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ABSTRACT

In this paper we present the results from a series of focus groups on
the visualization of uncertainty in Equation-Of-State (EOS) mod-
els. The initial goal was to identify the most effective ways to
present EOS uncertainty to analysts, code developers, and mate-
rial modelers. Four prototype visualizations were developed to pre-
sented EOS surfaces in a three-dimensional, thermodynamic space.
Focus group participants, primarily from Sandia National Labora-
tories, evaluated particular features of the various techniques for
different use cases and discussed their individual workflow pro-
cesses, experiences with other visualization tools, and the impact
of uncertainty to their work. Related to our prototypes, we found
the 3D presentations to be helpful for seeing a large amount of in-
formation at once and for a big-picture view; however, participants
also desired relatively simple, two-dimensional graphics for better
quantitative understanding, and because these plots are part of the
existing visual language for material models. In addition to feed-
back on the prototypes, several themes and issues emerged that are
as compelling as the original goal and will eventually serve as a
starting point for further development of visualization and analysis
tools. In particular, a distributed workflow centered around material
models was identified. Material model stakeholders contribute and
extract information at different points in this workflow depending
on their role, but encounter various institutional and technical bar-
riers which restrict the flow of information. An effective software
tool for this community must be cognizant of this workflow and al-
leviate the bottlenecks and barriers within it. Uncertainty in EOS
models is defined and interpreted differently at the various stages of
the workflow. In this context, uncertainty propagation is difficult to
reduce to the mathematical problem of estimating the uncertainty
of an output from uncertain inputs.

Index Terms: H.5.1 [Information Systems]: Multimedia
Information—Evaluation/methodology; J.2 [Computer Applica-
tions]: Physical Sciences and Engineering

1 INTRODUCTION

The research objective of the Material Model Uncertainty Visual-
ization (MMUV) project is to develop effective techniques for dis-
playing the uncertainty of material model data, with the eventual
goal of providing a software tool to users in the in materials mod-
eling community at Sandia National Laboratories. An example of
a recently developed capability for three-dimensional equation-of-
state surface visualization is shown in Fig. 1. This image was gen-
erated by Prism, a plugin that is distributed with ParaView [15].
The key convenience that Prism provides to users is that data from
simulations can be simultaneously displayed in both the physical
geometry space and the thermodynamic (EOS) space.

The initial thrust of the research in this paper was to address
how one should add uncertainty information to the display of an
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Figure 1: Pressure is shown as a function of density and temperature
for a fictitious material. All three dimensions are logarithmic. Loga-
rithmically distributed isotherms are shown as pink contours. Black
lines identify discontinuous phase boundaries. Regions of different
phases are labeled, including mixed regions (“G+L” for mixed gas and
liquid, “G+S” for mixed gas and solid.)

EOS surface, such as in Fig. 1. Narrowly defined, this question
would not be too difficult to answer. As we describe in this arti-
cle, however, the focus group approach revealed that to address this
particular community’s needs, just presenting the uncertainty infor-
mation would not be sufficient. The key challenges derive from
the technical complexity of material modeling, and the related or-
ganizational complexity and diversity of roles across the material
model stakeholder community. In this context, uncertainty quan-
tification is not (just) a mathematical problem in which probability
distributions of uncertain inputs are propagated through a model
to compute output probability distributions. Instead, it is the com-
munication and integration of various technical uncertainties about
material behavior from material science theoreticians and experi-
mentalists, through software developers and analysts, to decision
makers. In this sequence, the material uncertainties are convolved
with uncertainties from many other sources; the material model de-
velopment, software development, numerical simulations, and de-
cision may span decades; and rarely have all the people involved
communicated with each other directly.

In the next subsection, the nature of material models is described,
with specific emphasis on EOS models, their associated uncertain-
ties, broadly classified by their sources, and their role in engineer-
ing simulations. Following subsections describe the focus group
methodology and our process in particular.



1.1 Material Modeling
A material model describes the behavior of a specific material or
class of materials. A material model is often comprised of a num-
ber of submodels. The different submodels may describe differ-
ent physical or chemical phenomena, for example equation-of-state
models describe equilibrium thermodynamics, while solid mechan-
ics models describe the relationship between stress and deforma-
tion. A solid mechanics model may be used in concert with other
submodels, e.g., for the yield strength, fracture, or damage. Sub-
models may cover different regimes; an EOS model for nitrogen at
lower temperatures might not include chemical reactions or ioniza-
tion, but a high temperature model might not include liquid or solid
phases. Material models range from the relatively simple to the
highly complex, and the development of each submodel requires
specialized expertise. Each model is based on theories and assump-
tions, but experimental data is usually required to determine or cal-
ibrate model parameters for a specific material, or for a particular
regime.

