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ABSTRACT: This article provides a critical review of past and current techniques for the computa-
tional modeling of ligaments and tendons. A brief overview of relevant concepts from the fields of
continuum mechanics and finite element analysis is provided. The structure and function of liga-
ments and tendons are reviewed in detail, with emphasis on the relationship of microstructural tissue
features to the continuum mechanical behavior. Experimental techniques for the material character-
ization of biological soft tissues are discussed. Past and current efforts related to the constitutive
modeling of ligaments and tendons are classified by the particular technique and dimensionality.
Applications of one-dimensional and three-dimensional constitutive models in the representation of
the mechanical behavior of joints are presented. Future research directions are identified. 
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CONVENTIONS

Vectors and vector fields and tensors are indicated in boldface. Material quantities are indi-
cated in upper case. Spatial quantities are indicated in lower case. All numbers, vectors,
matrices, functions, and so forth are real.

NOMENCLATURE

· inner product of a 2nd order tensor with a vector (i.e., A · b) or a vector with a vector
(i.e., b · b)

: inner product of two tensors of 2nd order or higher (i.e., D : C)
⊗ outer product (i.e., (A ⊗ B) ijkl = A ij Bkl)
A2 The square of a matrix A. In index notation, (A2)ij = A ikAkj

tr trace of a matrix (i.e., tr C = C11 + C22 + C33)
div divergence of a vector; AT, transpose of a matrix A 
∇ gradient referred to the deformed configuration
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SYMBOLS (IN ORDER OF APPEARANCE)

II. Mechanics Background
A. Continuum Mechanics
X Position of a particle in the reference configuration
x Position of a particle in the deformed (current) configuration
f A deformation f = x (X) is a mapping of a closed bounded region into 

another closed bounded region
R0 Reference closed bounded region
R Deformed closed bounded region
F The deformation gradient tensor, F = ∂x/∂X
J The Jabobian of the deformation, J = det F
ρ0 Density in reference configuration
ρ Density in deformed configuration
C The right Cauchy-Green deformation tensor, C = F TF
B The left Cauchy-Green deformation tensor, B = FF T

Stress and strain tensors
E Green-Lagrange strain tensor, E = (F TF – 1) = (C – 1)
1 Identity tensor
ε Infinitesimal strain tensor, ε = (F + FT – 21)
T Cauchy stress tensor
P First Piola-Kirchhoff stress tensor, P = J F–1T
S Second Piola-Kirchhoff stress tensor, S = JF–1TF–T = PF–T

B. Constitutive Modeling
Hyperelasticity

Strain energy
I1 The first invariant of C, I1 = tr C

I2 The second invariant of C, I2 = ((tr C)2 – tr C2)

I3 The third invariant of C, I3 = det C = (ρ0/ρ)2 = J2

Elasticity tensors
C 4th order material elasticity tensor

C. Finite Element Modeling
Π Potential energy function
Πext Potential energy of the external loading
R0 Reference configuration
v Material variations
T :∇v Internal stresses
b · v Body force
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· v Surface traction
KNL Nonlinear stiffness matrix
KL Linear stiffness matrix
∆u Incremental displacement vector
Fext External forces
Fint Internal forces
BNL Nonlinear strain displacement matrix
BL Linear strain displacement matrix
M Mass matrix
K Stiffness matrix
D Global damping matrix; for Raleigh damping, D = αmass M + α stiff K
αmass Mass damping coefficient
αstiff Stiffness damping coefficient

C. Finite Element Modeling
Π Potential energy function
Πext Potential energy of the external loading
R0 Reference configuration
v Material variations
T :∇v Internal stresses
b · v Body force

· v Surface traction
KNL Nonlinear stiffness matrix
KL Linear stiffness matrix
∆u Incremental displacement vector
Fext External forces
Fint Internal forces
BNL Nonlinear strain displacement matrix
BL Linear strain displacement matrix
M Mass matrix
K Stiffness matrix
D Global damping matrix; for Raleigh damping, D = αmass M + αstiff  K
αmass Mass damping coefficient
αstiff Stiffness damping coefficient

IV. Material Models for Ligaments
B. Elastic Models
λ Stretch along fiber direction
Wλ Strain energy contribution from the collagen fibers
a Unit vector describing the local fiber direction
p Hydrostatic pressure
a0 Unit vector describing the local fiber direction in the reference configuration
F1 Strain energy functional of isotropic ground substance
F2 Strain energy functional for collagen fibers
F3 Strain energy functional for fiber/matrix interaction
Wα Shorthand notation for ∂W/∂Iα

t

t
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λ* Stretch at which the collagen fibers were straightened
C3 Coefficient scaling the collagen exponential stresses
C4 Coefficient controlling rate of collagen fiber uncrimping
C5 Coefficient for modulus of straightened collagen fibers
C6 Coefficient describing the y-intercept of the linear region

C. Viscoelastic Models
S(t) Time-dependent 2nd Piola-Kirchhoff stress tensor
Se (C(t)) Equilibrium stress representing elastic behavior
Z Functional representing the history of the right deformation tensor C
G (t – s) General tensor-valued relaxation function
ϒ General tensor-valued history function
Sv Viscous stress
R Strain-dependent tensorial relaxation function, R = φ0I + φ1C + φ2C2

φ0, φ1 , φ2 Principal invariants of C
G (t – s) General scalar-valued relaxation function
C0 Initial modulus
C∞ Long-time modulus
γ C∞/C0

µ Shear modulus
I(s) tr C(s)

E1(t) Exponential integral function E1(t) = 

c Dimensionless constant scaling the degree to which viscous effects are present
τ1 Time constant bounding the lower limit of the constant damping range
τ2 Time constant bounding the upper limit of the constant damping range
Ge Equilibrium modulus
G0 Initial modulus
Nd Span of the transition region in decades

Lowest discernible relaxation time

D. Poroelastic Models
G Shear modulus
ν Poisson’s ratio
e0 Initial void ratio (fluid volume fraction/solid volume fraction)
p Internal pressure
Pt Elastic ultimate strength

Elastic portio of volume change,  = ln (Jel)
κ Log bulk modulus
v Fluid velocity
k Permeability

E. Homogenization Models
{εtissue} Total tissue strain
{εapp } Apparent strain
{ε*} Fluctuating strain component
Ftotal Total deformation gradient
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Fcont Continuum level deformation gradient
Fmicro Microstructural level deformation gradient

I. INTRODUCTION

The skeletal ligaments are short bands of tough fibrous connective tissue that bind bones
together across joints. Their mechanical function is to guide normal joint motion and
restrict abnormal joint movement. These functions are assisted by the congruent geometry
of the articulating joint surfaces and musculotendinous forces. Ligaments can be subjected
to extreme stress while performing their role in restricting abnormal joint motions and can
be damaged or completely disrupted when overloaded. Excessive stretching or disruption
can result in gross joint instability with some activities. Joint instability can cause altered
joint kinematics, altered load distribution, and increased vulnerability to injury of other
ligaments and musculoskeletal tissues. Eventually, degenerative joint disease may result
from the alterations in loadbearing and joint kinematics.

Because the instability resulting from certain ligamentous injuries can greatly restrict
the activity level of an individual and may result in degenerative disease, basic and applied
research efforts have examined ligament injury mechanisms, techniques for ligament
repair and reconstruction, and rehabilitation methods for use during the healing period.
These studies have helped to elucidate details of the natural history of ligament injury and
healing from biomechanical, histological, and biochemical viewpoints. However, funda-
mental mechanical questions regarding the role of individual ligaments, the mechanisms
of ligament injury, and the efficacy of reparative/reconstructive procedures persist. This is
in part due to the limitations associated with experimental measurements of basic kine-
matic and mechanical quantities in both in vivo and in vitro biomechanical studies. 

Experimental studies of ligament mechanics are often technically difficult, costly, and
prone to error. The stress and strain fields within ligaments are inhomogeneous, yet we are
forced to measure these quantities between a small number of discrete points and assume
that they are homogeneous. Other quantities such as pressure and contact area are
extremely difficult to measure in an experimental setting. Also, parameterized studies
require large numbers of animals or significant amounts of human tissue. This often
results in prohibitively high costs and time requirements. 

The emerging field of computational biomechanics offers a new set of tools for stud-
ies of solid and fluid biomechanics that can provide information that would otherwise be
difficult or impossible to obtain from experiments. Advances in the fields of constitutive
modeling, computational mechanics, numerical methods, and computer science have led
to the widespread application of numerical procedures for the analysis of mechanical sys-
tems. Traditional engineering fields such as mechanical and civil engineering have utilized
computational methods for the study of the mechanics in complex systems for over 20
years. In particular, the finite element (FE) method has provided a generalized procedure
to analyze the stress/strain response of a structure. In the FE method, a body is discretized
into small finite elements of material volume, for which the material and physical proper-
ties are known. The appropriate boundary conditions and initial conditions, including
applied loading and displacements, must also be specified for the forward problem to be
well posed. The solution procedure involves the consideration of overall energy minimiza-
tion and/or other fundamental physical balance laws to determine unknown field variables
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over the domain. From these variables, the stresses and strains (or other quantities of inter-
est) can be determined throughout the body. The FE method provides a systematic method
for assembling the response of a complex system from individual contributions of ele-
ments, and thus is ideal for the complex geometries often encountered in biomechanical
systems. It also provides a consistent way to address material inhomogeneities and differ-
ences in constitutive models between disjoint or continuous parts of a model. 

For the successful application of the FE method to studies of ligament and joint
mechanics, a detailed mathematical description of the material behavior of the ligaments
and a means by which to represent their interaction with other soft and hard tissues are
necessary. A material model, referred to in continuum mechanics terminology as a consti-
tutive model, may vary in complexity depending on the application. To develop such a
constitutive model, detailed experimental measurements of the material structure and
mechanical behavior are needed. The mechanical behavior of ligaments and tendons is
somewhat complex. Ligaments consist largely of parallel-bundled collagen fibers embed-
ded in a ground substance matrix holding large amounts of trapped water. The material
properties imparted by this structure and composition enable ligaments to perform their
role of guiding and restricting joint motions. These tissues possess both time- and rate-
dependent properties due to the intrinsic viscoelastic nature of the solid phase and the
interaction between the solid and fluid phases. This combination of properties makes
accurate modeling of their material behavior a challenge. There are additional difficulties
associated with modeling the mechanical behavior of ligaments in a joint such as the com-
plex geometry, the large deformations, contact with other tissues, and the in situ stress that
provides initial tension and joint stability. Many of these difficulties dictate the use of non-
linear solution procedures. However, these complications can be addressed in a uniform
manner when properly formulated for use in FE analysis. During the last 20 years, numer-
ous papers have reported the normal material behavior of soft and hard musculoskeletal
tissues, as well as changes associated with injury, repair, immobilization, exercise, and
other factors that can move the tissue away from an initially homeostatic state. It is possi-
ble to eventually include these effects directly into the constitutive models for the liga-
ments to model changes in material properties that occur with alterations in the
mechanical or biological environment. 

Substantial progress has been made in the areas of constitutive modeling and finite
element methods that will facilitate the modeling of ligaments and joints. The objectives
of this work are to provide a historical review of the efforts made to model ligament
mechanics, identify current research relevant to constitutive modeling and the study of
joint mechanics, and identify future directions for research and development. Efforts at
modeling both isolated ligament tissue and ligaments interacting within larger models of
joints are reviewed. The next section provides the reader with background material on
basic concepts in continuum mechanics, constitutive modeling, and the finite element
method. Section III describes the basic composition, structure, and function of ligaments.
A detailed review of the experimental methods used to determine the material properties
of ligaments is also provided. The variety of material models that have been proposed to
represent ligament behavior is reviewed in Section IV. A critical review of published mod-
els of diarthroidal joints is presented in Section V. Finally, the closing section summarizes
the work and identifies directions for future research. 
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II. MECHANICS BACKGROUND

A fundamental knowledge of mechanics is needed to understand the current state of
research in computational modeling of ligaments. Because ligaments are subjected to large
deformations and strains, concepts from finite deformation theory must be used to describe
their stress and strain state. This section provides the reader with a brief review of basic
concepts in finite deformation continuum mechanics, constitutive modeling, and finite ele-
ment modeling that are used in later sections of this article. The reader is referred to the
cited textbooks for detailed information on the topics of this section. 

A. Continuum Mechanics

To apply continuum mechanics concepts to the analysis of a deformable material, the con-
cept of a continuous medium must apply. In particular, the molecular structure of the mate-
rial is disregarded in continuum mechanics analyses. In addition, there may not be any
gaps or empty space in the continuum. All mathematical functions are assumed to be con-
tinuous over the domain of the material for the theory, except at interior surfaces separating
regions. With these assumptions, the concept of the stress at a point in the material is well-
defined, since the point does not occupy any volume. The continuum assumption is valid
for many engineering applications but not all. A common example of a situation for which
it is not valid would be the analysis of fatigue crack formation. 

Following standard notational conventions,1  X represents the position of a particle in
the reference configuration, while x represents the particle in the deformed (current) con-
figuration. A deformation f = x(X) maps a closed bounded region R0  into another closed
bounded region R  = f(R0). The deformation gradient, F, is defined as

(1)

The Jacobian of the deformation is

(2)

where ρ0  and ρ are the reference and current material densities, respectively. Physically, J
can be interpreted as the ratio of the undeformed volume over the deformed volume for a
homogeneous deformation at a material point. For an incompressible material, J = 1 for all
admissable deformations. The right and left Cauchy-Green deformation tensors are,
respectively,

C = F T F and B = FFF (3)

F X( ) ∇ f x∂
X∂

------= =

J det F
ρ0

ρ
----- 

 = =
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These tensors provide measures of material stretching that are independent of rigid body
rotation and form the basis of constitutive model development for soft tissues. 

1. Stress and Strain Tensors

In finite deformation theory, different measures of stress and strain are employed, depend-
ing on whether the quantity is to be referred to the reference configuration or the deformed
configuration. The Green-Lagrange strain tensor is used when strain is referred to the ref-
erence configuration:

E = (F TF – 1) = (C – 1) (4)

where 1 represents the identity tensor. As with all strain tensors that correctly describe
large deformation, E = 0 for rigid body motions. 

When the deformation can be considered “small”, (Equation 4) can be reduced to the
infinitesimal strain tensor:

ε = (F + F T – 21) (5)

ε is an approximate measure of strain that is only accurate for infinitesimal strains (less
than 1%), whereas E provides an exact measure for both finite and infinitesimal strains. It
should also be noted that for rigid body motions, ε ≠ 0. A rigid rotation will cause straining
as measured by this strain tensor. This is readily proven from the polar decomposition of
the deformation gradient F = RU, where R represents a rigid rotation of the material point. 

The Cauchy stress, T, is defined as the force acting on the current or deformed config-
uration. Unfortunately, for large deformations the deformed configuration is typically not
known a priori. For this reason, it is often advantageous to use a stress tensor that is
defined in terms of the reference configuration. Two commonly used measures are the first
and second Piola-Kirchoff stress tensors. They are defined respectively as

P = JF – 1 T (6)

S = JF – 1TF –T = PF –T (7)

The first Piola-Kirchoff stress, sometimes referred to as engineering stress, is the com-
ponent of force in the current configuration on a surface that is normal to the axes in the ref-
erence configuration, measured per unit surface area in the reference configuration.1  The
components of P can be directly measured experimentally. Unfortunately, P is not symmet-
ric. The stress tensor S is symmetric, but it does not have a direct physical interpretation. S is

1
2
---

1
2
---

1
2
---
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used more commonly than P because it is energetically conjugate to the Green-Lagrange
strain tensor E. The tensors S and E often appear together in constitutive models for large
deformation elasticity.

B. Constitutive Modeling

Constitutive equations are used to describe the mechanical behavior of ideal materials
through specification of the dependence of stress on kinematic variables such as the deforma-
tion gradient, rate of deformation, temperature, and pressure. They can be used to distinguish
one material from another but must be defined such that they obey dimensional homogeneity
and independence of choice of coordinate system. Constitutive relations must also obey the
Principle of Material Frame Indifference, which states that constitutive equations must be
invariant under changes of observer frame of reference. This principle ensures that rigid body
motions will not change the stress in a material. The accurate description and prediction of
the mechanical behavior of soft tissues by constitutive equations remains one of the chal-
lenges for computational modeling of ligaments and other soft tissues.

