 2. In contrast to the fairing approach
where positions of mesh vertices are updated, in our approach the
vector field dataV given on the vertices of the time surface is itera-
tively smoothed. In each iteration we derive a new vector field and
the curvature has to be re-calculated.

3.2 Principal stream selection

Once we have constructed versions of the initial flow field in which
the integral curves within separated streams are contained at ever
coarser resolution, our goal is to place a sparse set of particles in
the field and to show their stream lines. By taking into account the
curvature values given at each grid cell, we intend to select the set

Figure 5: The left image shows a part of the original ocean data
set. On the right the explicit smoothing scheme was applied using
9 iteration steps.

of particles in such a way that at least one particle trace is placed
within each separated stream.

Therefore, we propose a technique that accounts for the topology
of the time surfaces in the flow. We start by generating a binary data
setC in the following way:

C[xi, yi, zi] =

{
1 : curvature[xi, yi, zi] >= ε
0 : otherwise

Now we randomly select positions in the flow field and recur-
sively check whether there are cellsC[xj , yj , zj] = 1 in a certain
region around that position. If so, we select a new position. Other-
wise, the entire stream line passing through that position is traced
and the binary fieldC is updated as follows:

C[xj , yj , zj] =

{
1 : p hits C[xj , yj , zj]

C[xj , yj , zj] : otherwise

This procedure is repeated with as many particles as desired. The
size of the region in which we check for cells that have already been
set determines how close to the stream boundaries and to each other
particle traces are placed (see Figure 6). As with the technique pro-
posed in [14], we can now arbitrarily select the information density
of the visualization.

In order to animate the dynamics along the streams, each ex-
tracted trace line is also stored as a set of line segments and the time
valueT (x̃, ỹ, z̃) is stored for each vertex(x̃, ỹ, z̃) that is included
in the line. These values are then issued as1D texture coordinates,
which allows the depiction of the relative speed along the lines by
color table lookup as outlined in Section 2.

time surface

stream

3

1

2
streams
principalboundaries

Figure 6: Principal streams are displayed for those cells that are
far enough from the stream boundaries (left). On the right, cell 1 is
not going to be selected because the time surface passing through it
intersects the previously extracted principal stream passing through
cell 3. Cell 2 is too close to a stream boundary and will be discarded
as well.

As a consequence of the distance criterion, no lines will be
placed in streams that are too thin or for which no particle has

been randomly selected. These streams can be easily detected by
inspecting the set of cells inC that have not been set. By following
the time surface passing through such a cell until a stream bound-
ary is reached, we can check whether the surface intersects with a
particle line (C = 1). If so, then a particle trace has already been
selected and we proceed to the next cell. Otherwise, we either select
an arbitrary cell the surface is passing through as the new seed point
for a stream line, or we try to find the cell in the current stream that
has a distance as equal as possible to all stream boundaries. This is
done by shrinking the set of cells from the stream boundaries until
only one cell remains. This will be the starting position of a new
stream line. Shrinkage is similar to a morphological erosion, where
we iteratively remove cells adjacent to stream boundaries, thereby
narrowing the boundaries simultaneously and selecting a seed point
in the middle of a stream (see Figure 7).

Figure 7: This illustration shows the narrowing of the discretized
stream surface in order to find a seed cell in the ‘center’ of the
surface. The procedure is stopped when we are left with one or
multiple isolated cells.

Figure 8 shows the principal streams within the ocean fluid flow
extracted with the proposed method and scan-converted into a 2D
texture. Note that in high-turbulence regions where the curva-
ture oscillates very irregularly, no principal streams are found be-
cause we do not consider positions that are completely surrounded
by other high curvature cells due to the selected distance crite-
rion. However, by changing our selection criterion appropriately
we could use the same procedure to determine turbulent regions
explicitly.

Figure 8:The leftmost image shows a part of the original data set.
In the images on the right the principal streams are shown before
and after thin or not yet found streams have been extracted.

