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ABSTRACT

A new method has been developed to extract tissue strain from a sequence of two or more medical images. This
was achieved by deforming a finite element (FE) model of the tissue under loads derived from the spatial differences
between two sets of image data. One image data set deforms with the tissue, while the other remains stationary.
The final configuration aligns the two sets of image data. The method accounts for convection of material points,
modification of the Lagrangian material properties, and probabilistic features of the sensor. A FE model of the
tissue must be constructed and assigned material properties. Image data are assigned to the model tissue such that
the reference configuration of the FE model corresponds to one image. The image data is subject to change during
the deformation. A nonlinear solution method determines the material configuration that minimizes the difference
between the deformed image (deformed template) and the experimentally observed image (target image). In many
cases the image data provide powerful constraints which allow estimation of material deformation even in the absence
of known loads and/or boundary conditions. The method has been applied to estimate the motion and distribution
of strain using MR and CT data.
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1. INTRODUCTION

The accurate determination of strain in deforming biological tissues is a necessary and important part of many
experimental investigations in biomechanics. Previous attempts to estimate nonlinear strains in biological tissues and
cells usually employed fiducial markers.!™ In some cases, the 3D strain can be estimated directly from changes in the
distances between groups of markers making up tetrahedral sets. Inhomogeneous strain fields and physical dimensions
of the markers, however, can limit applicability of the method.?®! The ability to use textural inhomogeneities
present in medical images rather than fiduciary markers considerably easier to implement and also would allow for
the measurement of soft tissue deformation in vivo.

This paper describes a method to estimate stress and strain fields in biological soft tissues that may be applied in
the absence of information regarding the tissue constitutive properties or discrete markers to track the deformation.
The method makes use of medical image data to provide information about the deforming tissue and thus the
strain and stress fields. Accurate stress determinations require a good approximation for the material properties
of the tissues under consideration, but even in the absence of stress data, the kinematic data alone provide useful
information in both applied and fundamental biomechanical studies ranging from joint mechanics to cell motility.':'°
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2. METHODS

We have developed a method to combine medical image data with a standard solid mechanics analysis approach
to allow the estimation of tissue strain fields in the absence of detailed information about boundary conditions and
in some cases constitutive information. For the description to follow, it is assumed that a single imaging modality
was used to interrogate a fixed 3D volume of space while the material was in a reference configuration (template
image) and, at a later time, in a deformed configuration (target image). Standard segmentation and mesh generation
methods were used to define a geometrical model of the tissue(s) in the reference configuration. The reference image
data were interpolated to the FE model nodes to define a continuous template image intensity field. If CT image
data are used, the template image data reflect the initial distribution of material density in the FE model. When
the material is deformed, mathematical interrogation of the model generates image data representing a transformed
version of the template image field. The mathematical problem is to search through all admissible configurations of
the model for the one which minimizes the difference between the transformed template and actual data collected
experimentally from the deformed material. There are two formulations of the problem. The first is to assume that
the image data provide a hard constraint which must be satisfied exactly. The second is to combine a stochastic
model of the imaging sensor (likelihood of the data) with the mechanical model (prior probability), yielding a soft
constraint.!!™13 The first case uses Lagrange multipliers!* or an augmented Lagrangian method!® and the second
uses Bayes theorem or the penalty method.!® The most effective approach is application-dependent and hence we
have used both approaches in the solution of test problems.

2.1. Variational Formulation

The nonlinear solid mechanics problem, subject to the soft (Bayesian) or hard (Lagrange multiplier) constraint
imposed by the image data, can be cast in the form of a potential functional. This highly nonlinear functional can
be linearized around a known configuration to form the basis for an incremental-iterative solution procedure using
a Newton-type method. For an arbitrary domain and boundary conditions, the finite element method is used to
discretize the geometry and describe the variations in the unknown field variables over the domain.