Specific steps are generally followed in the development of constitutive relations for a
material. The first step is to observe the material and classify it according to its behavior and
composition. Examples of these classifications for a solid would include whether the mate-
rial is elastic or viscoelastic, isotropic or anisotropic, linear or nonlinear, and homogeneous
or heterogeneous. The second step is to choose an appropriate theoretical framework to
develop a relationship between kinematic quantities and stress. Hyperelasticity is often uti-
lized in the biomechanics field. The third step is to identify a specific constitutive equation.
This step must take advantage of mathematical conditions such as observer independence to
derive a relationship based on microstructural observations or experimental data. The fourth
step is to perform experiments to determine values for the material parameters. The final step
is independent validation of the model’s predictive ability.

1. Hyperelasticity

For an elastic material , the stress at any point can be defined solely as a function of the
deformation gradient F at that point. A change in stress arises only in response to a change
in configuration, and the material is indifferent to the manner in which the change in con-
figuration arises in space and time. For a hyperelastic material, the above definition
applies, and in addition there is a scalar function from which the stress can be derived at
each point X. The scalar function is the stored energy or strain energy function, W, which
can also be defined solely in terms of the deformation gradient:

(8)

The strain energy, W, must obey the Principle of Material Frame Indifference. This
principle ensures that rigid body motions will not change the value of the strain energy
function. Consequently, W may be expressed in the form

W W F( )
∼

=
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(9)

The second Piola-Kirchhoff stress is derived directly from the strain energy as

(10)

Hyperelasticity provides a convenient framework for the formulation of constitutive
equations for biological soft tissues because it allows for large deformations and anisot-
ropy. It can also be easily extended to other material behaviors such as plasticity,2 vis-
coelasticity,3,4 poroelasticity,5,6 and damage mechanics.7

Material symmetries will restrict the way in which the strain energy depends on C.
Specifically, any orthogonal transformation that is a member of the material symmetry
group will leave its strain energy unaltered when applied to the material prior to deforma-
tion. For instance, if the material under consideration is isotropic, its symmetry group con-
sists of the entire group of proper orthogonal transformations. For an isotropic material, W
can depend on C through only the three principle invariants of C:

W = W(I1, I2 , I3) (11)

where

I1 = tr C I2 = [(tr C)2  – tr C2] I3  = det C (12)

and “tr” denotes the trace of the tensor. The isotropic hyperelastic material reduces to lin-
earized elasticity when appropriate assumptions regarding the magnitude of strains and
rotations are made.

2. Elasticity Tensors

Small displacements from a known configuration of a material are governed by the “tan-
gent” behavior of the material model. Mathematically, the elasticity tensor describes how
infinitesimal variations in material configuration, or strain, will affect the stress tensor.
Although typically termed the elasticity tensor, this tensor can be defined for any material,
inelastic or elastic. For nonlinear FE analysis, the solution process often proceeds by
searching for a configuration that is close to a known equilibrium state that provides a
balance between incrementally applied loads and the current stress field in the material. In
this case, the elasticity tensor plays an important role in the iterative solution process. 

W W C( )
∼

=

S 2 W∂
C∂

-------=

1
2
---
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For a hyperelastic material, the material version of the second elasticity tensor is
derived from the second derivative of the strain energy with respect to the right Cauchy-
Green deformation tensor:

C = (13)

Note that the components of the 4th-order tensor C are not constant, but rather vary as a
function of C in general. If this tensor is defined for an isotropic hyperelastic material at
the reference configuration, it can be shown that the elasticity tensor defined above reduces
to the elasticity tensor used in linearized elasticity theory to define the relationship
between the infinitesimal strain tensor ε and engineering stress σσ. Similar analytic expres-
sions for the elasticity tensor can be derived for other constitutive models. 

C. Finite Element Modeling

In some cases, the equations of motion can be combined with an appropriate constitutive
law to obtain closed-form mathematical solutions to problems with relatively simple
geometry and boundary conditions. Unfortunately, most problems of interest in biome-
chanics are too complex to obtain closed-form solutions. This is due to inhomogeneous
material properties, complex three-dimensional geometry, and unique boundary/initial
conditions such as in situ stress or residual stress. In these cases, numerical solution tech-
niques must be utilized. The FE method provides a powerful and commonly used method-
ology for the solution of complex problems in nonlinear solid and fluid biomechanics.
Because of the importance of the finite element method in the computational modeling of
joint mechanics, this section provides a brief overview of the key concepts and equations
that characterize the FE method.

The FE method may be described as an analysis method for discrete systems.8  The
domain of interest is divided into a finite number of discrete elements. A form is assumed
for the variation of the unknown functions over each element. Usually a polynomial form
is assumed, and these polynomials are defined in terms of other independent variables. In
solid mechanics, the unknown variation of displacements over the element is described by
these polynomials, referred to as shape functions , in terms of the other nodal displace-
ments. These shape functions are called isoparametric if they are used to define both the
variation of element geometry between nodal points as well as the variation of displace-
ment over the element. The equilibrium equations are cast in integral (weak) form, and the
shape functions and nodal displacement values replacing the continuous functions. The
requirement of stationarity yields a system of equations that can be assembled element by
element. Numerical integration is used to evaluate the integrals for each element, and the
result is a large (often nonlinear) system of simultaneous equations that can be solved for
the nodal displacements that satisfy equilibrium.

In summary, steps in the analysis of a discrete system include the idealization of the
system, establishment of equilibrium conditions, assemblage of the discrete element sys-
tem into a set of simultaneous (possibly nonlinear) equations, and solution of these equa-
tions to determine the response of the state variables.9 These steps are the same whether

4 ∂2 W
C∂ C∂

-------------- 2 S∂
C∂

------=
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the problem is steady-state or dynamic, linear or nonlinear, and regardless of the initial
and boundary conditions. In contrast to other discretization methods, FE method has the
ability to treat material inhomogeneities, complex boundary conditions, and complicated
geometry in a systematic way.

For nonlinear elasticity, the weak form of the equilibrium equations can be obtained
from the potential energy. The potential energy function, Π, is defined as the sum of the
strain energy in the material (internal energy) and the energy due to externally applied
body forces and surface tractions Πext. Both sources may be a function of the deformation
map f over the reference configuration R0:

(14)

The first variation of Π with respect to the deformation F in the direction V yields the
“Euler equations”. In the present case the Euler equations are simply a statement of the
equilibrium equations in weak form. If these are transformed to the current configuration,
with variations in configuration v taken with respect to the current configuration:

(15)

Note that this is equivalent to the virtual work approach. T : ∇v represents the internal
stresses, b · v is the body force, and  is the surface traction. This equation is in general
highly nonlinear.

Two solution procedures are commonly employed at this point. An “explicit time
integration” provides the solution to the equations of motion by including all inertial
effects and using the central difference method to integrate the equations forward in time.
This approach is limited by the Courant stability criterion and requires extremely small
time step size. It is appropriate for high-rate and impact problems. The second approach is
to linearize the equations (15) about a known configuration. After introduction of the FE
shape functions, this results in a system of linearized matrix equations:

(KNL + KL) · ∆u = Fext  – Fint (16)

KNL  is the nonlinear stiffness, KL is the linear stiffness, ∆u is the incremental displacement
vector, and Fext and Fint  represent the external and internal forces respectively. For a detailed
derivation and description of the discrete form of the nonlinear FE equations, see Bathe.9

This equation provides the starting point for an incremental-iterative solution strategy char-
acterized by the Newton-Raphson method.

Π f( ) W X C f X( )( ),( ){ } Vd
R0

∫ Π ext f( )+=

D Π v⋅ T : ∇v vd
R
∫ b v⋅ vd

R
∫ t v⋅ ad

S
∫+= =

t v⋅
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1. Contact

During deformation, two or more bodies may contact. The analysis of contact using the FE
method can be an extremely difficult, nonlinear problem. In a FE context, contact may be
enforced as an additional nonlinear constraint. The implementation of contact must be able
to handle both static and dynamic situations, with our without frictional sliding. Three of
the most common approaches for implementing contact in FE analyses are the penalty
method,9  the Lagrange multiplier method,9,10 and the augmented Lagrangian method.11

The penalty method is relatively easy to implement and it does not introduce any addi-
tional degrees of freedom to the global system of equations. However, it is difficult to
choose the penalty parameter so that the contact constraint is sufficiently satisfied without
causing ill-conditioning of the global stiffness matrix. Some penetration always occurs
between the contacting bodies, and the challenge is to pick a penalty value that reduces the
penetration to reasonable values for the analysis at hand without inducing numerical ill-
conditioning. The Lagrange multiplier method exactly satisfies the contact constraint at the
expense of introducing additional degrees of freedom to the global system. This causes an
increase in the size of the stiffness matrix that must be inverted and thus increases the
floating point and memory requirements of the analysis. The augmented Lagrangian
method provides a compromise between the penalty and Lagrange multiplier methods. It
does not introduce additional degrees of freedom or ill-conditioning as with the other
methods. However, it requires additional Newton or quasi-Newton iterations that may
increase the solution time when compared to the penalty method. 

In recent years, there has been an increase in the availability and usage of commer-
cial FE codes for nonlinear analysis. These software packages are rapidly becoming
more powerful and user-friendly. Despite the apparent ease by which these programs
can be learned in a superficial sense, it often takes many years before an analyst has the
skill to confidently perform nonlinear analysis. Users must have a fundamental under-
standing of the approximations and limitations that are inherent with nonlinear FE anal-
ysis before reliable and consistent results can be expected. This is especially true in the
analysis of ligament and joint mechanics because of the complex material behavior and
boundary conditions.

III. STRUCTURE and FUNCTION of LIGAMENTS

Healthy articulating joints allow for nearly effortless motion along preferred anatomical
directions, yet they must also restrict abnormal motions. The freedom of mobility is
achieved by the lubricating action of cartilage that covers the articulating surfaces of the
bones. Joint stability is maintained by a combination of bony geometry and ligament and
other soft tissue interactions. Ligamentous restraints guide and restrict the motion, defin-
ing the normal envelope of passive joint motion. This section reviews the structure, func-
tion, mechanical testing, and material properties of ligaments. An undertanding of each
of these topics is necessary for the critical evaluation of constitutive models for liga-
ments and tendons.
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A. Ligament Structure

Ligaments are well suited to the physiological functions they perform. Ligaments are a
biological composite consisting of a ground substance matrix reinforced by collagen and
elastin. The ground substance matrix is composed of proteoglycans, glycolipids, and fibro-
blasts and holds large amounts of water.12 Ligaments are relatively hypocellular with inter-
connected, elongated fibroblastic cells in their midsubstance and more rounded cells found
near their insertions to bone.13 The primary function of the cells is to maintain the collagen
scaffold. This is consistent with other musculoskeletal soft tissues that have mechanical
function as their main purpose. Water makes up about two-thirds of the weight of normal
ligaments; 70 to 80% of the remaining weight is made up by the fibrillar protein collagen.14

Collagen is the primary component resisting tensile stress in ligaments.

1. Collagen

Collagen is formed from a structural hierarchy. Figure 1 illustrates the hierarchy proposed
by one investigator for the type I collagen in rat tail tendon. There appears to be some dis-
agreement in the literature as to the exact levels of organization, and evidence suggests that
it is tissue-specific. Type I collagen is one of the “fiber-forming” collagens, which also
includes type II and type III collagens. Collagen molecules are synthesized and secreted by
cells such as fibroblasts in connective tissue.15  This process starts with the modification of

FIGURE1. The structural hierarchy of ligament and tendon. (Adapted from Kastelic
etal.,1978.)
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linear polypeptide chains to form alpha-helix chains. Three alpha-helix chains coil together
to form the triple helix known as a tropocollagen molecule. The tropocollagen molecules
are secreted and self-assemble in the extracellular matrix. Five tropocollagen molecules are
wound together in a left-handed configuration with a quarter-staggered pattern, yielding a
cross-striated collagen microfibril. This cross-striation can be seen in electron micrographs,
and is reported to have a period of 640 to 680 Å. According to Viidik,16 the diameter of the
microfibril is about 40 Å. The microfibril is held together with hydrophobic interactions, but
develops intermolecular cross-links during maturation. Kastelic illustrates that, for the case
of rat tail tendon, microfibrils further associate to form subfibrils (100 to 200 Å diameter)
and fibrils (500 to 5000 Å diameter) that are further grouped to form fascicles (50 to 300 µm
diameter) (Figure 1). Viidik reports more generally that a fibril is an assembly of
microfibrils for which the cross-striation is still evident, with diameters from 300 to 1500 Å.
The fibrils are further packed together in parallel arrangements of fibers or fiber bundles,
with diameters in the range of 1 to 12 µm. At this level they can be viewed using the light
microscope. The unloaded fibers display a clear banding when viewed using polarized light
microscopy.17  The collagen has a visible longitudinal waveform referred to as the crimp
pattern (Figure 2). The waveform represented in the collagen fiber crimp pattern has been
debated. Some investigators believed the geometry was helical,18 whereas others believed
the fibers were planar sinusoidal or planar zig-zag.19,20 From Figure 2, it is evident that there
is variability in crimp period and amplitude with position within the tissue. The specimen in
Figure 2 (rabbit Achilles tendon) appears to exhibit a planar waveform. The waveform dis-
appears when the ligament or tendon is loaded in tension beyond the “toe region” of the
stress-strain curve. The cause of the crimping is believed to be due to the shrinking of the
surrounding matrix, transferring load to the fibers via collagen-interfibrillar interac-
tions.16,21 Because the distance between adjacent fibrils is too large to admit the possibility
of cross-linking between fibrils, it is likely that the ground substance matrix and the associ-
ated proteoglycans bind the fibrils together.16

FIGURE2. Histological cross-section of a New Zealand White Rabbit achilles tendon
showing the collagen crimp pattern.
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The collagen of skeletal ligaments is a very stable biomolecule with unique material
properties. The stability of collagen is due to its molecular coil configuration and its abil-
ity to form intramolecular and intermolecular crosslinks. Intramolecular cross-links occur
between alpha-helix chains of the same tropocollagen molecule, whereas intermolecular
cross-links join adjacent tropocollagen molecules with each other and with the ground
substance matrix.12 The cross-links are partially responsible for the high stiffness and ten-
sile strength of collagen and its resistance to chemical and enzymatic attack.22 Tissue mat-
uration is accompanied by a reduction in the concentration of reducible cross-links.23

Although collagen is quite stable, there is an ongoing balance between collagen synthesis
and degradation in mature ligamentous tissue. Degradation of collagen occurs after the
activation of specific collagenases. When activated, collagenases cleave the collagen triple
helix leaving it susceptible to other proteases. The half-life of collagen has been estimated
to be between 300 and 500 days.24 The rate of collagen turnover can change drastically
following injury or other stimuli.

2. Ground substance matrix

The connective tissue surrounding the collagen is referred to as the ground substance matrix.
This tissue is partly responsible for holding the collagen together. The main constituent of
the ground substance matrix is proteoglycan. Although these molecules constitute less
than 1% of the ligament’s total dry weight, they have a very important role in ligament
function.25 Ligament proteoglycans have a protein core and glycosaminoglycan side
chains. Some proteoglycans are aggregated with hyaluronic acid to form hydrophilic mol-
ecules. These molecules associate with water to form the gel-like extracellular matrix. This
interaction is responsible in part for the large amount of bound and unbound water in liga-
ment: water typically comprises 60 to 70% of the total weight of normal ligaments (see for
example Reference 26).