4 Results and Analysis

In this section we discuss further results and analyze the main mod-
ules and features of our system. All tests were run on an SGI IR
equipped with one R12000, 300 MHz processor, 64 MB texture
memory and 256 MB main memory. Although our tests were re-
stricted to Cartesian grids, we should mention here that other types
of grids can be processed with only slight modifications. In partic-
ular, the particle tracer has to be modified appropriately, but above
all, an algorithm is required that allows for the sampling of the vec-
tor data and for the curvature estimation. For curvilinear grids, for

example, for which we know how to compute partial derivatives in
order to evaluate equation 2, our approach can be applied straight-
forwardly. For unstructured grids, however, we reconstruct the time
surfaces locally and compute the discrete curvature on the triangle
mesh. In any case, 3D textures have to be abandoned for rendering.

The most time consuming element of the presented approach is
the computation of the time distributionT , which is accomplished
by tracing the integral curves back in time until a source or the in-
flow boundaries are reached. The actual system implemented the
Runge-Kutta scheme in a straightforward way without taking ad-
vantage of coherence in the data. The naive approach, in which
every particle trace is computed from scratch, takes roughly 28 min-
utes for the2563 flow data set shown in Figure 10.

Once the scalar time fieldT has been generated, the time sur-
faces, as well as their dynamics, can be displayed interactively via
3D textures and color table animation. For example, on the used ar-
chitecture the flow field mentioned before, including multiple time
surfaces and color table animation, can be rendered with approxi-
mately 12 fps onto a512x512 viewport using256 ·

√
(3.0) slices.

The proposed multiscale representation enables us to remove
noise from flow fields and to generate copies of the original flow
at ever coarser resolution, as it is shown in Figure 5. One can easily
recognize that the main shape of the stream lines is retained as high
frequency oscillations are successively removed. Consequently, for
an adaptive multi-step integration scheme that explicitly attempts
to use fewer integration steps with decreasing size of details, the
computational cost will be considerably decreased. In this way,
unnecessary computations and invalid stream lines, which might
occur when boundaries between separate streams are crossed, can
be avoided effectively. In this respect, however, the criterion which
lets us allow to separate streams from each other plays an important
role.

As we have pointed out, our technique is intended to extract
stream boundaries based on the proposed discrete curvature crite-
rion. As a matter of fact, the classification of stream boundaries and
consequently the smoothing process strongly relies on the curvature
threshold we select as the importance measure. The specification
of a proper error tolerance raises the same intrinsic problem as in
other areas where techniques attempt to discriminate noise from
features. On the other hand, although the discrete curvature is lo-
cally investigated, it gives a global measure because a point on the
time surface carries information along the entire stream up to the
current position. Consequently, noise along the stream lines will
be increasingly removed due to integration, while we expect turbu-
lence to introduce high frequency oscillations. This is due to the
fact that flow direction will be changed significantly, thus altering
the stream lines’ main shape.

Once the stream boundaries have been extracted by means of
a curvature measure, the placement of the principal streams can
be accomplished straightforwardly. Even without this step, when
we initially place particle streams in the flow, it is guaranteed that
all separated streams will be found employing the erosion like ex-
traction of suitable seed points (see Figure 12). However, by just
placing stream lines with a static distance to each other all streams
broader than this distance can be extracted.

5 Conclusion

In this work we have emphasized a general approach for the vi-
sualization of flow fields by means of the dynamics of time sur-
faces. The major contribution here is to consider level-sets within
this field as the fundamental structures showing the dynamics of
the flow. The evolution of these level-sets in space and time is ana-
lyzed in terms of their local curvature, which enables us to separate
homogeneous streams from each other.

We have developed two beneficial extensions for 3D texture-
based iso-surface rendering allowing for the interactive and simul-
taneous display of multiple, two-sided lighted time surfaces and
their evolution over time using color table animations.