Following the standard convention in nonlinear continuum mechanics,'” material coordinates in the reference

configuration are denoted by vector X while coordinates in the current configuration are x = ¢(X). Here ¢ is the
deformation mapp. The deformation gradient is defined as F := 92 we provide here a brief derivation for the
special case of a hyperelastic material, although the method is easi?}s generalized for other material behaviors. In
this case the standard mechanical strain-energy density W (X, C) is augmented with the Gibb’s image-energy density
U(X, ¢(X),F(X)). The argument X denotes dependence of the image data on the initial material configuration and
distribution of properties while ¢(X) and F(X) denote changes in the image data resulting from convection of the
material as well as local deformation. The form of U depends, in part, upon the point-spread function and properties
of the imaging hardware. In preliminary results U is taken as a simple Gaussian form, but can be modified to account
for other sensor models (empirical or theoretical). The combined optimization problem is to minimize the functional

E:
Ble) = [ WX, CleX))av + [ VX, o(X),FX)av. (2.1

where B denotes integration over the reference configuration. The minimization of the energy functional E will
simultaneously minimize internal forces derived from material stresses (W) and deformation-dependent body forces
arising from differences between the transformed template image field and the target image data (U, see below). The
linearized weak form (Euler-Lagrange equations) is obtained by taking the first and second variations of the energy
functional E(¢p) with respect to the deformation to obtain:
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Here, ¢(B) is the deformed configuration, u and 7 are 1st and 2nd spatial variations, dv denotes integration over
the deformed body, € is the spatial version of the 2nd elasticity tensor (see Marsden and Hughes'”) and J is the
Jacobian. The 4th order elasticity tensor C provides the constitutive model contribution to the tangent stiffness.'®



In addition to the standard mechanical terms, the image-based energy density contributes a new term to the

tangent stiffness as well as a spatially distributed nonlinear body force. The term % provides a deformation-

dependent body force, while the term (f)?;—aU(p contributes to the tangent. The body force term provides the force

which drives the deformation process. For the case of a single imaging modality with a Gaussian likelihood*3:

A
UX,¢X)) = 5 (T(X ¢ -5, ). (2.3)
Here, T' and S are the template and target image data fields, respectively.!® The body force vector is derived from
the first derivative of U with respect to the deformation map:

ou
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In the Bayesian approach, X is related to the variance in the Gaussian imager model normalized for U to match
the same energy density units used for the mechanics W. The Bayesian approach is directly analogous to the penalty
method used in mechanics to enforce a constraint in an approximate sense.'®

2.2. Solution Strategy using the FE Method

We have implemented the image driven algorithm in the nonlinear FE code NIKE3D.1? 2! The unknown variations
in shape and displacement over the domain are discretized using the FE shape functions in the standard manner.'®
An iterative Newton procedure is used to obtain the nonlinear solution. Assuming that the solution at a configu-
ration ¢* is known, we seek to determine a new configuration ¢* 4+ u that results in a minimization of the energy
functional F(¢). Here u is a vector of incremental nodal displacements, and the configuration ¢* + u is such that
the applied loads/displacements (including image-derived forces) are equilibrated with the internal stresses. The
following linearized matrix equations result from the FE discretization:

Nuodes Vnodes Nuodes )
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The term YK is the material stiffness matrix, while the term “K is the geometric (initial stress) stiffness matrix.
These terms both arise in a traditional displacement-based nonlinear analysis. The image-based stiffness, K, is a
direct result of the fact that the image-based force changes with configuration. The image-based body forces are
applied with other external forces via the vector “*‘F. By solving for u, the configuration at n + 1 is approximated
as @, = " + su. Here s is a scalar parameter between 0 and 1 determined by a line search. The determination
of an accurate value for ¢, ., follows by iterative solution of (2.5) using a quasi-Newton strategy.??

Equation (2.4) shows that U and the associated driving force both vanish when transformed template image data
T(X, ) are equal to target image data S(X, ). The driving body force is also zero if the gradients vanish. The
gradient terms determine the direction of the force. Since the appropriate direction can not be determined on a
local level without gradient information it is natural that this term vanishes in the absence of a spatial gradient.
As a result, inhomogeneous images containing intensity variations and boundaries are most effective in driving the
process. The image energy density U also contributes to the tangent stiffness in this implicit formulation.?°

2.3. Test Problems

The following test problems illustrate the application of the method for strain and stress determination using both
simulated and real image data. The first problem simulates the the deformation of a soft rubberlike material by
compression between two plates. First, the problem is solved in the “forward” sense using applied displacements to
drive the top plate towards the bottom plate. Next, all displacement and contact boundary conditions are removed
and the analysis is driven using image data generated from the density distributions that the forward simulation
predicted. Excellent agreement between the forward solution and the warping solution was achieved. The second
problem utilizes MR image data of the intervertebral disc. In this case the correct strain field in the tissue is unknown
and the image data before and after deformation provide a means to estimate it.