The interaction of water with the ground substance matrix and collagen is responsible
for some of the time- and history-dependent viscoelastic behavior observed in ligaments.
Movement of water within ligamentous tissue is inhibited by its entrapment between
charged, proteoglycan molecules.12 Exudation of water from ligamentous tissue has been
shown to occur under cyclic loading.26 In other collagenous soft tissues such as skin, the
tissue retains most of its water even under high-pressure gradients.27 Because of the large
fraction of water in ligaments and tendons, many studies have made use of the incom-
pressibility assumption in the development of constitutive equations. Recent work sug-
gests that some volume change occurs during ligament deformation.28,29 The actual
change in volume that occurs during in vivo loading of ligaments is still a subject of
debate. Further more, the mechanical and physiological significance of any such change in
hydration and thus volume remains an open research area.

3. Elastin

The dry weight of most skeletal ligaments consists of less than 1% elastin.30 The insolu-
ble protein elastin takes on a complex coiled arrangement when unstressed. When elastin
is stressed, the coiled arrangement stretches into a more ordered configuration.31 The
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behavior of elastin is responsible for a small part of a ligament’s tensile resistance and its
elastic recoverability.32 Ligaments with a high elastin content have been shown to be less
stiff and to undergo larger strains before failure when compared to ligaments with a
lower elastin content.33

4. Insertion Sites

Ligament insertion sites transfer loads between components of the skeleton. They are
designed to reduce the stress concentrations that naturally occur as forces are transferred
across the ligament-bone interface. The junction between the soft tissue of ligaments and
the hard tissue of bones is complex and can vary greatly from ligament to ligament as well
as between the two ends of the same ligament. Ligament insertion sites have been broadly
categorized into two categories, direct and indirect.

Direct insertion sites are generally well-defined areas with a sharp boundary between
the bone and the attaching ligament occurring over a distance of less than 1 mm13 (Figure
3). The collagen fibrils quickly pass out of normal ground substance matrix and continue
through zones of fibrocartilage, mineralized fibrocartilage, and finally into bone.34 Most of
the fibrils at direct insertion sites are deep fibrils that meet the bone at approximately right
angles. Examples of direct insertion sites include the femoral attachment of the medial
collateral ligament (MCL) and anterior cruciate ligament (ACL) of the knee.

Indirect insertion sites attach to the bone over a broader area than direct insertion
sites and have a more gradual transition between hard and soft tissue (Figure 4). The
superficial fibers dominate at indirect sites and their attachment to bone occurs mainly
through fibers blending with the periosteum. The deep fibers of indirect insertions have

FIGURE3. Direct insertion site at the femoral insertion of a rabbit MCL. There are four
distinct zones: ligament (A), uncalcified fibrocartilage (B), calcified fibrocartilage (C), and
bone (D).
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been shown to attach directly to bone at acute angles without the fibrocartilagenous
transitional zone observed in direct insertions.35 Indirect insertions may be found at the
tibial attachment of the MCL. 

Despite the gradual change from soft to hard tissue, insertion sites are often the loca-
tion of injuries. This is especially true when rapid remodeling of the insertion sites takes
place during skeletal maturation or after joint immobilization.36–39 Insertion sites have
been shown to heal more slowly than ligament midsubstance tissue in response to injury or
immobilization.36,40 This may be due to the lack of a significant blood supply in the liga-
ment substance near the insertion site. The different tissue microstructure found at inser-
tion sites introduces inhomogeneous deformations throughout ligaments. Tissue strains
near the insertion sites have been shown to differ from strains measured in the midsub-
stance of ligaments.41,42

B. Ligament Contribution to Joint Function

Joint kinematics are determined primarily by a combination of articulating bony geometry,
ligament forces, and muscle and tendon forces. Ligaments contribute to maintaining
proper joint kinematics by guiding normal motions and by providing a passive mechanical
restraint to prevent abnormal motions. The anatomical geometry of ligaments and the loca-
tion of their insertion sites have roles in dictating joint motion and stability. The majority
of the load carried by ligaments is along the collagen fiber direction. As these loads are
transferred to bones, the location of the insertion sites determines the orientation of the
ligament-bone forces and thus greatly influences joint kinematics.

Although ligaments are generally considered to resist mainly uniaxial loads, they also
experience shear and transverse loading in vivo. Complex loading patterns are especially
common at the ligament insertions to bone.43 In addition, ligaments wrap around bone sur-
faces in certain configurations and are subject to compressive contact stresses.43–45 Weiss et
al.45 examined the contact between the MCL and the femur and between the MCL and tibia

FIGURE4. Indirect insertion site at the tibial insertion of a rabbit MCL. The ligament fibers
(A) insert obliquely into the bone (B).



19

during valgus rotation of the human knee joint by utilizing a three-dimensional finite ele-
ment model. Loads as high as 700 N were transferred from the MCL to the tibia through
contact under extreme valgus loading conditions. A two-dimensional FE model was created
by Giori et al.44 to study the stresses that develop as tendons wrap around bones. The study
attempted to correlate the fibrocartilagenous tissue found in these regions to the mechanical
state of stress. It was shown that the fibrocartilagenous areas correspond to areas with high
levels of hydrostatic compressive stress. Matyas et al.43  also predicted soft tissue compres-
sive stresses near the insertion sites in a two-dimensional FE model of the rabbit MCL.
These areas were correlated with regions of the ligament containing rounded, fibrocartilage-
nous cells rather than the elongated cells of ligament midsubstance.

When joints such as the knee are in neutral positions, the ligaments are still under
some tension. This is usually referred to as in situ stress which is responsible for much of
the joint stability in the absence of muscle and tendon forces. In situ strain has been mea-
sured experimentally in ligaments of the knee joint and has been shown to be nonuniform
throughout individual ligaments and to vary depending on joint position.46,47 Woo et al.46

measured the in situ strain in anterior, middle, and posterior regions of the MCL in rabbits
at three different flexion angles. For skeletally mature rabbits, it was shown that at 90
degrees of flexion the in situ  strain was nearly uniform across the MCL width at 3.5%. A
reduction in flexion angle caused an increase in loading of the posterior fibers and a
decrease in anterior fiber loading. At increased flexion angles, the anterior portion of the
MCL experienced an increase in in situ strain while the posterior region strain was
reduced. Inclusion of in situ stress in computational models of joints is necessary to pre-
vent an underestimation of the actual stress state in ligaments. 

Ligament failures can occur through the tissue substance, by bony avulsion, or at
insertion sites. Failure mechanism has been shown to be a function of age and activity
level.48,49 Substance failures are the most common failure mechanism in adults and are
characterized by catastrophic rupture of collagen fibers. The ruptured fibers are often
described as having a “mop-end” appearance. Avulsion and insertion site failures are less
common. Bony avulsion failure occur in the cancellous bone located deep to the insertion
sites. Bone fragments can be found on ligament ends that fail by bony avulsion. Insertion
site failures can be distinguished from bony avulsions by the lack of bone present on the
failed ligament end.

The knee has been the subject of a great number of both experimental and computa-
tional studies due to its high incidence of debilitating injuries. The knee is a six-degree-of-
freedom joint, with three translational and three rotational degrees of freedom commonly
described using the convention established by Grood and Suntay.49 The four major liga-
ments of the knee are the ACL, posterior cruciate ligament (PCL), lateral collateral liga-
ment (LCL), and MCL (Figure 5). These ligaments are made up of several discrete bands
that are taut in different positions of the knee’s range of motion in normal, stable joints.50

The specific functions of individual knee ligaments have been determined experimen-
tally through the successive sectioning of ligaments in cadaveric knees. Primary and sec-
ondary roles of ligaments were determined by altering the order of ligament sectioning.
The ACL has been shown to act as a primary restraint against anterior tibial
displacements51–53 and as a secondary restraint to tibial axial rotation.52,54–56 The ACL also
provides a minor secondary restraint to varus-valgus rotation at full extension.52 The PCL
provides the primary resistance to posterior tibial displacement52,57–60 and also acts as a
major secondary restraint to external tibial axial rotation52,58,59 and a minor secondary
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restraint to varus rotations.58,59  For most ligament cutting studies, the MCL has been
divided into the superficial MCL and the deep MCL. The superficial MCL has been shown
to be the primary structure resisting valgus rotations of the knee.52,55,61,62  Both the superfi-
cial and deep MCL also act as primary restraints to internal tibial rotation52,55,62,63 and sec-
ondary restraints to anterior tibial displacement.52,56 The LCL provides a primary restraint
to varus rotation52,53,58,59,61 and external tibial rotation52,58,59 and a secondary restraint to
anterior and posterior tibial displacement.52,53,58,59,61

C. Material Testing of Ligaments

To properly discuss the material properties of ligaments, it is essential to consider aspects
of the experimental testing protocols that have been used to measure these properties. In
experimental studies of ligaments, it is important to distinguish between structural proper-

FIGURE5. Anterior view of the knee joint. The femur, tibia, and fibula are connected by
the anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), medial collateral
ligament (MCL), and lateral collateral ligament (LCL). The clinical rotations and translations
of Grood and Suntay are defined (Grood and Suntay, 1983).
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ties and material properties. Structural properties are derived from tests of entire bone-
ligament-bone structures, whereas material properties are derived from tests of isolated
ligament tissue64 or from a bone-ligament-bone complex.42 Material properties must be
determined from a test that provides a region in the center of the ligamentous tissue that is
under a state of homogenous uniaxial strain. Structural properties are typically represented
by a load-elongation curve (Figure 6a). From this curve, properties such as ultimate load,
ultimate elongation, stiffness, and energy absorbed at failure can be determined. The ulti-
mate load and elongation are determined at the point of failure of the bone-ligament-bone
complex and the stiffness is the slope of the linear portion of the curve. The energy
absorbed to failure is equal to the area under the load-elongation curve up to failure. Fail-
ure may occur in the ligament midsubstance or at the insertion sites. Structural properties
depend on the material properties of the ligamentous tissue and also on the geometry of the
bone-ligament-bone structure and the material properties of the insertion sites. Material
properties of ligaments describe the material behavior irrespective of ligament geometry
and do not include information about the strength of the insertion sites. The stress-strain
relationship for ligament material can be determined by combining load-elongation data
with the initial cross-sectional area of the ligament and strain measurements from the liga-
ment substance. Material properties such as tensile strength, ultimate strain, and tangent
modulus can be obtained from the stress-strain curve (Figure 6b). Stress is determined by
dividing the applied load by the initial cross-sectional area of the tissue, whereas strain can
be approximated by dividing the change in gage length by initial gage length. The tangent
modulus is the slope of the linear portion of the stress-strain curve. However, if the test
complex does not fail within the substance of the ligament, the tensile strength and ulti-
mate strain of the material were not achieved and thus cannot be reported. 

Testing considerations can drastically affect the material properties of ligaments. It is
important to decide what information is desired and what test would be appropriate to yield
that information. Depending on the specific goals, a variety of tests may be performed such
as uniaxial tension,64 strip biaxial tension,65  and shear.66,67 These test configurations can be
used to perform testing at a fixed strain rate, to assess the effects of cyclic loading,68  or to

FIGURE6. Load-elongation and stress-strain curves for a bone-ligament-bone complex
under uniaxial tension. (A) Structural properties represented in a load-elongation curve, (B)
Material properties represented in a stress-strain curve.
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investigate viscoelastic behavior under creep or stress relaxation conditions.69,70 Uniaxial
tensile tests are commonly used to characterize ligament behavior and are performed on
specimens with high length-to-width ratios. These tests provide data on the one-dimensional,
tensile behavior of ligaments. Strip biaxial tests are performed on samples with low length-
to-width ratios to minimize the tissue’s lateral stretch. This test can provide additional two-
dimensional information on the material behavior. The strip biaxial test is similar to a (more
general) biaxial test configuration, but the objective is to maintain the stretch ratio in the lat-
eral direction at a value of 1.0. This will in general produce a “stiffer” stress-strain curve than
a uniaxial configuration since the tissue is prevented from contracting in the lateral direction.
Simple shear tests provide an additional means to learn about the multiaxial behavior of lig-
aments.66 Depending on the orientation of the collagen fibers with respect to the shear defor-
mation, the relative contributions of the fibers and the ground substance matrix to the
material response may be determined. Unconfined or confined compression tests may be uti-
lized to further characterize the behavior of ligaments.29 Compressibility is an important
quantity that dictates how a constitutive model may be formulated. Creep and stress relax-
ation tests are often used to gain insight into the viscoelastic properties of ligaments. Creep
tests are performed by subjecting a tissue to a constant stress level and observing the change
in strain. For stress relaxation testing, a constant strain is held and the reduction in stress over

FIGURE7. Stress-strain curves for human MCL tested parallel and transverse to the col-
lagen fiber direction. The final point in each curve was the average failure point for the spec-
imens. The error bars indicate the standard error for the average ultimate strain and tensile
stress. The tangent modulus of the longitudinal curve was over an order of magnitude
greater than the tangent modulus of the transverse curve. (Reprinted with permission from
Quapp and Weiss, 1998.)

AU: No callout for Figure 7 (should be somewhere between pp. 24–29)
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time is measured. Cyclic tests may also be used to determine the viscoelastic behavior of lig-
aments. By noting the changes in peak stress (creep testing) or peak strain (stress relaxation)
with each cycle, viscoelastic material coefficients may be estimated. Insights into the elastic
and viscoelastic behavior of ligaments may also be yielded through experiments that quan-
tify tissue permeability.71  The role of fluid flow in the mechanics of ligaments may be
assessed through such experiments.

Tensile testing of isolated ligamentous tissue introduces numerous experimental diffi-
culties. Most of these difficulties are related to the poor interface between ligamentous soft
tissue and the rigid clamps of a material testing machine. It is common for ligaments to
slip from these clamps during testing or to fail at the stress concentration that is induced as
soft tissue is compressed between the rigid clamps. Some investigators have used liquid
nitrogen or dry ice to freeze the tissue grasped by the clamps.72–75 This provides a local
hardening of the tissue at the clamped area of the specimen, preventing slippage or failure.
One must be careful to ensure that the temperature in the gage length is not changed
appreciably to avoid alterations in material properties. Additionally, isolated ligaments
often have poor aspect ratios and irregular geometries that induce nonuniformities in the
stresses and strains during testing. To achieve uniform loading conditions, samples with
appropriate length-to-width ratios are often cut from intact ligaments. Dog-bone shaped
samples reduce cross-sectional area in the specimen midsubstance to ensure that failure
will occur within the gage length and not at the clamped ends.64,76 For tests of bone-liga-
ment-bone complexes, special fixtures are often used to ensure a strong grip on the bones
and to position the bones so that the tensile load is applied along the longitudinal axis of
the ligament.42

The measurement techniques that are used during material testing of ligaments
deserve special attention. The calculation of stress in ligaments under uniaxial tension
requires accurate measurement of the tissue cross-sectional area and the applied load. The
measurement of load is relatively straightforward and is usually accomplished using a load
cell positioned in series with the clamping system. Measurement of cross-sectional area
can be quite difficult since the ligament cross-section is rarely uniform and can vary con-
siderably along the length of the ligament.77 Calipers have been used extensively but
require the assumption of a regular cross-sectional shape (rectangular,64 circular, or
ellipsoid78). Calipers may also introduce errors by deforming the tissue.77 Despite the dis-
advantages, calipers are often used because of their ease of use and their sufficient level of
accuracy for many applications. Area micrometers have also been used to measure cross-
sectional area. These devices compress the specimen into a well-defined cross-sectional
shape via a prescribed transverse pressure. This method underestimates the actual cross-
sectional area due to tissue deformation as pressure is applied by the micrometer.79 How-
ever, it does provide a repeatable measurement method. In recent years, noncontact meth-
ods such as laser micrometers have been developed for measuring the cross-sectional
shape and area of ligaments.77,80 The accuracy of these methods is not limited by measure-
ment-induced deformations or assumptions about cross-sectional shape. Some disadvan-
tages of these techniques are the longer time required to perform measurements and the
inability to measure surface concavities for some techniques. 