We introduced an explicit scheme to effectively smooth flow
fields. In particular, we have shown how to obtain stream lines
at ever coarser resolution by dispersing small disturbances across
the time surfaces at the same time retaining the integral curves’
main shapes. Finally, this method has been extended for the auto-
matic placement of principal stream lines in multi-dimensional flow
fields. Thus, with a sparse set of lines, we are still able to indicate
the relevant features in the data. However, our approach does have
some drawbacks:

• Our approach is expensive in terms of numerical operations
and storage for large-scale 3D flow fields. This is due to the
voxel-wise grid traversal and the memorization of intermedi-
ate results.

• Our method relies on a heuristic curvature-based criterion. A
more accurate investigation of the thresholding to be applied
in order to separate streams from each other needs to be done.

• In particular, our method fails if the data is highly turbulent
by nature, such that no regular stream boundaries can be de-
tected. However, in this case no homogeneous streams exists
- an important characteristic our approach is able to indicate.

Nevertheless, we are convinced that the ideas presented here will
be influential for future developments:

• We have derived a multiscale representation for flow fields.
This can lead to a multiresolution framework for flow, where
only principal streams on a lower resolution level and the
difference information needed for the next finer levels is in-
cluded.

• We have demonstrated that flow field direction and speed
can be visualized very effectively via texture-based rendering
and by automatic extraction and placement of the principal
streams. This enables us to appropriately visualize dense 3D
flow fields.

• The multiscale representation might result in even more ef-
ficient integration schemes for particle tracing. By employ-
ing the multiscale nature of the analyzed flows, as well as
their geometric and topologic structure, traditional integration
schemes can be extended in order to control the step size adap-
tively and thus to improve their efficiency.

6 Acknowledgments

The authors would like to thank G. Greiner for valuable discussions
and help. We also thank C. Reszk-Salama for the generous use of
the LIC reference volume shown on the top of the color plate. We
would like to thank NASA for providing the ocean data set. This
work was supported, in part, by grants from NSF, NIH, and DOE.

References
[1] H. Battke, D. Stalling, and H.-C. Hege. Fast line integral convolution for arbi-

trary surfaces in 3d. InVisualization and Mathematics, pages 181–195. Springer,
1997.

[2] B. Cabral, N. Cam, and J. Foran. Accelerated Volume Rendering and Tomo-
graphic Reconstruction Using Texture Mapping Hardware. InProceedings ACM
Symposium on Volume Visualization 94, pages 91–98, 1994.

[3] B. Cabral and C. Leedom. Imaging vector fields using line integral convolution.
In Computer Graphics (SIGGRAPH 93 Proceedings), pages 263–270, 1993.

[4] W. Cai and P-A. Heng. Principal stream surfaces. InProceedings IEEE Visual-
ization 93, pages 75–80, 1997.

[5] R. Crawfis and N. Max. Direct volume visualization of three-dimensional vector
fields. In Proceedings ACM Workshop on Volume Visualization, pages 55–60,
1992.

[6] R. Crawfis and N. Max. Texture splats for 3d scalar and vector field visualization.
In Proceedings IEEE Visualization 93, pages 261–265, 1993.

[7] Desbrun, M. and Meyer, M. and Schr¨oder, P. and Barr, A. Implicit Fairing of
Irregular Meshes using Diffusion and Curvature Flow. InComputer Graphics
(SIGGRAPH 99 Proceedings), pages 317–324, 1999.

[8] G. Farin. Curves and Surfaces for CAGD, 3rd edition. Academic Press, 1993.

[9] L.K. Forssell and S.D. Cohen. Using line integral convolution for flow visual-
ization: Curvilinear grids, variable-speed animation, and unsteady flows.IEEE
Transactions on Visualization and Computer Graphics, 1(2):133–141, 1995.

[10] B. Heckel, G. Weber, B. Hamann, and K. Joy. Construction of vector field hier-
archies. InProceedings IEEE Visualization 99, pages 19–27, 1999.

[11] L. Hesselink and T. Delmarcelle.Scientific visualization - advances and chal-
lenges, chapter Visualization of vector and tensor data sets, pages 367–390. Aca-
demic Press, 1994.

[12] L. Hultquist. Constructing stream surfaces in steady 3d vector fields. InPro-
ceedings IEEE Visualization 92, pages 171–177, 1992.