Inverse Solution

Figure 1. Deformation of a rectangular billet under compression. Panel A is the intial geometry of the billet
compressed between two plates. Panel B is the deformed geometry obtained from the forward FE simulation. Panels
C and D show the template and target images of the density distribution, used to drive the Warping analysis. Panel
E shows the von Mises stress distribution obtained from the forward simulation. Panel F shows the results from the
Warping analysis, obtained by removing all applied displacements and contact boundary conditions and using only
the pointwise image intensity differences between Panels C and D to drive the analysis.

3. RESULTS
3.1. Stress/Strain Estimation using Simulated CT Data

To test the ability of the warping method to determine stress/strain distributions using “exact” representations
for the image data, a traditional FE simulation was performed of a hyperelastic material compressed between two
plates (Figure 1A). The material was assumed to be bonded to the plates, and the objective of the analysis was
to deform the mesh to 50% axial compression. The sides of the mesh bulge out and eventually contact the plates
on the top and bottom (Figure 1B). Contact was modeled with a standard penalty method. This problem is a
challenging forward simulation because of the extreme deformation and the contact. The material was assumed to
be hyperelastic (compressible Mooney-Rivlin Material model, A=10 MPa, B=5 MPa, bulk modulus=750 MPa) with
initially homogeneous density.

Both the forward and inverse solutions were obtained. The forward problem was posed as a standard solid
mechanics problem with applied displacements pushing the plates together and contact constraints so that no material
would penetrate the infinite plates. For the inverse problem, the applied displacements and contact constraints were
removed and the deformation was driven by forces derived from the image-based energy terms in equation (2.1).
Images of the density in the reference and deformed configurations obtained from the forward simulation were used
as the template and target image data, respectively (Figures 1C and 1D).

The deformed shape of a 1/4 symmetry model and the von Mises stress distribution obtained from the forward
simulation are shown in Figure 1E with isocontours indicating lines of constant equivalent stress. To test the
warping algorithm, we removed the boundary conditions and the applied loads but added the image-terms to the
functional. The problem was then re-run with the two images (1C,D) driving the process. Fig. 1F shows the resulting
configuration and isocontours of constant stress for this inverse problem. Notice the excellent correspondence with
the forward solution (compare 1E & F). The small error (kink, 1F) at the bottom of the billet could not be eliminated
with the image-driven analysis. This is due to the use of the penalty method where the parameter A was increased
during the simulation using a load curve. The maximum value of A that can be used in the computation is controlled
by numerical precision. Since the simulated CT data was perfect in this test case, A should be allowed to approach
infinity, in theory. This is not computationally feasible. An augmented Lagrangian or Lagrange multiplier method,
in combination with a more refined mesh along the bottom edge of the domain, should alleviate this shortcoming.

Figure 2 illustrates a sequence of the deforming mesh for both the forward and inverse problems. The forward
problem (top panels) proceeds by compression of the material as specified by the applied displacements and contact



conditions. During the compression, the side of the original mesh eventually contacts the compressing plate and the
material continues to bulge out between the plates. In the case of the inverse image-driven problem (bottom panels),
the deformation proceeds along a very different path as specified by the pointwise difference in template and study
intensities and their gradients. However, the end state is almost identical to that obtained from the forward solution.
The actual path of deformation taken by the forward problem can only be reproduced in the inverse problem if a
sufficient number of intermediate images are employed in the deformation process.
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Figure 2. Sequence of images from the forward (top panels) and inverse (bottom panels) solution of the compression
of a beam between two plates. Only the bottom right portion of the beam was modeled because of symmetry. The
mesh of the forward solution is gradually compressed and eventually the side of the mesh contacts the plate as the
deformation progresses to 50% axial compression. The inverse solution follows an entirely different path as dictated
by the image data and its gradients, but eventually reaches the same final configuration.