Numerous techniques have been used to measure strain in soft tissues such as liga-
ments. Historically, many investigators used the crosshead displacement of the material
testing machine and specimen initial length to derive ligament strain. Large errors can be
introduced due to slack in the system, specimen slippage in the clamps, clamp compliance,
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or inhomogeneities in the ligament strain field. This has been shown to be an extremely
inaccurate method for measuring local ligament surface strains, especially when bone-liga-
ment-bone complexes are used for tensile testing.81 Other investigators have attached pins
to the ligament insertion sites and measured the distance between the pins using calipers at
different joint orientations as an indicator of ligament length.62,82 A similar technique has
been used by Hollis et al.83 to measure elongation in different bundles of the ACL. An
instrumented spatial linkage (ISL) was used to digitize the coordinates of the ligament
insertion sites in different joint positions. Both of these techniques assume a homogeneous
strain field between the insertion sites, which is rarely attained. Roentgenographic tech-
niques have also been used to measure the length of ligaments in vivo. The accuracy of this
method also relies on homogeneous strain fields between the insertion sites. More recently,
investigators have used liquid metal strain gages85–89 or Hall effect strain transducers
(HEST)90–93 for localized measurement of ligament strain. These devices attach directly to
the tissue substance and measure displacement between attachment points. This provides a
one-dimensional measurement that also assumes homogeneous strain between attachment
locations. Liquid metal strain gages and HESTs are considered to be more accurate than
some of the earlier techniques of strain measurement, but they still have some associated
problems. The devices require suturing or barbs for attachment to the ligament substance
which may alter in situ strains. In spite of the small size of these devices, they are still large
enough that they may impinge on surrounding tissues during joint motion, altering normal
ligament deformation.

Noncontact, optical techniques have been used by many investigators for strain measure-
ment in biological soft tissues. The video dimension analyzer (VDA) was originally
described by Yin et al.94 based on the earlier work of Gardner and Warner95 and has been
used in the biomechanics field for measurement of deformations in skin,96  blood vessels,97

and articular cartilage.98 Woo et al.42,99 pioneered the use of the VDA for the measurement of
ligament strain. The VDA utilizes a video image of the test specimen to determine strain.
Prior to testing, two or more reference lines are drawn on the ligament surface perpendicular
to the loading axis. The reference lines define a gage length for strain measurement. The
VDA system automatically tracks the distance between the reference lines during testing and
converts this distance into a voltage. The voltage can be calibrated to represent percentage
strain of the tissue. The VDA can be used to measure strain in real-time; however, a test is
typically recorded on videotape for later analysis. A disadvantage of the VDA system is that
it performs only a one-dimensional measurement across the video image. Even in simple
uniaxial tests, the reference lines will often experience some shearing motion that cannot be
quantified by the one-dimensional VDA measurement. 

A similar video-based method has been used for measurement of ligament and other
soft tissue strain.100–103 This technique also utilizes a video recording of testing, but the
images are analyzed with a motion analysis system or other custom software. With this
method, small contrast markers are stained or glued on the ligament surface and then vid-
eotaped during mechanical testing. The video system is calibrated by filming an object of
known dimensions. This allows the two-dimensional location of the markers to be tracked
and the surface strain calculated between marker pairs. In addition to providing a two-
dimensional measure of ligament strain, this method also has a greater potential for attach-
ing multiple markers to a ligament’s surface and quantifying strain inhomogeneities. The
recent availability of systems that are not limited by the conventions of NTSC-based video
has improved the utility of strain and motion measurement systems. These new systems
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typically provide accuracy and resolution that are 1 to 2 orders of magnitude better than
video-based systems. Several systems perform the image processing necessary to track
markers on the camera. 

The use of video techniques with motion analysis software has been extended to
three-dimensional strain measurements.47,104–106  Most motion analysis systems utilize a
Direct Linear Transformation (DLT) to obtain three-dimensional coordinate data from
multiple two-dimensional views.107 By digitizing a calibration object with known coordi-
nates, the DLT method provides a direct linear relationship between the digitized points
from multiple two-dimensional camera views and their three-dimensional space coordi-
nates. Our laboratory47,104  has measured the three-dimensional strain distribution across
the surface of the human MCL by attaching multiple rows of markers to the ligament sur-
face along the collagen fiber direction. Two video cameras were used to determine the
three-dimensional coordinates of the markers and record their positions during varus-val-
gus cycling. This allowed calculation of strain in different regions of the MCL. 

Video techniques provide numerous benefits over other strain measurement methods.
Video methods are less invasive than other techniques and they can provide a three-dimen-
sional strain measurement at multiple locations on a single ligament. An experimental
study by To et al.108 simultaneously measured the two-dimensional strains on opposite sur-
faces of ligaments during uniaxial tensile tests. The strain magnitudes were found to be
nearly equal, which suggests that measured surface strains correspond well with the strain
state located deeper within the ligament substance. Despite the benefits of video strain

FIGURE8. Cyclic load-elongation behavior of human fascia lata tested along the collagen
fiber direction. The hysteresis decreases with increasing cycle number, and the loading-
unloading curves become repeatable. (Reproduced with permission from Weiss et al.,
1996.)
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measurement, these techniques have certain inherent limitations. For two-dimensional
measurements, rigid body motions such as rotations will cause the markers to move out of
the measurement plane and will introduce significant errors in the measured strains.100,109

Further inaccuracies may be caused by radial distortion induced by the camera lens. Also,
the effects of tissue stain and adhesive markers on the local material properties have not
been assessed.110 The alcohol content of Verhoff’s stain may cause tissue dehydration, and
adhesive markers may locally harden soft tissue. A final drawback of video systems is the
long analysis time needed for calibration and digitization of the video images. Recent
improvements in motion analysis systems minimize those problems. 

Recent efforts have been made to measure ligament strain using photoelastic meth-
ods.111–113 The entire surface of a ligament is coated with a thin layer of polyurethane pos-
sessing optically high fringe sensitivity. During deformation, fringe patterns are generated
on the ligament surface when viewed with polarized light that may be recorded with a
video system and analyzed to estimate local strain values. Advantages of this system
include an improved potential for measuring strain inhomogeneities over an entire surface.
Unfortunately, it may be extremely difficult to find a photoelastic coating material that
binds sufficiently well to the ligament without altering the tissue properties. Also, despite
of the relative differences in strain that are visible through fringe patterns, quantifying
these with actual strain values can be challenging. In addition, it is not currently possible
to quantify initial strain with this technique. 

Forces in ligaments have been directly measured by attaching devices such as buckle
transducers114–118 or implantable force transducers119,120  to ligament tissue and also by
strain gage attachment to bone near ligament insertion sites.121 These devices have yielded
significant information about the forces in ligaments, but they all require the invasive
attachment of mechanical devices. This may limit the accuracy by altering the normal lig-
ament deformation. Markolf et al.122 have developed a technique for mechanically isolat-
ing a bone plug containing a ligament’s insertion site with a coring cutter. A load cell was
used to hold the bone plug and directly measure the resultant ligament forces as the knee
was loaded. This technique has been used to measure forces in the ACL and PCL of
cadaveric human knees.123,124  Fujie et al.125 developed a new method to determine the
magnitude and direction of ligament forces utilizing a six-degree-of-freedom force-
moment sensing robot. The robot was used to simultaneously measure the six-degree-of-
freedom motion and externally applied forces and moments during kinematic testing of
joints. Individual ligaments were cut and the robot was utilized to recreate the kinematics
measured prior to ligament transection. Utilizing the principle of superposition, the
change in the measured forces and moments was used to indicate the magnitude and direc-
tion of force present in the individual ligaments. 

Measurement of in situ stress and strain poses extreme experimental difficulties.
Many investigators have been forced to measure changes in ligament stress and strain
from unknown reference configuration because of the inability to determine a unique zero-
stress reference length. Optical and video-based measurement techniques have been used
to determine a reference state of zero stress and thus provide a measurement of in situ
strain.46,47 Markers were filmed with the joint in a neutral position and then the ligament
was cut from its insertion sites allowing the ligament to assume its stress-free configura-
tion. From the new coordinates of the markers, it was possible to determine in situ strain
distribution. If the ligament material properties are also known, the in situ stress can be
determined from the in situ strain. Howe et al.126 utilized a HEST to determine the stress-



27

free length of the anteromedial band (AMB) of the human ACL. The knee was subjected
to anterior-posterior shear loads, and the applied load was plotted against the HEST dis-
placement. The resultant curve demonstrated a lax region during the transition from poste-
rior to anterior-directed tibial shear loading. There was an inflection point in the lax region
that was found to correspond with the slack-taut transition for the AMB. The accuracy of
the “inflection point” method for determining a zero strain reference for ligaments has
been assessed using an arthroscopic force probe.127 An advantage of the inflection point
method is that destructive sectioning of the ligament is not required. However, this tech-
nique will not work for ligaments that cannot be completely unloaded in vivo. 

To study the viscoelastic properties of ligaments, special test protocols must be uti-
lized. The strain rate used for tensile test experiments has been shown to affect the mea-
sured ligament material properties. Although the stress-strain behavior of ligaments is
relatively insensitive to strain rate over several decades of variation,128 high rate loading
will produce a stiffening response.129,130  After repeated loading cycles, ligaments reach a
“preconditioned” state and there is a minimal amount of hysteresis as loading and unload-
ing cycles become nearly repeatable (Figure 8). Preconditioning soft tissue also minimizes
the observed relaxation and creep and the peak stress during cyclic loading will no longer
decrease with subsequent cycling. This provides a consistent starting point for subsequent
material tests. 

Changes in experimentally determined material properties can be introduced by the
environment in which the testing is performed. It is extremely important for ligaments to
remain hydrated for determination of accurate material properties. This can be achieved by
testing in a saline bath, by keeping the ligament covered in saline soaked gauze, or with
regular sprays of saline mist. A decrease in ligament hydration has been shown to cause a
decrease in tissue stiffness and strength.131 Increased hydration has also been shown to

Table 1. Material Properties of Human and Animal Ligaments 
and Tendons (Mean ± SEM)

Note: Tests were performed using noncontact strain measurement techniques that isolated
the ligament/tendon substance except those marked by “*”. The reference marked by “**”
utilized an area micrometer technique that has been shown to underestimate cross-section-
al area. Thus the values for tangent modulus and tensile strength from this study are likely
to be overestimated.

Specimen type
Tangent modulus 

(MPa)
Tensile strength

(MPa)
Ultimate strain

(%)

Human MCL64 332.2 ± 58.3 38.6 ± 4.8 17.1 ± 1.5

Rabbit MCL139 740 ± 90 77.7 ± 1.9 12.9 ± 1.2

Human PCL, anterolateral 
bundle280,*

248 ± 119 35.9 ± 15.2 18.0 ± 5.3

Rabbit ACL142 516 ± 64 62.3 ± 5.2 12.5 ± 1.5

Human ACL, LCL, PCL141,* 345.0 ± 22.4 36.4 ± 2.5 15.0 ± 0.8

Human patellar tendon141,* 643.1 ± 53.0 68.5 ± 6.0 13.5 ± 0.7

Goat patellar tendon143,** 1639.1 ± 435.9 126.8 ± 20.8 15.2 ± 3.9
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cause a larger relaxation in stress relaxation tests.132,133 Temperature also affects material
properties, but not as strongly as hydration. Increases in temperature are accompanied by a
decrease in tissue stiffness.134 Many investigators perform ligament material testing in
heated saline baths. This allows simultaneous control of both hydration and temperature.

The storage history of the test specimen may also affect ligament material properties.
Several studies have compared the properties of fresh ligaments with those that have been
frozen and stored.135–137 There have been slightly conflicting results from these studies,
but most have reported no significant changes in the structural or material properties of
ligaments. Woo et al.137 reported a significant decrease in the area of hysteresis during the
first few loading cycles of previously frozen rabbit MCLs but did not observe any other
changes in the structural or material properties. 

The effects of skeletal maturity and aging on the properties of ligaments and their
insertions have been extensively studied.46,130,135,138,139 Woo et al.130 showed that MCLs
from immature rabbits almost always failed by avulsion from the periosteum at the tibial
insertion site, whereas mature rabbit MCLs usually experienced midsubstance failures.
This change in failure mode corresponded to an increase in ligament structural properties
from puberty to adulthood. The effect was attributed to mineralization of the matrix sur-
rounding collagen at the tibial insertion site. Histological evaluation showed that the
extent of mineralization increased toward skeletal maturation, as defined by closure of the
epiphyses. Changes in material properties have also been observed in specimens with
aging and the onset of senescence.135,139 Noyes and Grood135 reported that the ACLs of
younger donors possessed structural properties two to three times greater than specimens
from younger donors. In addition, most of the young ligaments failed in the midsubstance,
whereas the ligaments from older donors failed by bony avulsion. Woo et al.139 reported
only a slight decrease in rabbit MCL structural properties and no change in failure mode in
comparisons between skeletally mature (1 to 3 year old) and senescent (four-year-old) ani-
mals. There was a difference in the rate of skeletal maturation between male and female
animals as measured by the ultimate load of the femur-MCL-tibia complex (FMTC). The
ultimate load of male FMTCs reached a plateau at 6 months of age, whereas the female
FMTCs did not plateau until 12 months of age. The modes of failure correlated well with
closure of the epiphyses in both sexes (i.e., tibial avulsion failure for the skeletally imma-
ture groups and midsubstance for the skeletally mature groups). Clearly the age and sex of
specimens must be considered when assigning structural and/or material properties for a
model of ligament mechanics, or when attempting to predict failure locations. 

D. Material Properties of Ligaments

The previously described testing techniques have been used to characterize the material
behavior of ligaments. The stress-strain curve resulting from a tensile test of isolated liga-
mentous tissue or a bone-ligament-bone complex reflects the material behavior of the con-
stituent materials (Figure 6b). Tensile tests have nearly always been performed along the
collagen fiber direction as this is the predominant loading axis in vivo. The stress-strain
relationship of ligaments tested along the collagen fiber direction is nonlinear. With initial
lengthening of ligament tissue, the curve is upwardly concave as the collagen crimp pattern
is straightened.140 This portion of the stress-strain curve is known as the “toe” region and is
often described as having the shape of an exponential or polynomial relationship. The toe
region typically extends to a strain of 2 to 3%, although there can be considerable inter-
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specimen variability. At the end of the toe region, there is a gradual transition into the
linear region of the stress-strain curve as the collagen is straightened. This portion of the
curve is dominated by the material behavior of the straightened collagen. The uniaxial
stress-strain curve remains essentially linear until failure.13,30  The peak stress value is the
tensile strength and the corresponding strain is the ultimate strain. Continued straining
beyond this point results in catastrophic failure of collagen fibers.

Although much of the published research on ligament mechanics only includes struc-
tural properties, the material properties of many different human and animal ligaments
have been determined (Table 1). The tangent modulus for ligamentous tissue ranges from
250 to over 1600 MPa, whereas the tensile strength ranges between 35 and 125 MPa. Ulti-
mate strain has been reported to be between 12 and 18%. Some of the variation in material
properties of Table 1 can be attributed to differences in experimental methods. Butler et
al.141 used clamp-to-clamp measurements to determine ligament strains whereas Quapp et
al.,64 Woo et al.,139,142 and Gibbons et al. 143 used noncontact video methods. There were
also differences in strain rate, specimen age, specimen type, and other testing conditions
between the studies. In spite of the large differences in testing procedures, specimen type,
and species, the experimentally measured material properties reported in Table 1 are
remarkably similar. This can be attributed to the collagen reinforced structure of ligaments
that remains quite similar between different ligaments and even between different species. 