[13] V. Interrante and C. Grosch. Strategies for effectively visualizing 3d flow with
volume lic. InProceedings IEEE Visualization 97, pages 421–425, 1997.

[14] B. Jobard and W. Lefer. Creating evenly-spaced streamlines of arbitrary density.
In Proceedings EG-ViSC ’97, pages 102–107, 1997.

[15] L. Kobbelt. Discrete fairing. InIMA Conference on the Mathematics of Surfaces,
pages 101–131, 1997.

[16] W.E. Lorensen and H.E. Cline. Marching Cubes: A High Resolution 3D Surface
Construction Algorithm. InComputer Graphics (SIGGRAPH 87 Proceedings),
pages 163–169, 1987.

[17] N. Max, R. Crawfis, and C. Grant. Visualizing 3d velocity fields near contour
surfaces. InProceedings IEEE Visualization 94, pages 248–255, 1994.

[18] T. McReynolds. Tutorial on programming with opengl: Advanced rendering. In
SIGGRAPH 96, 1996.

[19] C. Rezk-Salama, P. Hastreiter, and T. Ertl. Interactive exploration of volume
line integral convolution based on 3d-texture mapping. InProceedings IEEE
Visualization 99, pages 233–240, 1999.

[20] J.A. Sethian.Level Set Methods and Fast Marching Methods. Cambridge Uni-
verstiy, Cambridge, 1999.

[21] H-W. Shen and D. Kao. Uflic: A line integral convolution algorithm for visu-
alizing unsteady flows. InProceedings IEEE Visualization 97, pages 317–323,
1997.

[22] H.W. Shen, K.L. Ma, and C.R. Johnson. Global and local vector field visualiza-
tion using enhanced line integral convolution. InProceedings ACM Symposium
on Volume Visualization, pages 63–70, 1996.

[23] D. Stalling and H.-C. Hege. Fast and resolution independent line integral con-
volution. InComputer Graphics (SIGGRAPH 95 Proceedings), pages 249–256,
1995.

[24] G. Taubin. A signal processing approach to fair surface design. InComputer
Graphics (SIGGRAPH 95 Proceedings), pages 351–358, 1995.

[25] A. Telea and J. Wijk. Simplified representation of vector fields. InProceedings
IEEE Visualization 99, pages 35–43, 1999.

[26] G. Turk and D. Banks. Image-guided streamline placement. InComputer Graph-
ics (SIGGRAPH 96 Proceedings), pages 453–460, 1996.

[27] J. van Wijk. Implicit Stream Surfaces. InProceedings IEEE Visualization 93,
pages 245–260, 1993.

[28] J.J. van Wijk. Spot noise: Texture synthesis for data visualization.Computer
Graphics, 25(4):309–318, 1991.

[29] J.J. van Wijk. Implicit stream surfaces. InProceedings IEEE Visualization 93,
pages 245–253, 1993.

[30] R. Westermann and T. Ertl. Efficiently using graphics hardware in volume ren-
dering applications. InComputer Graphics (SIGGRAPH 98 Proceedings), pages
291–294, 1998.

Figure 9: Both images show the LIC volume of the flow around the back of the car. Only by means of an additional, manually positioned
clipping plane the relevant structures can be extracted (see color plate).

Figure 10: Both images show the curvature volume computed from the flow field around the back of the car. Dark grey indicates high
curvature. The relevant structures can be clearly distinguished even without any manual modifications (see color plate).

Figure 11:First, we show stream lines automatically selected by our curvature based oracle in the ocean data set. Next, multiple two-sided
lighted iso-surfaces in the engine data set and multiple time surfaces computed from the flow around the car are displayed. Note the fuzzy
structures where we have turbulent flow (see color plate).

Figure 12:First, the deviation between stream lines before (colored blue) and after (colored red) smoothing the flow field is shown. Although
the deviation is low, we need 30% less integration steps to generate the stream lines colored red. Next, we show the initially placed stream
lines. Finally, additional stream lines are placed automatically in separable streams (see color plate).