3.2. Intervertebral disc strain extracted using MR images

We also have tested the FE implementation by using MR data to track strain in a spinal disc.?> The human inter-
vertebral disc is a complex combination of materials, including collagen, water, and a proteoglycan matrix. Material
characterization and strain measurement are extremely difficult for the disc. Using a nonmagnetic compression frame
and a MRI scanner, MR images of a L2-L.3 motion segment were obtained before and after application of a 250 1b
compressive load (data supplied by Chiu et al.,?* Figs. 3A, B). The image in the reference configuration was used
to generate geometrical models of the disc and bone. Pixel intensities from the reference image were assigned to the
model to define the template image field. Image data were filtered at the spatial Nyquist frequency of the FE mesh
to avoid aliasing. Representative hypoelastic material properties were estimated from the literature?® as described by
Bowden et al. (1997).2% Differences between the template and target images defined the only input “force” driving
the deformation of the disc and bone. As the Warping code registered the two images, strains developed in the spinal
disc. The difference images before and after deformation illustrate the excellent registration that was achieved (Figs.
30, D). Results show changes in volume of up to 15% and compressive strains as high as 20% within the disc?® (Figs.
3E, F). The computed deformation was insensitive to changes in the elastic moduli due to the path independent
nature of the elastic response. This insensitivity does not hold for Poisson’s ratio owing to the interplay between the
volume ratio and strain. Due to lack of volumetric information in two-dimensional problems the computed strain
field is sensitive to the compressibility of the material. The best results for 2D data are therefore obtained when the
model material properties match the actual tissue.?3

4. DISCUSSION

The paper presented a finite-element based method that combines 2D or 3D image-based data with nonlinear con-
tinuum mechanics to track the motion and deformation of materials. This was achieved using a nonlinear variational
approach which simultaneously minimizes energy functional associated with the image data and with the mechanical
model. The derivation was presented for hyperelastic materials, but the approach is not in any way limited to this
material type. When used with medical image data, it provides a means to estimate tissue strains in vivo.
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Figure 3. Intervertebral disc strain. Images on the left show the template (A) and target (B) images. Center panels
show the difference images prior to deformation (C) and after deformation (D). The resulting volume ratio (E) and
and compressive strain (F) are shown on the right with isocontours.

The implementation must be modified to accommodate nonconservative systems which exhibit path dependent
behavior. The time sequence of images shown in figure 2 clearly illustrate that the path determined by the image-
driven deformation is distinct from the actual path, even though the final configuration is approximately the same.
The difference in path is due to the fact that the deformation is driven only by the initial and final images. Inter-
mediate images are not used in this example and hence the algorithm has no information concerning the path other
than that built into the a priori mechanical model. Since the applied boundary conditions were neglected in the
image-based result, the resulting path is different. For hyperelastic materials this difference does not influence the
final stress state and therefore is not a concern. For general materials the path is crucial and must be accurately
reproduced. One way to achieve this is to use a time sequence of images that are spaced so that the path is resolved
sufficiently.

The specific content of the images can affect the ability of the method to reproduce a defined deformation field.
Sharp boundaries, such as present in Example 1, provide strong gradient information that controls the direction of
the image-derived body forces as defined in equation (2.4). This can result in better end-registration, but also causes
severe nonlinearities for the incremental-iterative solution process. We have used image blurring to circumvent this
problem. By starting with blurred versions of the template and target images and gradually sharpening them as the
analysis proceeds, excellent results are often obtained. The opposite problem can occur when the image consists of
diffuse gradient information. In this case local minima can complicate the solution process. Again image blurring or
other ad-hoc processing techniques can be used in this case.

In summary, a method for combining medical image data with nonlinear continuum mechanics has been developed
and used to determine strain distributions in the absence of detailed information about applied loads or boundary



conditions. The method appears to hold promise for in vivo strain determination using image data obtained from
noninvasive imaging modalities such as MR. Future work will assess the sensitivity and accuracy of the method for
materials undergoing well-defined deformations.
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