The ultimate strain for human and animal knee ligaments is between 12% and 18%
(Table 1) and even under physiological conditions, strain levels as high as 5 to 8% are nor-
mal. Traditional linear elasticity theory assumes that the magnitude of both strains and
rotations are “small”. Because rotations are not present in a uniaxial tensile test and infini-
tesimal uniaxial strain can be readily converted (i.e., to Green-Lagrange strain for this sim-
ple deformation), it is permissible to use infinitesimal strain to represent the results of a
tensile test. One should always keep in mind the numerical difference between the magni-
tude of the infinitesimal strain and Green-Lagrange strain.144 For a uniaxial tensile test of a
specimen experiencing a stretch λ, the infinitesimal strain is calculated as

ε11 = λ – 1 (17)

Table 2. Effects of strain rate on the material properties 
of rabbit MCL(Mean ± SEM)

Note: Data indicate that large variations in strain rate have relatively small effects on liga-
ment material properties. From Woo et al.130

Strain rate (mm/s)
Tangent modulus 

(MPa)
Tensile strength

(MPa)
Ultimate strain (%)

0.008 700 ± 70 75.2 ± 2.4 9.5 ± 0.5

0.1 840 ± 150 81.4 ± 7.4 10.0 ± 0.5

1.0 800 ± 60 85.7 ± 7.7 11.0 ± 0.5

10.0 910 ± 50 87.2 ± 6.0 11.5 ± 1.0

113.0 760 ± 160 106.7 ± 6.8 13.0 ± 1.0
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The Green-Lagrange strain is calculated as

E11 =  (λ2 – 1) (18)

As an example, the infinitesimal strain underestimates the Green-Lagrange strain by more
than 1% strain (7% error) for a 15% uniaxial extension. Although this approach can be
used to describe uniaxial tensile data, it cannot be used to formulate two- or three-dimen-
sional constitutive models for ligaments and tendons because of the presence of large rota-
tions under in vivo deformation. As shown in Equation 5, the large strains and rotations
experienced by ligaments in vivo require the use of finite deformation theory. A similar
argument can be made regarding the stress.144 Normally, “engineering stress”, σ, is
reported for uniaxial tensile tests of ligaments and tendons. This is calculated using the
initial cross-sectional area A0:

σ = (19)

For a uniaxial tensile test, the Cauchy stress T (typically used in the equations of motion)
is defined as

T = (20)

where A represents the current cross-sectional area. Direct measurement of the current
cross-sectional area complicates the tensile test experiment considerably. Constitutive
assumptions such as incompressiblity can eliminate the need to measure A. For a detailed
discussion of the differences between the stress and strain measures, the reader is referred
to Fung,128 section 7.10. 

Ligaments are highly anisotropic because of their fibrous structure. Collagen provides
the primary resistance to tensile loading but offers negligible resistance to compression.
Ligaments also offer little resistance to bending, as illustrated by the fact that they will
fold under their own weight when held vertically from the bottom. Quapp and Weiss64 per-
formed tensile tests on samples from human MCLs harvested both parallel and transverse
to the collagen fiber direction. These data showed that the tensile strength, ultimate strain,
and tangent modulus were significantly higher for tests oriented along the collagen direc-
tion. In addition, the toe region was absent from the stress-strain curves of transverse spec-
imens (Figure 7). Chuong et al.76 studied the anisotropy of the canine diaphragmatic
central tendon. Tensile tests were performed on samples oriented parallel and transverse to
the predominant fiber direction. The results showed significantly higher tangent modulus
and tensile strength for the samples oriented parallel to the fiber direction. The ultimate
strains were not significantly different between the two groups. 
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Ligaments have time- and history-dependent viscoelastic properties that arise from
the interaction of water with the ground substance matrix and the inherent viscoelasticity
of the solid phase. There have been numerous experimental investigations of the viscoelas-
tic nature of ligaments.70,130,132,145–149 The loading and unloading curves of ligaments
under tension do not follow the same path. A hysteresis loop is typically observed during
tensile testing due to internal energy losses (Figure 8). Creep, an increase in deformation
over time under a constant load, and stress relaxation, a reduction in stress over time under
a constant deformation can both be observed in ligaments.70 The effects of conditions such
as temperature146 and hydration level132  on the iscoelastic behavior of ligaments has also
been investigated. The variation of ligament stress-strain behavior with strain rate is
another indicator of the viscoelastic nature of the tissue. Woo et al.130 compared the mate-
rial properties of rabbit MCLs tested at five different strain rates (Table 2). Although some
strain rate dependency can be seen, results showed thatchanges in strain rate of over four
orders of magnitude had relatively small effects on ligament material properties. Tensile
strength and ultimate strain increased slightly with increasing strain rate, whereas tangent
modulus remained essentially unchanged. 

Although often assumed to be incompressible due to their high water content, experi-
mental evidence suggests ligaments undergo some volume change during deforma-
tions.28,29 This volume change may occur due to fluid exudation26 or as a result of inherent
compressibility of the solid phase. Because of the limited availability of experimental data
describing interstitial fluid flow in ligaments and tendons, FE models have been used to
gain a better understanding of the flow behavior.150,151 Chen et al.151  created a microstruc-
tural model to study interstitial flow parallel and transverse to the collagen fibril direction
based on previously measured values for fibril diameter and water content. Results indi-
cated that ligaments are likely much more permeable to flow in the longitudinal direction
than in the transverse direction. Experimental data suggests that permeability transverse to
the collagen fiber direction in ligaments is approximately an order of magnitude less than
the permeability of cartilage.71

Material inhomogeneities are present within individual ligaments. Butler et al.152

compared the material properties between different bundles of the human ACL. The anter-
omedial bundle and anterolateral bundles were found to have significantly higher modu-
lus, ultimate stress, and strain energy density than the posterior bundle. The ultimate strain
was not significantly different between the three bundles. Differences in the biochemical
composition of ligaments has been studied in an effort to explain the observed material
property inhomogeneities.153,154 Frank et al.153 studied the normal rabbit MCL and found
different levels of water content, glycosaminoglycan content and collagen concentration
along the length of the ligament. Mommersteeg et al.154 showed that collagen density is
nonuniformly distributed throughout human knee ligaments. The variations in collagen
density measured by Mommersteeg et al.154 appeared to correspond with variations in
modulus found throughout the ACL and PCL in separate studies by Butler et al.152,155

Material inhomogeneities are believed to be especially common near the insertion sites,153

although this has not been well quantified experimentally due to the difficulties in per-
forming mechanical measurements in such a small region of tissue. This is an area where
further research is greatly needed. 
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IV. MATERIAL MODELS for LIGAMENTS

Numerous material models have been developed to represent biological soft tissues such as
ligaments. These models have helped to further the understanding of the contribution of
different tissue components to the material behavior of the overall tissue for both the nor-
mal tissues and for tissues affected by injury, healing, immobilization, exercise, and other
conditions that alter the homeostatic state of the tissue. Material models may also be used
to predict responses from independent experimental tests. In addition, material models
provide a framework for representing the properties of tissue in a FE or analytical context.
The construction of accurate constitutive models is difficult because ligaments are nonlin-
ear, anisotropic, inhomogeneous, viscoelastic, and undergo large deformations. In this sec-
tion, an overview of the development of ligament material models is presented. Models for
other biological soft tissues such as tendon, skin, and heart muscle are also briefly
reviewed. Although these tissues differ in structure and function from ligaments, their
overall mechanical behavior is governed by the mechanical behavior of collagen. The dis-
cussed models are divided into elastic and viscoelastic groups. Recent efforts in the devel-
opment of poroelastic and homogenization models are also reviewed. 

A. Microstructural Versus Phenomenological Models

Ligament material models can be categorized roughly as either microstructural or phenom-
enological depending on their basis of formulation. Microstructural models are based on
explicit representation of the different components of the tissue microstructure. The
responses of the individual constituents of a tissue are combined to determine an overall
description of its material behavior. These models are useful in explaining the relationship
between tissue microstructure and mechanical properties. The continuum response of
many microstructural models is based on an assumed structural configuration of mechani-
cal response of the collagen fibrils. Phenomenological models describe the material behav-
ior but do not necessarily have an explicit relationship to the components or structure of the
tissue. The material coefficients obtained from phenomenological models generally do not
have a direct physical interpretation. 

B. Elastic Models

As described earlier, the material behavior of ligaments is relatively insensitive to strain
rate over several decades of variation. In addition, these tissues reach a “preconditioned”
state after repeated loadings and there is a minimal amount of hysteresis. This has
prompted many investigators to neglect the time- and rate-dependent components of tissue
behavior and concentrate on modeling the nonlinear elastic response. Most models have
been one-dimensional or have assumed that the three-dimensional behavior is isotropic. 

There are two general approaches that have been used in forming microstructural
models of ligaments. Both of these have described the uniaxial response of ligaments by
explaining the toe region based on collagen structure. One general approach used numer-
ous elastic elements that were sequentially recruited causing nonlinear, elastic behavior.
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The second approach has been to describe toe region behavior by directly modeling col-
lagen fiber geometry. 

A simplified explanation for the upwardly concave stress-strain behavior of ligaments
was proposed by Viidik156 and subsequently presented in more detail by Frisen et al.157

The elastic response of ligaments was represented by numerous individual linearly elastic
components, each of which represented a collagen fibril of different initial length in its
unloaded and crimped form. As the ligament was loaded, additional fibrils were recruited
yielding the nonlinear behavior characteristic of the toe region. At higher loads, all the
fibrils were loaded and the ligament stress-strain curve became linear. This approach pro-
vides a compact description of the uniaxial response of ligaments. 

Other proposed microstructural models have utilized an approach similar to that of
Viidik156  and Frisen et al.157  Kastelic et al.158  developed a structural representation for ten-
dons referred to as the sequential straightening and loading model. It was assumed that
crimped fibrils had negligible resistance to extension and that tensile resistance arose only
from the elasticity of previously straightened fibrils. Crimp angles varied among morpholog-
ically based values throughout the width of the tendon, which caused a gradual recruitment
of fibrils. This was in contrast to previous structural models in which crimp configuration
was constant throughout the tissue.18,19,159 Decraemer et al.160 proposed a similar model con-
sisting of a large number of purely elastic fibers embedded in a gelatin-like liquid. Identical
values for the modulus and cross-sectional area of each fiber were assumed. The fibers were
of different lengths with a normal distribution spread about an assumed mean. Belkoff and
Haut161  formulated a structural model for skin undergoing uniaxial tension based on earlier
models159,160,162 that was later adapted to model human patellar tendon.163 The model
assumed that the collagen fibrils had a normally distributed slack length that caused a grad-
ual disappearance of the crimp pattern as the individual fibers became straight and began to
carry a load. Kwan and Woo164 created a structural model featuring a bilinear stress-strain
curve for each fibril with different slopes for the toe and linear regions. Constitutive equa-
tions for individual fibers were superposed to form an equation for the entire ligament. This
is similar to the approach that was earlier used by Soong and Hung165 and Lanir.20,159 Liao
and Belkoff166  recently extended earlier models of sequential recruitment159,160,162 to include
failure. Once recruited, individual fibers behaved linear elastically until exceeding a limit
strain at which point brittle failure occurred. 

The uniaxial behavior of ligaments has also been described by directly modeling col-
lagen fibril geometry. Diamant et al.19 proposed a microstructural model for ligaments and
tendons that represented the collagen crimp structure with straight elastic segments joined by
rigid hinges. A similar structural model was developed for human patellar tendons by
Stouffer et al.167  The collagen crimp pattern was represented by a kinematic chain composed
of short elements connected by pins and torsion springs. A light microscope system was
used to measure crimp pattern at different positions and under different loads to quantify
model parameters. Individual link parameters were defined as functions of position to
account for variations in crimp pattern. Comninou and Yannas18 utilized a sinusoidal wave-
form to model the collagen crimp structure. Constitutive equations for uniaxial extension
were formulated for a single fiber as well as for a bundle of fibers embedded in a matrix. A
constant crimp configuration was assumed that restricted this model to small strains.
Lanir20,159 also proposed a structural model for biological soft tissues that directly modeled
the collagen fibrils. The model assumed that the collagen fibril crimp was induced and sus-
tained by elastic fibers attached to each collagen fiber at numerous points along its length.
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Initial stretching was resisted primarily by the elastic fibers and with increasing stretch, the
stiffer collagen fibrils began to straighten and carry more of the load. 

All of the one-dimensional models have been successful at describing the uniaxial
behavior of biological soft tissues. However, because they are limited to one dimension
there are no independent tests that can be performed to test their predictive value. These
models are not able to describe or predict the three-dimensional, anisotropic behavior of
ligaments, the contribution of the ground substance matrix to ligament material behavior,
and shear or transverse loading. 

Three-dimensional continuum models have also been developed to represent the
material behavior of ligaments. Advantages over the one-dimensional approach include
the ability to predict two- and three-dimensional material behavior. Beskos and Jenkins168

proposed a continuum model that represented tendon as a fiber-reinforced composite.
Inextensible fibers were arranged in a helical pattern and were embedded in an incom-
pressible, hollow right circular cylinder. Fung169 proposed a phenomenological model
using an exponential stress-strain relationship based on uniaxial experimental results from
rabbit mesentery. This formulation included the nonlinearity and finite deformation asso-
ciated with uniaxial tensile tests. This work was later extended by Hildebrandt et al.170 to
two- and three-dimensional isotropic forms. 

Ault and Hoffmann171,172  developed a three-dimensional constitutive law for soft con-
nective tissues that used a previously developed linearly elastic composite materials
approach.173,174  The collagen fibrils and ground substance matrix were modeled over a repre-
sentative material volume. The cylindrical fibril was assumed to be surrounded by a concen-
tric cylinder of matrix material. Although the fibril and the matrix were both assumed to be
isotropic and linearly elastic solids, the fiber-reinforced geometry of the representative vol-
ume induced transversely isotropic symmetry. Large regions of soft tissue were represented
by aggregations of the single fiber subunits using methods described by Whitney and
McCullough.175 A distribution function was used to describe fiber orientation. By applying
boundary conditions of uniform strain and uniform stress to the aggregate model, it was pos-
sible to predict upper and lower bounds, respectively, for tissue stiffness. Changes in fibril
orientation with deformation were not considered. Model predictions were compared with
experimental data from rat tail tendon and cat knee joint capsule. 

Lanir162 used a strain energy approach to form a continuum model for fibrous connec-
tive tissue. The energy of deformation was assumed to arise from the tensile stretch in the
collagen fibers, with the only contribution from the matrix being a simple hydrostatic pres-
sure. The model described an incompressible composite of undulating collagen fibers
embedded in a fluid matrix. The model assumed that the collagen fibers buckle under a com-
pressive load and the unfolding of the fibers during deformation squeezed the matrix, result-
ing in an internal hydrostatic pressure. The stress due to deformation was described by:

T = λWλa ⊗ a + p1 (21)

where λ is the collagen fiber stretch, Wλ is the strain energy contribution from the collagen
fibers, a is a unit vector describing the local fiber direction, and p is the hydrostatic pres-
sure arising from the matrix. For a uniaxial tensile test along the fiber direction, the model
reduces to one dimension with the entire stress carried by the collagen fibers and p = 0. 
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Hurschler et al.176  recently proposed a three-dimensional model for tendon and liga-
ment that included both microstructural and tissue level aspects in its formulation. Similar
to the approach used by Lanir,162  it was assumed that the fibrils contributed to strain
energy only when in tension and the only contribution of the matrix was a hydrostatic
pressure. A probability distribution function was used to describe the initial orientation of
the collagen fibers in the tissue. Fiber deformation was assumed to be incompressible and
axisymmetric. Individual fibrils were assumed to deform in a linear manner. Stretch-based
failure criteria were established at both the fiber and fibril level to model damage and fail-
ure. A simplified version of the model was used to describe uniaxial tensile data. The
model required a large number of material parameters. Many of these parameters were dif-
ficult or impossible to determine experimentally. 

Three-dimensional isotropic models are capable of describing uniaxial data, but the use
of isotropic symmetry for fiber-reinforced structures such as ligaments may introduce large
inaccuracies in computational models. A better description of material behavior may be
achieved by recognizing the anisotropy of ligaments arising from their collagen-reinforced
structure. Our laboratory developed a structurally motivated continuum model to represent
ligaments and tendons as incompressible, transversely isotropic, hyperelastic materials.65,177

The formulation used a strain energy approach that allowed for a relatively straightforward
finite element implementation of the model. The model formulation also allowed for easy
determination of coefficients from material testing. The model assumed that transversely iso-
tropic symmetry occurs in ligaments as a result of a single family of collagen fibers. A unit
vector field a0 in the undeformed configuration was used to describe the local fiber direction
and the strain energy was required to depend on this vector. By standard arguments,178 the
strain energy was an isotropic function of C and a0 . When the material undergoes deforma-
tion, a0(X) will deform with the body. After deformation, the fiber direction may be
described by a unit vector field a(x(X)). In general the fibers will also undergo length
change. The fiber stretch, λ, is then

λ a = F · a0 (22)

where F is the deformation gradient tensor. A material with the above symmetry is trans-
versely isotropic .

The elastic response of the tissue was assumed to arise from the resistance of the col-
lagen fiber family, the ground substance matrix, and their interaction. Further, it was
assumed that the ground substance matrix was isotropic. Finally, the composite structure was
assumed incompressible because of the large amount of trapped water in the tissue. With
these assumptions, the strain energy was written as:

W = F1(I1, I2) + F2(λ + F3(I1, I2 , λ) (23)

The function F1  represented the material response of the isotropic ground substance
matrix, F2  represented the contribution from the collagen fiber family, and F3  was the con-
tribution from interactions between the fibers and matrix, such as a shear coupling. I1 and
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I2  were the standard invariants of the right Cauchy-Green deformation tensor and are the
complete set of invariants associated with incompressible isotropic material behavior:

I1  = tr C I2  =  [(tr C)2 – tr C2] (24)

The dependence on λ arose directly from the reinforcing fiber family. 
The second Piola-Kirchoff (P-K) stress for an incompressible material with strain

energy given by Equation 23 is

(25)

For Equation 23, the following identifications can be made in Equation 25:

(26)

Equation 23 is similar to many constitutive equations that have been successfully used in
the past to describe biological soft tissues such as cardiac muscle.179–182 

An experimental study was performed to evaluate the ability of a simplified form of
Equation 23 to describe and predict the material behavior of human fascia lata.65 The sim-
plification was used to demonstrate the characteristics of the strain energy function with-
out including the interaction term F3 , for which experimental data were not readily
obtainable. A simple form that describes an isotropic material was used for the matrix:

(27)

This represented the Mooney-Rivlin model.183 Several observations about the
mechanical behavior of collagen fibers were incorporated into the form for F2. First, col-
lagen does not support a significant compressive load, and structures that are composed of
mostly collagen will tend to buckle under small compressive forces. Second, the tensile
stress-stretch relation for ligaments and tendons can be well approximated by an exponen-
tial in the toe region and subsequently by a line. These observations led to the following
choice for the strain energy derivatives of the collagen fibers:

Wλ = 0 λ ≤1

Wλ = C3(exp (C4 (λ – 1)) –1)1 < λ < λ*

Wλ = C5λ + C6 λ ≥ λ* (28)
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Here, λ* was the stretch at which the collagen fibers were straightened, C3 scaled the expo-
nential stresses, C4 was the rate of collagen fiber uncrimping, and C5  was the modulus of
the straightened collagen. The y-intercept of the linear region, C6, was determined from the
condition that the stress was C0  continuous at λ*:

C6  = C3(exp (C4(λ* – 1)) – 1) – C5λ* (29)

Our laboratory has performed experimental work to evaluate the descriptive64,65 and
predictive65 capabilities of this transversely isotropic hyperelastic material model. In one
study,65 human fascia lata was subjected to uniaxial tensile tests both parallel and transverse
to the collagen fiber direction. This allowed determination of material parameters and evalu-
ation of the model’s ability to describe three-dimensional behavior. The model was then used
to predict the results of an experimental strip biaxial test. In a separate study,64  the model was
successfully used to describe uniaxial tensile data from human MCLs tested both parallel
and transverse to the collagen fiber direction (Figure 9). 

C. Viscoelastic Models

Although ligaments are relatively insensitive to strain rate,128  tissue viscoelasticity does
play a significant role in the response of joints to high-rate loading or impact scenarios.129

Viscoelastic effects are also important when considering cyclic loading,68 creep, or stress
relaxation.69,70 Tissue pathologies can cause alterations in viscoelastic behavior. The time-
and history-dependent behavior of ligaments has been the topic of study in many experi-
mental studies of ligaments, and viscoelasticity has been incorporated into several consti-
tutive models for ligaments. Once again, these models may be divided into microstructural
and phenomenological categories. 

Microstructural viscoelastic models have been formulated with a similar basis as
some of the previously discussed microstructural elastic models. Viidik156 and Frisen et
al.157 proposed microstructural models for parallel fibered viscoelastic tissues consisting
of spring and dashpot combinations. These general discrete element models of viscoelastic
behavior were also modified to include the nonlinearity of the elastic response.156,157

Lanir184 extended his structural elastic model by assuming that the individual fibers were
linearly viscoelastic. This model was further extended to incorporate three-dimensional
viscoelasticity theory.162  Viscoelasticity was similarly added to the structural model of
Decraemer et al.185  by assuming internal friction between fibers and between fibers and
the surrounding matrix. The damping was introduced by assigning linear viscoelastic
properties to the fibers with a relaxation function. 

Phenomenological viscoelastic models have also been used to model ligaments. Bar-
benel et al.186 generalized spring and dashpot models by incorporating a logarithmic relax-
ation spectrum. Sanjeevi et al.187,188 described the viscoelastic behavior of biological soft
tissues with an equation similar to that of a Voigt-type spring and dashpot model. Dehoff89

and Bingham and Dehoff90 modified a continuum-based constitutive equation that had
been used to characterize the nonlinear viscoelasticity of polymers to describe the behav-
ior of soft biological tissues. Ligaments were modeled as an isotropic, viscoelastic mate-
rial with fading memory. 
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FIGURE9. (A) Cauchy stress-stretch curves for the specimens transverse to and (B)
along the collagen fiber direction, and the material model curve fits. The Two-Coefficient
model provided a better description of the transverse data, while all three models provided
a good description of the longitudinal data. In B, the lines representing the model fits are
coincident. (Reproduced with permission from Quapp and Weiss, 1998.)
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As with elastic models, one-dimensional viscoelastic representations for ligaments
can describe one-dimensional behavior, but are incapable of describing and predicting
complex three-dimensional behavior. Continuum viscoelasticity theory can be applied to
circumvent this shortcoming of one-dimensional approaches. In addition, continuum
hyperelastic models can be readily extended to continuum viscoelasticity. 

1. General Viscoelasticity Theory

The most general viscoelastic behavior can be described by the definition of a simple material:

(30)

where S(t) is the time-dependent second P-K stress, Se(C(t)) is the equilibrium stress rep-
resenting the long-time elastic material behavior, C(t) is the right deformation tensor, and
Z is a functional representing the history of G(t – s) = C(t – s) – C(t). This general consti-
tutive law requires the history of the right deformation tensor C(t) at all past times to cal-
culate the second P-K stress S(t). 

Equation 30 specifies that the current stress state depends on the entire history of
deformations. A common simplification of this theory is the Principle of Fading Memory .
This states that deformations that occurred in the distant past have less of an effect on the
present stress than those that have occurred more recently.191 The principle of fading mem-
ory may be introduced by defining an influence function or obliviator which characterizes
the rate at which the memory fades.192 A common form of the principle of fading memory
utilizes an integral relationship between stress and strain in a first order theory:

(31)

where ϒ is a general tensor-valued function with the variables G(t – s) and s and the param-
eter C. Truesdell and Noll192  have referred to materials with an integral relationship
between the stress and strain as materials of the integral type. 

Coleman and Noll191  formulated a nonlinear theory known as finite linear viscoelas-
ticity. This theory restricts the deformation to be slowly changing in the recent past. With
this approach, the current stress can be determined by linearly integrating the deformation
history with reference to the current configuration. In contrast to the infinitesimal theory,
the integrating functions in the constitutive integrals are nonlinear functions of the current
deformation state. Equation 31 reduces to finite linear viscoelasticity when a linear func-
tion is used for ϒ. 

If only a very short part of the history of C has an influence on the stress, the deforma-
tion tensor C (t – s) can be approximated by its Taylor expansion as s approaches zero.
Truesdell and Noll192 referred to materials in which the stress depends on only a finite
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number of these time derivatives as materials of the differential type. It has often been
assumed that the viscous stress Sv depended only on the strain and on the strain rate that
reduced the description to first order. The general equation for a first-order viscoelastic
material of the differential type is:

(32)

3. Applications of Viscoelasticity Theory to Ligaments and Tendons

Pioletti4,147,193 recently developed a three-dimensional, viscoelastic model for ligament and
tendon behavior that included nonlinear elastic behavior, short-term memory effects, and
long-term memory effects. The short-term memory effects described the behavior for
which stress depended on strain rate (material of the differential type) and the long-term
memory effects described stress relaxation on a longer time scale (material of the integral
type). The model was limited by considering specimens to be isotropic, homogeneous, and
incompressible. 

A general relationship for the description of soft tissue viscoelasticity was obtained
by combining Equation 31 and Equation 32:

(33)

where the three terms of Equation 33 represent the elastic, short-term memory, and long-
term memory response of the material, respectively. The assumptions of isotropic, homo-
geneous, incompressible material behavior allows Equation 33 to be expressed as:

(34)

where We is the previously defined strain energy function for a hyperelastic material and
Wv is a similarly defined dissipative potential for short-term memory effects from which
the viscous stress is derived. This description decoupled the different mechanical behav-
iors, which was useful for determination of material coefficients.

Johnson et al.194,195 proposed a viscoelastic model called the single integral finite
strain (SIFS) model. This model describes a material of the integral type with fading mem-
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ory. A single integral was used to relate stress and strain for an isotropic, incompressible
material. Different constitutive equations were used to describe the mechanical behavior
of ligaments at different elongations using the concept of constitutive branching.196 A one-
dimensional form of this model was applied to uniaxial tensile testing data from ligaments
and tendons. The nonlinear viscoelastic response utilized by SIFS theory was first pro-
posed by Pipkin and Rogers.197 The Cauchy stress T  was defined to be of the form

(35)

where p was the indeterminate part of the stress arising due to the incompressibility con-
straint, I was the identity tensor, F was the deformation gradient tensor, C was the right
Cauchy-Green stretch tensor, and R was a strain-dependent tensorial relaxation function.
The term R[C(t), 0] in Equation 35 represented an instantaneous deformation occurring at
t = 0. The strain-dependent tensorial relaxation function was defined to be

R = φ0I + φ1C + φ2C 2 (36)

where φ0 , φ1 , and φ2 are scalar functions of t and the principle invariants of C. Linearization
of Equation 35 leads to isotropic linear viscoelasticity. If the equations are not linearized,
quasi-linear viscoelasticity (QLV)128,169,198 may be obtained with proper selection of φ0 , φ1 ,
and φ2. QLV theory is described below.

By substituting a scalar relaxation function, G(t – s) for the tensorial relaxation func-
tion R, Equation 35 was rewritten as

(37)

where C0 was the initial modulus, C∞  was the long-time modulus, γ = C∞ /C0 , µ was the
shear modulus, B was the left Cauchy-Green strain tensor, and I(s) = tr C(s). The term

 ensured recent strain states had a greater importance than older strain states.
Experimental data from uniaxial tests of human patellar tendons and canine MCLs

were used to validate a one-dimensional form of SIFS theory. Material coefficients were
extracted from stress relaxation and stress-strain data. The model was then used to predict
material behavior for stress relaxation and cyclic loading. Predicted model behavior corre-
sponded well with experimental data.Fung128,169,198 introduced a viscoelasticity theory that
has become the most widely used theory in soft tissue biomechanics. This theory is
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referred to as QLV. The basis of this theory is that (1) the stress at a given time can be
described by a convolution integral representation, separating the elastic response and the
relaxation function; and (2) the relaxation function has a specific continuous spectrum.

The formulation of QLV theory is similar to finite linear viscoelasticity. It is assumed
that the stress relaxation function can be expressed as a convolution of a relaxation func-
tion with an elastic response:

S(t) = G(t) ∗ Se (E) (38)

where Se(E) is the elastic response and G(t) is the reduced relaxation function. In general,
G(t) is a fourth-order tensor providing direction-dependent relaxation phenomena. 

Using the superposition principle and representing the strain history as a series of
infinitesimal step strains, the overall stress relaxation function can be expressed as the sum
of all individual relaxations. For a general strain history, the stress at time t, S(t), is given
by the strain history and the convolution integral over time of G(t):

(39)

For biological soft tissues, Fung proposed a continuous relaxation representation for
G(t). It was assumed that the relaxation function was the same in all directions which
reduced G(t) to a scalar, G(t):

(40)

where E1(t) was the exponential integral function,

(41)

This relaxation function provides a smooth, linear decrease from short to long relaxation
times (Figure 10). The stiffness (real part of complex modulus) increases with increasing
frequency, whereas the damping (imaginary part) is relatively constant over a wide range
of frequencies.199 This yields a hysteresis loop that is relatively insensitive to strain rate
over several decades of change, a feature often observed for soft tissues. The three vis-
coelastic material coefficients, τ1 , τ2 , and c, can be determined from the analysis of a stress
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relaxation experiment. τ1 and τ2 represent time constants that bind the lower and upper
limits of the constant damping range of the relaxation function and c is a dimensionless
constant that scales the degree to which viscous effects are present. Although the QLV
approach was independently formulated by Fung and colleagues, the specific continuous
relaxation spectrum has a history of use in other fields as well. Neubert200 provides an
overview of the relaxation spectrum. Complete details and history of the QLV theory can
be found in Fung,128 section 7.6. 

QLV has been successfully used by many investigators to model the time- and his-
tory-dependent behavior of biological soft tissues. Haut and Little201 applied QLV to
describe relaxation tests of collagen fiber bundles extracted from the tails of rats. The
model was then used to predict the results of constant strain rate tests, hysteresis loops,
and sinusoidal tests. Woo et al.148  performed an experimental investigation of the vis-
coelastic properties of the canine MCL. It was shown that QLV theory could describe the
observed time- and history-dependent behavior. 

The widespread use of QLV theory has motivated investigators to develop optimal meth-
ods for estimating QLV parameters.202–205 Dortmans et al.202 studied the discrepancies that
occur in parameter estimation due to the inability to produce a true step change in strain
experimentally. A similarly motivated study was performed by Nigul and Nigul.203 Myers et
al.204  proposed a method for reducing parameter estimation errors induced by finite rate
relaxation testing. Sauren and Rousseau205 performed a sensitivity analysis to examine the
effects of the parameters τ1 , τ2, and c on QLV behavior. It was shown that c has the strongest
influence on the degree to which viscous effects are present. The time constants τ1 and τ2

were shown to govern the “fast” and “slow” viscous phenomena, respectively. 
One of the advantages of QLV theory is that it decouples the elastic contribution to

the stress from the time- and rate-dependent contributions. This makes it relatively easy to
use any hyperelastic model for the elastic contribution since the viscoelastic portion will
remain unaffected. However, the FE implementation of QLV and other viscoelasticity the-

FIGURE10. Relaxation functions G(t) given by the quasi-linear viscoelastic function and
the discrete spectrum approximation.}
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ories is made difficult by the large amounts of computer storage that are required. To com-
pute stresses at each time-step, it is necessary to store a second-order tensor at each
integration point, for each element, at each previous time-step. This is due to the continu-
ous relaxation spectrum that is used in the convolution representation for the QLV theory.
For even the smallest problems, these storage requirements are prohibitive. 

Puso and Weiss3  developed a FE implementation of QLV using a discrete spec-
trum approximation. This approach was used to reduce the large amounts of storage
required for a continuous relaxation function. This implementation utilized an expo-
nential series approximation to Equation 40. A log plot of Equation 40 shows a linear
transition region between short and long times (Figure 10). A series of exponentials
with equal spectral strengths and relaxation times spread one decade apart provides
such qualitative behavior.199 Based on this observation, the following approximation
to Equation 40 was made:

(42)

where Ge is the equilibrium modulus, G0  is the initial modulus, Nd is the span of the transi-
tion region in decades, and  is the lowest discernible relaxation time. The span of the
transition region is chosen so that it includes the nonlinear curve sections on each end of
the central linear region, as shown in Figure 10. This ensures that the transition regions will
be represented accurately in the discrete spectrum approximation. All required coefficients
Ge, G0, Nd and I0 can be determined graphically from a log plot of G(t), as in Figure 10.

Recent work by Thornton et al.206  shows that QLV and linear viscoelastic models
are not successful at predicting ligament creep behavior based on relaxation experiments
or predicting relaxation behavior based on creep experiments. This suggests that these
viscoelastic phenomena occur by fundamentally different mechanisms and raises con-
cern over the general applicability of QLV theory for modeling the time-dependent
behavior of ligaments. Lakes and Vanderby207  have attempted to address this limitation
of QLV theory by interrelating creep and relaxation in a single-integral nonlinear super-
position model.

D. Poroelastic Models

Poroelastic models provide a quantitative description of the relative contributions of the
solid and fluid phases in soft tissue to the material behavior of the composite structure.
Poroelastic material models were originally developed to describe soil mechanics208,209

and have been utilized in the biomechanics field for the description of cartilage210  and
interveterbral disks.211 Material models of this type have been implemented into commer-
cial FE codes.212,213 Although experimental investigations have indicated that the material
behavior of ligaments and tendons is a function of tissue hydration,131,132 few models have
incorporated fluid effects into their formulation. Knowledge of the fluid flow in ligaments
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and tendons may also help to elucidate the possibility that fluid transport contributes to the
nutrition of the tissue,214 as is known to be the case in articular cartilage.215

Atkinson et al.216 created a microstructurally based FE model of a collagen fascicle
that included fluid effects. The model consisted of a fibrous outer ring with helically ori-
ented fibrils surrounding an internal region consisting of a water-based matrix. Although
permeability is known to be a nonlinear function of deformation for other soft tissues,217 it
was assumed to be constant in this representation. A nonlinear poroelastic representation
was used for the central core of each fascicle that is similar to the biphasic model often
used to model articular cartilage.217,218  This material stiffens under compression, which
was controlled through the definition of the shear modulus:

(43)

where G is the shear modulus, e0 is the initial void ratio (volume fraction of fluid/volume
fraction of solid), p is the internal pressure, P t is the elastic ultimate strength,

 is the elastic portion of volume change, ν is Poisson’s ratio, and κ is the
log bulk modulus. Fluid flow in the model was assumed to obey Darcy’s law,

(44)

where v is the fluid velocity, k is the permeability, and p is the pressure. The fibrous outer ring
was represented by an orthotropic poroelastic material. The tensile modulus along the fibril
direction was assumed to be 600 MPa and the transverse fibril modulus was assumed to be 60
MPa. The outer ring was also capable of holding water and similar permeabilities and void
ratios were used as for the inner core.

Stress relaxation tests, cyclic extension, and uniaxial tensile tests were simulated with
the model. Parametric studies were conducted examining the effects of variations in moduli,
permeability, and void ratio in both the outer ring and inner core. The model was able to pre-
dict general phenomenological behavior observed experimentally by other investigators. It
was shown that the relaxation response and internal pressures were highly sensitive to
changes in permeability and water content. 

Although this model was able to predict many behaviors that have been observed
experimentally, there are still many issues that have limited the usefulness of this
approach. The most fundamental problem is that many of the material parameters such as
tissue permeability are not widely available. Although these quantities may be difficult to
quantify experimentally, they are essential for construction of accurate models and can in
fact be determined through well-planned experiments.71 Atkinson et al.216 have used
assumed values for the material properties and varied them in parameterized studies. This
allowed an assessment of model sensitivity to these parameters, but the accuracy of the
model is unknown.
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E. Homogenization Models

Homogenization modeling techniques offer advantages over traditional continuum level or
microstructural approaches for the analysis of composite materials such as biological tis-
sue. Homogenization theory was developed specifically for the analysis of microstructured
materials219,220 and it has been extensively used in the study of composites.221,222 Using
homogenization theory, it is possible to perform microstructural and continuum analyses
independently and then combine the results to predict stress and strain fields on micro-
structural levels throughout a large region of material. Continuum analyses use apparent
mechanical properties to determine a stress-strain distribution. This method is relatively
inexpensive computationally, which allows the analysis of large-scale systems but it is not
possible to predict the stress-strain inhomogeneities occurring within the microstructure of
a composite material. Microstructural methods assume a specific representative geometry,
which is analyzed to predict apparent moduli and stress distributions within the material
microstructure. Unfortunately, the computational expense of microstructural analyses pro-
hibits their use for large-scale systems. The knowledge of the microstructural mechanical
environment of biological tissues that can be gained through homogenization modeling
can provide insight into the role of individual tissue constituents and their interaction. The
microstructural tissue stress and strain levels are believed to play significant roles in medi-
ating tissue homeostasis.223

Linear forms of homogenization theory have been used to represent the mechanics of
hard tissue. Hollister et al.224,225 used homogenization theory for the study of trabecular
bone mechanics. The formulation assumed linear elastic deformations within the trabecu-
lar tissue. The total tissue strain was separated into an apparent strain plus a fluctuating
component:221

{εtissue} = {εapp } + {ε*} (45)

where {εtissue} was the total tissue strain, {εapp } was the apparent strain which varied only
on a macroscopic level, and {ε*} was a fluctuating component that varied on both the mac-
roscopic and microscopic levels. In addition, the microstructure was assumed to be locally
periodic,220 which assured that {ε*} was periodic on the microstructural scale. The result-
ing variational form of the microstructural equilibrium equation was:

(46)

where {ε(v)} was the virtual strain vector, [C] was the tissue stiffness matrix, and Vcell was
the volume of the microstructural model. Validation of homogenization theory for modeling
trabecular bone mechanics has been assessed both analytically and experimentally.224,225

The analysis of ligaments with homogenization theory requires a formulation capable of
describing finite deformations. Livesay et al.226,227  extended homogenization theory to
encompass large deformations. New relations were developed between the microstructural
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and continuum levels, allowing the total deformation gradient to be expressed as a multipli-
cative combination of the deformation gradients at the microstructural and continuum levels:

Ftotal = Fcont  ∗ Fmicro (47)

Here, Fcont  describes the continuum level deformation gradient and Fmicro describes the
microstructural level deformation gradient. The extension of homogenization theory to
include finite deformations should allow it to be applied to biological soft tissues such as
ligaments and tendons. 

V. APPLICATIONS in JOINT MODELING

Computational models of diarthroidal joints have the potential to provide a powerful tool for
the study of ligament function, prosthesis design, and the effects of ligament reconstruction.
Models offer the potential to predict quantities that are difficult or impossible to measure
experimentally. The construction of accurate and useful models requires integration of the
mechanics concepts, experimental results, and material models described previously. A gen-
eral approach that has been commonly used in forming joint models has been to predict
quasi-static equilibrium positions for given external loads and kinematic constraints.

Similar to the pattern observed in experimental work, the human knee joint has been
the most commonly modeled joint. There have been great advancements in the complexity
and utility of models since the early work of Strasser228 that represented the knee as a four-
bar linkage. In this section, we will present an overview of joint models that have incorpo-
rated ligament mechanics into their formulations. Models will be divided into groups that
use one-dimensional, two-dimensional, or three-dimensional representations for the liga-
ments. Model characteristics will be critically reviewed with emphasis given to the liga-
ment formulation.

A. One-Dimensional Representation of Ligaments

Nearly all mathematical models of joints have used a one-dimensional representation of
the ligaments. This simplification has been used because the primary function of ligaments
is to resist tensile forces. The one-dimensional discrete element representation of liga-
ments has usually been simple linear or nonlinear springs. Discrete elements allow the
entire representation of ligaments to be reduced to a load-elongation relationship. This
greatly reduces model complexity while still enabling investigators to predict quantities
such as joint kinematics. However, this simplification does not allow prediction of liga-
mentous stresses and load cannot be transferred between soft tissue and bone at points
other than the discrete element insertion sites.

Strasser228  proposed a model for the human knee more than 80 years ago by observing
that the cruciate ligaments in combination with the tibia and femur formed a mechanism
that could be approximated by a four-bar linkage. This approach has been utilized more
recently as well.229,230 In this two-dimensional model, the point where the cruciate links
cross each other defines the instant center of rotation between the femur and tibia. This
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model has also been used to describe the shape of the femoral and tibial condyles and the
migration of the tibio-femoral contact point with knee flexion. Although the four-bar
approach has been useful for describing simplified knee kinematics, the assumption of
rigid cruciate ligaments is inadequate for representing the complex interactions between
the cruciates and the tibia and femur.

Joint models can be broadly categorized as using either analytical or FE solution
methods. Quasi-static analytical models generate a system of equations by balancing
forces or minimizing total system energy from which equilibrium joint positions may be
predicted. The FE method utilizes similar overall methods, but the discretization of geom-
etry into a FE mesh allows complex systems to be more easily studied. A large number of
both analytical and FE models of joints featuring a discrete element representation of liga-
ments have been published in recent decades. Rather than providing an exhaustive descrip-
tion of each of these models, a summary of general modeling approaches and
characteristics will be provided in the following paragraphs.

A discrete element representation of ligaments requires investigators to specify a force-
elongation relationship for each element. Linear231,232 and quadratic233–241 force-elongation
functions have often been used to describe ligaments in joint models. A common approach
has been to specify a reference length below which the element force was equal to zero. At
low strains, a nonlinear (quadratic) function was used to describe toe-region behavior and at
higher strains a linear function was used.239 In models that have utilized linear springs to rep-
resent the ligaments, nonlinear joint stiffness has been observed as a result of changes in liga-
ment orientation.231

Ligaments have been represented by individual discrete elements or in some cases
they have been represented by two or more elements representing different fiber bun-
dles.239–241 It is thought that multiple line elements will be more capable of representing
the inhomogeneities that exist in ligaments. Mommersteeg et al.240 studied the effects of
using different numbers of line elements to represent the ligaments of the human knee. It
was shown that models utilizing three or less line elements per ligament were very sensi-
tive to geometrical parameters, whereas models with seven or more line elements were
mathematically redundant. The ideal compromise will always be specific to the model and
loading conditions.

The in situ strain observed in ligaments has been included in some discrete element
joint models. Unfortunately, there are little data available quantifying in situ strain levels
so many investigators have either neglected in situ strain or assumed a uniform initial
strain for all ligaments. Discrete element models of ligaments are also limited in that they
are unable to represent the strain inhomogeneities that occur across individual ligaments in
situ.46 Blankevoort et al.239,240  have developed a method for applying a nonuniform initial
strain to each ligament element in their three-dimensional knee model. An optimization
technique was used to alter the initial strain of each ligament until the model reproduced
kinematics that had been previously measured experimentally. Although this technique
allows a model to be formulated that describes joint kinematics, the reference strains that
it predicts are often physiologically unrealistic. In one study,239  initial ligament strains
ranged between –25% for the anterior bundle of the LCL to 10% for the posterior bundle
of the ACL. Also, this approach for the determination of in situ strain does not guarantee a
unique solution.

Ligaments in vivo often wrap around each other (ACL-PCL) or around bones (MCL-
tibia). This causes soft tissue load to be transferred at locations other than the insertion
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sites and alters the direction of load transfer at the insertion sites. Most one-dimensional
representations of ligaments have only allowed forces that act in a straight line between
insertion sites.239 However, significant exceptions have been described in the litera-
ture.242–245  Hefzy and Grood242  extended their previously published analytical knee
model246 to include geometric nonlinearities such as ligament wrapping. Blankevoort and
Huiskes243 incorporated the model proposed by Hefzy and Grood242  that allowed their line
elements to follow the curved edge of a contacting bone (Figure 11). Frictionless contact
between the ligament and the bone was assumed. This algorithm was used to model the
contact that occurs between the MCL and the tibia. When compared to a model without
bony interactions, it was shown that the bony edge redirected the ligament force to more
effectively counterbalance valgus moments on the tibia.

Discrete element joint models have also been expanded to include articular contact.
Contact allows loads to be transferred directly between two bones, rather than just through

FIGURE11. FE model of the human knee joint featuring a discrete element rep-
resentation of the ligaments. An algorithm has been used that allows for wrapping
of the MCL around the medial edge of the tibia. (Adapted from Blankevoort and
Huiskes, 1991.)
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connecting ligaments. It also permits joint contact area and stress to be predicted. The
three-dimensional quasi-static knee model developed by Wismans et al.233 was one of the
first to include contact in its formulation. Rigid contact was required to occur between the
femur and tibia at a single point on each condyle throughout all joint motions. Varus-val-
gus motions could not be studied with this implementation of joint contact. Recent work
has made use of deformable contact to achieve predictions of joint contact area and
stress.231,238,239 Andriacchi et al.231 included deformable contact between the rigid femur
and tibia in their three-dimensional knee model by introducing hydrostatic elements repre-
senting the contact surface. Essinger et al.238 implemented deformable contact by describ-
ing elastic compression springs at discrete points on the joint surface. Blankevoort et al.239

compared rigid and deformable contact in a three-dimensional FE knee model. For the
deformable case, a thin layer of isotropic linear elastic material was attached to the rigid
bone surface representing a cartilage layer. For both the rigid and deformable cases, fric-
tionless contact was assumed. It was shown that the rigid contact model was much more
sensitive to changes in surface geometry. The detailed FE knee model of Li et al.241

included a deformable representation for both the cartilage and the menisci. Cartilage was
modeled as a linearly elastic solid with material properties based on previously published
experimental values. The menisci were represented by a number of discrete spring ele-
ments with stiffness determined through an optimization procedure. 

Discrete element joint models have been developed to simulate the response of joints
to dynamically applied loads.236,237,247–250 The inertial effects of bones were included in
these joint models; however, soft and hard tissue viscoelasticity was neglected in all cases
as the ligaments were represented by simple elastic springs and the bones were modeled as
rigid bodies. The approach used by Moeinzadeh and Engin et al.247–249 in the development
of a two-dimensional, sagittal plane knee joint model is representative of the other model-
ing efforts in this group. Nonlinear elastic spring ligaments were used to connect the rigid
bones. The model was used to predict ligament and joint contact forces with the applica-
tion of dynamic loads to the tibia.

Sensitivity analyses have been performed to assess the dependence of discrete ele-
ment models on different parameters. Wismans et al.233 studied the effects of changing lig-
ament stiffness, initial strain, insertion site locations, and ligament sectioning on the
anterior-posterior laxity of the knee. Changes in initial ligament strain had larger effects
than the insertion site locations or ligament stiffness. Ligament cutting simulations
showed the cruciate ligaments to have the greatest influence on anterior-posterior laxity. A
sensitivity analysis performed by Beynnon et al.235 on a two-dimensional knee model
showed a greater sensitivity to insertion site location and articular surface geometry than
ligament stiffness and initial strain.

In addition to the simulation of normal joint kinematics, models have also been utilized
to study joint pathologies and to examine the effects of various surgical proce-
dures.232–234,238,244,241 Wismans et al.233 and Crowninshield et al.234  simulated the effects of
ligament sectioning by removing discrete elements from their knee models. Gibson et al.232

used the model of Andriacchi et al.231 to simulate the surgical effects of using Müller’s ante-
rolateral femorotibial ligament (ALFTL) graft251 as an ACL substitute or as an adjunct to an
ACL reconstruction for an ACL-deficient knee. Additional spring elements were added to
represent the surgically constructed ALFTL graft. Essinger et al.238  and Garg and Walker244

developed models to simulate the effects of total knee replacement.
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One-dimensional ligaments have been represented in models of other joints as well.
Gilbertson et al.252 recently published a review of FE models of the spine. Many of these
models have featured a detailed three-dimensional representation of the vertebral bodies
and discs, including anisotropy253,254  and fluid effects211,255 for the annular fibers and
nucleus. Ligaments have been modeled only as discrete spring elements.256–258

B. Two-Dimensional Representation of Ligaments

Models featuring two-dimensional representations of ligaments are able to predict quanti-
ties such as soft tissue stress, which is not possible with a one-dimensional representation.
Two-dimensional representations offer many of the advantages of three-dimensional repre-
sentations, yet they are computationally more simple. A two-dimensional, plane stress FE
model of the rabbit MCL in the midcoronal plane was developed by Matyas et al.43 using
experimentally determined geometry. Linearly elastic, isotropic, homogeneous material
properties were used for the MCL. The MCL was rigidly attached to the femur and tibia at
the insertion sites and frictionless contact was enforced between the MCL and bones at
contact areas other than the insertion sites. The tibia was displaced to induce a 2% tensile
strain. The model predicted that the highest levels of tensile stress occurred in the tissue
midsubstance, whereas high levels of hydrostatic compressive stress were found near the
insertion sites. The areas of high compressive stress correlated with regions of rounded,
fibrocartilagenous cells rather than the elongated cells of ligament midsubstance. This
model featured geometry and boundary conditions that were developed earlier by Simbeya
et al.259-261 The model of Simbeya261 introduced anisotropy by modeling the two-dimen-
sional ligament as a composite of tension only cable elements embedded within isotropic
quadrilateral elements. The model was also used to simulate tensile tests of the rabbit
femur-MCL-tibia complex. Significant compressive and shear stresses were predicted in
the ligament near the femoral and tibial insertions, respectively. Giori et al.44 created a two-
dimensional FE model to study the stresses that developed as tendons wrapped around
bones. This model also predicted hydrostatic compressive stresses near the bony contact
areas that corresponded with areas of fibrocartilagenous tissue. 

The preceding group of models featuring a two-dimensional representation of liga-
ments illustrates some of the insufficiencies of discrete element models. Although discrete
elements are only able to support tensile loads, each of the two-dimensional models pre-
dicted that regions of tissue were also subjected to compressive and shear loading. The
ability to correlate microstructural differences in tissue type with differences in the
mechanical environment has many implications in terms of the ability to understand
healthy and pathological soft tissues.

C. Three-Dimensional Representation of Ligaments

To accurately model ligament stresses and interactions with surrounding soft tissues
and bone, it is necessary to use a three-dimensional continuum representation for their
structure. Although one-dimensional representations can be used to predict ligament
forces, they are unable to predict stress distributions throughout the ligament. One-dimen-
sional representations may be used to predict joint kinematics, but load transfer via contact
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with other soft or hard tissue structures will not be represented correctly. In addition, joint
models featuring one-dimensional ligaments do not provide unique solutions for ligament
load-sharing. Any number of one-dimensional elements, with different insertion site loca-
tions on the bones, can produce a model with similar joint stiffness characteristics. Two-
dimensional representations of ligaments are also insufficient for describing and predict-
ing the complex three-dimensional behavior of ligaments. Despite the inaccuracies
induced by simplifying ligaments to one and two dimensions, few investigators have uti-
lized three-dimensional representations for ligaments when modeling joint kinematics due
to the difficulties associated with their formulation and additional complexity in represent-
ing the constitutive behavior of ligaments. The few efforts at representing ligaments in
three dimensions that have been reported in the literature have ranged from three-dimen-
sional groupings of discrete elements to continuum models featuring either isotropic or
transversely isotropic representations for ligament. Each approach will be discussed in the
following section. 

1. Discrete Element Network

Martelli et al.262 created detailed models of the ACL consisting of a large network of vis-
coelastic discrete elements. Ten “fibers” were used to describe the curved surface geome-
try between the femoral and tibial insertions of the ACL. Twenty equidistant “knots” were
defined on each fiber and each knot was connected to the adjacent knots on the same fiber
through a linear spring in series with a linear dashpot and also through an angular damper.
Knots on adjacent fibers were connected by linear dashpots. The model was used to predict
fiber strain during passive flexion of the knee. Although this three-dimensional network of
discrete elements may offer some advantages over simpler one-dimensional representa-
tions in the ability to predict regional variations in tissue strain, the utility of this model is
somewhat limited. The particular number and configuration of discrete elements is not
based on any actual tissue characteristics. For example, the model would presumably
behave much differently if the discrete elements were arranged in parallel rather than in
series. Also, the stiffness and viscosity values for the individual discrete elements were
unknown, forcing the use of somewhat arbitrary values. A final important limitation of this
model is that once again tissue stresses cannot be predicted, indicating that a continuum
representation may be more appropriate.

2. Isotropic Material Symmetry

Pioletti et al.4,263 developed a three-dimensional FE model of the human ACL. Curves
describing the external geometry of the insertion sites were determined experimentally.
The actual geometry of the ligament substance was not measured. Rather, a solid was cre-
ated that joined the two curves describing the measured geometry of the insertion sites.
The bony insertions into the femur and tibia were both represented by rectangular blocks
containing distinct zones for the cortical and cancellous bones. An isotropic, elastic mate-
rial model was used to represent the ACL. The cortical and cancellous bone were both
modeled as isotropic, linear elastic materials. In situ stress was included in the model by
applying a 100-Newton force along the ligament axis at full extension. Three-dimensional
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kinematics were determined in a separate experimental study performed by Heegaard264

wherein knees were subjected to flexion between 0 and 150 degrees. A tibial drawer test
was simulated by passively flexing the knee model to 20 degrees and then applying 4 mm
of anterior tibial displacement.

The model predicted inhomogeneous stress fields in the ACL during flexion and ante-
rior drawer tests. Model results predicted that with increasing knee flexion, increases in
Von Mises stress and hydrostatic stress could be found near the anterior femoral insertion
of the ligament. Stresses around the tibial insertion were found to be only slightly
increased with increasing flexion angle. Internal rotation was also shown to cause an
increase in ligament stress relative to knees with no internal rotation. The tibial drawer
tests predicted a large increase in ligament stresses at all flexion angles. The general trends
observed in these results agreed with numerous previously published experimental stud-
ies.122,265–268

Although this model was able to predict experimentally observed trends, there were
several limitations to its accuracy. The ligament was represented by an isotropic material
model that can introduce large errors in fiber-reinforced structures such as ligaments. The
material properties were assumed to be homogeneous throughout the ligament, which
neglects the inhomogeneities that have been reported experimentally. In addition, the
geometry of the ligament was simplified. Rather than following the curved fibers of the
ACL in vivo, the unknown ligament geometry was “extruded” in a straight line between
the two known insertion sites. It was also assumed that the ACL consisted of a single bun-
dle although it has been shown that the ACL consists of two main bundles, the AMB and
the posteriorlateral bundle (PLB). This assumption may have neglected important interac-
tions between the AMB and PLB. Interactions between the ACL and PCL were also
neglected due to the lack of a PCL in the model.

3. Transversely Isotropic Material Symmetry

Wilson et al.269,270 developed a three-dimensional FE model of the rabbit femur-MCL-tibia
complex. Geometry was generated by sectioning the harvested knee of a skeletally mature
female rabbit. The ligament was modeled using isotropic poroelastic elements. Anisotropy
was introduced by the addition of discrete nonlinear spring elements to represent collagen
fibers. This provides a relatively simple means of extending continuum models to anisot-
ropy; however, the fiber-matrix coupling only allows load transfer to occur at discrete
nodal points.271 The bones were modeled as linearly elastic materials. Local spring stiff-
nesses were adjusted until the model could reproduce the force-displacement behavior of
MCL tensile tests. Areas of compressive stress were predicted in the MCL near the femoral
insertion and just proximal to the tibial insertion as the MCL wraps around the tibia. Model
validation was achieved by making local comparisons of predicted MCL strains with those
measured experimentally. In general, the correspondence between measured and predicted
MCL strains was good, with the poorest correspondence found near the femoral insertion.

A three-dimensional FE model of the human ACL has been published recently by
Hirokawa and Tsuruno.272 The ACL was represented by a hyperelastic material model that
featured an isotropic ground substance matrix (Mooney-Rivlin model) reinforced by non-
linear fibers.164  This constitutive model is similar to the model earlier developed by Weiss
et al.65,177  ACL geometry and kinematics were determined from a previous experimental
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study.273 The model was loaded by prescribing displacements of the insertion sites to sim-
ulate passive flexion and anterior tibial displacement. Results indicated there was an inho-
mogeneous distribution of stress in the ACL and that this distribution changed with flexion
angle. Application of an anterior tibial displacement caused stresses in the ACL to
increase. There were numerous characteristics that have limited the utility of this model.
Nearly all of the material parameters were unknown by the authors so they have estimated
values based on previous theoretical and experimental papers. The initial stress distribu-
tion in the ligament was also unknown and was generated by moving the ACL insertion
sites from a nonphysiological position into their position at full extension. This generated
an arbitrary initial stress state upon which all following measurements were based.

Our laboratory has developed three-dimensional FE models of the human MCL.3,47,274

These models have utilized the transversely isotropic, hyperelastic constitutive model of
Weiss et al.65,177 for representing the MCL and have been used to predict the stress-strain dis-
tribution in the human MCL as a function of flexion angle and valgus rotation.47,274 A sub-
ject-specific modeling approach was used to create the FE model based on inputs determined
from experimental testing. The overlying muscle and periarticular soft tissue, including the
patella and patellar tendon, was dissected from a fresh frozen cadaveric knee. CT scans were
taken at 1.0-mm intervals with the knee at zero degrees flexion. Prior to kinematic testing, an
ISL was mounted to the femur and tibia for measuring the six-degree-of-freedom motion of
the knee. To measure strain in the MCL, 15 black markers were applied to the MCL using
cyanoacrylate. Specially designed fixtures were used to apply 10 cycles of ±5 degrees of
varus-valgus rotation at fixed flexion angles (0, 45, and 90 degrees). Tibial axial rotation,
medial-lateral translation, and joint distraction were unconstrained while anterior-posterior
tibial displacement was constrained. The stretch ratio along the collagen fibers on the MCL
surface was determined using a three-dimensional video motion analysis system. After com-
pletion of the kinematic testing, the knee was positioned at full extension and the MCL was
sectioned from its attachments. Three-dimensional video analysis was used to measure the
stress-free position of the markers from which the in situ strain could be determined. This
information was used to apply an initial stretch to the MCL in the computational model.275

Custom punches were used to cut tensile test specimens parallel and transverse to the col-
lagen fiber direction of the MCL.64 Data from tensile tests of these specimens were collected
using a 25-lb. load cell and two-dimensional video strain measurement. The stress-strain
relationship was then determined for both the longitudinal and transverse samples. The
experimental data were fit to our transversely isotropic constitutive model.177

Surfaces of the femur and tibia were extracted from the CT data using the marching
cubes276 and decimation277 algorithms. The cross-sectional contours of the superficial MCL
were manually digitized from each CT slice. These contours were then laced together with
triangles to form a polygonal surface. The polygon surfaces of the femur, MCL, and tibia
were imported into a commercial FE preprocessing program where block-structured, hexa-
hedral FE meshes were constructed for each of the three structures (Fig. 12). 

The nonlinear, implicit FE code NIKE3D was used for all analyses. The MCL was
modeled using the previously described transversely isotropic, hyperelastic constitutive
model.177 The bones were represented as rigid, and their six-degree-of-freedom motion was
completely prescribed using the experimentally measured kinematic data from the last val-
gus loading cycle. Contact between the MCL and tibia and the MCL and femur was enforced
using the penalty method. The experimentally measured initial stretch was applied to the
MCL with the bones held fixed. The joint motion measured by the ISL during experiments
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was then applied to the tibia with the femur held fixed. NIKE3D was allowed to iterate to
convergence at all steps using a quasi-Newton (BFGS) solution method. 

The ability of a three-dimensional FE model to predict inhomogeneous stress-and-strain
distributions throughout an entire ligament is demonstrated by this model. The predicted
MCL stress-and-strain distribution may be used to indicate joint configurations and loading
conditions where the ligament is vulnerable to injury. The model results showed that at zero
degrees flexion the in situ stress and strain were highest in the posterior fibers of the MCL
(Fig. 13). With increasing flexion angles, the load in the posterior fibers decreased, whereas
the load in the anterior fibers increased. The application of 5 degrees of valgus rotation
increased the ligament stresses at all flexion angles (Fig. 14). An experimental study by Hull
et al.278 reported similar strain values for the anterior fibers. The experimentally measured
MCL strains with five degrees of applied valgus rotation were used to validate the model

FIGURE12. FE mesh of the femur-MCL-tibia complex. The bones were represented as
rigid and the MCL was modeled as a transversely isotropic, hyperelastic material. Experi-
mentally measured kinematics were used to drive the model.
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results (Fig. 15). In general, a good correspondence was found between the experimental and
computational results. The correspondence was best in the ligament midsubstance and wors-
ened toward the ligament insertions to bone. These results highlight the need for improve-
ment in the algorithms used for attaching ligaments to bones in computational joint models.
A gradual change in material properties at insertion sites to more closely simulate in vivo

behavior would likely improve future models. Other improvements in modeling accuracy
could be achieved by including inhomogeneities in MCL material properties that occur

FIGURE13. Predicted Von Mises stress in the human MCL as a function of passive knee
flexion. (A) zero degrees; (B) 45 degrees; (C) 90 degrees.

FIGURE14. Predicted Von Mises stress in the human MCL as a function of passive knee
flexion and 5 degrees applied valgus rotation. (A) zero degrees; (B) 45 degrees; (C) 90
degrees.
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throughout the ligament midsubstance. Additional limitations of this model include the
assumption that the superficial MCL does not significantly interact with the medial meniscus
or the deep fibers of the MCL and that a viscoelastic representation for the MCL is not nec-
essary for the low rate loading that was simulated. 

Similar methods have been used recently to generate a FE model of the human fore-
arm featuring the radius, ulna, and a three-dimensional representation of the interosseous
ligament (IOL).279 This was a subject-specific model with geometry, kinematics, and ini-
tial IOL strain based on experimental inputs. IOL insertion site kinematics were pre-
scribed for the FE model based on experimentally measured values during forearm
compression with the arm in pronation, supination, and neutral rotation. The IOL strains
predicted by the FE model were nonuniform across the surface of the IOL and were high-
est in neutral rotation and lowest in pronation. The magnitude and relative distribution of
IOL strains followed the general trends that were observed experimentally. 

VI. CONCLUSIONS

Ligamentous injuries are common and often lead to significant joint degeneration and
loss of function. Experimental studies of ligaments have yielded insight into their func-
tion and mechanisms of injury; however, many aspects of their behavior are still
unknown. Computational models of ligaments offer the potential to provide information
regarding ligament mechanics that would be difficult or impossible to measure experi-
mentally. The complex material properties of ligaments make the accurate modeling of
their material behavior a challenge. 

In this articles, we have provided a critical review of the constitutive models that have
been developed to represent ligaments and tendons. These models have developed from
rather simplistic descriptors of one-dimensional behavior to models capable of describing
and predicting three-dimensional anisotropic behavior. The simplifying assumptions of
each modeling approach have been discussed as well as their relative strengths and weak-

FIGURE15. Comparison of experimental and FE MCL strains with 5 degrees of applied
valgus rotation. Ligament buckling prevented experimental measurements in the proximal
region at 45 and 90 degrees.
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nesses. The application of these constitutive relationships in the context of joint modeling
has also been reviewed. 

The ultimate goal of these modeling efforts is to improve the clinical diagnosis and
treatment of ligamentous injuries. The models may also identify means by which to pre-
vent injuries, such as through the use of protective equipment in the case of sports-related
injuries. Despite the significant advances in recent years in both the complexity and accu-
racy of computational models of ligaments, current models are still incapable of com-
pletely describing and predicting ligamentous behavior. Improvement in future models
will be achieved through research in a number of different areas. Experimental methods
need to be improved to allow inhomogeneities in material properties and in situ strain to
be more accurately quantified. This need is especially urgent for accurate modeling of the
insertion sites. More data are also needed to quantify the multiaxial material properties of
ligaments. Better material models will allow ligament elastic and viscoelastic behavior to
be more accurately represented. These models need to be capable of representing healing
and diseased ligaments as well as healthy tissue. Improvements in computational algo-
rithms and computer hardware also will allow large-scale problems to be analyzed more
quickly. With advances in these fundamental areas, accurate subject-specific models for
entire joints will eventually be feasible. 
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