In this work our interest is in EOS and solid mechanics mate-
rial models. EOS models describe relationships between thermo-
dynamic variables such as pressure, density, temperature, internal
energy, and the speed of sound in a material. Solid mechanics mod-
els describe relationship between the stress state and the strain (or
deformation) of a material in the solid state. In this paper we focus
on EOS models because we have existing techniques for visualiz-
ing EOS surfaces, e.g., Fig. 1. Solid mechanics models are more
complicated because stress and strain are 3× 3 tensor quantities,
and because solid mechanical behavior is often dependent on the
deformation history of the material. Visualizing solid mechanics
models, or at least the quantities of greatest interest to analysts, will
be the subject of future work.

Material model domain complexity makes the development of
useful and usable uncertainty visualizations quite challenging. Un-
certainty is an abstract concept, even when the domain of inter-
est and its associated uncertainties are relatively uncomplicated
and/or well-studied. Material science is complicated and significant
knowledge gaps and aleatory uncertainties exist for most materials;
yet all technology development requires at least minimal character-
ization of material behavior and properties.

1.1.1 Equation-of-State Models and Sources of Uncertainty
An equation of state describes relationships between thermody-
namic variables for a given material. Given any two variables, all
other variables can be computed through the EOS under the as-
sumption of thermodynamic equilibrium. The theory of thermo-
dynamics provides some of these relationships [5, 13], such as the
Maxwell relations. EOS models can cover a very wide range of
conditions, and different physical phenomena dominate material
behavior in different regimes [7]. The relevant physics for a par-
ticular regime provide additional equations and relationships. At
this level of description, uncertainties arising from the assumptions
or approximations in the theory, as reflected in the equations, are
called model form uncertainties.

The various thermodynamics theories often result in models that
have parameters that must be provided to fully specify the EOS.
Some parameters may be independent of the specific material, but
in many cases, the particular parameter values distinguish the model
for one material from models for other materials. When a theory
does not provide the parameter values, they must be determined by
experimental measurements or by more sophisticated physics theo-
ries or models. These experiments and more sophisticated models
have their own sources of error, which appear in the material model
as uncertainty in the specific values of the model parameters, or
parameter uncertainty.

Sometimes the boundaries between regimes are sharp, such as
the phase transition between ice and water, but in other cases there

is a gradual transition, for example between liquid and gas phases
above the critical point. Again, see Fig. 1 for an illustration. For
a multiphase material model, EOS models for different regimes
are blended or combined to describe the behavior across a number
of regimes. Materials science does provide some theory to deter-
mine where discontinuous phase transitions occur, and constraints
on thermodynamic variables across the phase transitions; however,
for various reasons EOS models may not locate these transitions
accurately. Depending on the particular material model, the uncer-
tainty in the location of phase transitions may be classified as model
form or parameter uncertainty, but in either case it can have a large
effect on the accuracy of the material model.

For the work considered here, material models are input data
for engineering simulation codes; the material model is not a re-
sult of the engineering simulation. In these codes, EOS models
are often stored in tabular form, e.g., pressure values are stored for
a number of discrete density-temperature points. For an arbitrary
density and temperature, the pressure is interpolated from nearby
points in the table. Over the range of densities and temperatures,
the pressure can be shown as a surface. Most tabular EOS mod-
els contain several thermodynamic variables; the most common are
density, temperature, internal energy, and pressure. This format for
representing the EOS introduces interpolation error, which may be
reduced by sampling the underlying material model at more closely
spaced points, but cannot be eliminated in practice. A second po-
tential problem is that while the consistency between the different
variables can be maintained at the points in the table, consistency
is difficult to enforce for interpolated values [13, 6]. Finally, the
most common tabular format, “SESAME” [11], uses a rectangular
grid of density and temperature values, which was originally driven
by limited choices for data structures; tables often provide data out-
side of the regimes for which a model has been developed and tested
simply because of the constraints of the SESAME format. While
the uncertainties associated with the tabular format would seem to
be easy to address, they remain a source of significant concern for
practitioners.

The results of engineering simulations depend on the EOS mod-
els used, but the sensitivity of particular responses of interest (ex-
tracted from the simulation results) to these models varies widely.
One reason is that the response can be chosen from an essentially
infinite number of possibilities; the analyst may be interested in a
response that depends very strongly on a material model, or one
that is practically insensitive to the material model. If the response
is insensitive to a material model, then the uncertainties in that ma-
terial model will be irrelevant. Assuming the response does depend
on the material model, a second factor is the thermodynamic con-
ditions the material experiences during the simulation; a material
model may have regions of large uncertainty, but the material in the
simulation might not enter those regions.

The uncertainty originating from the material models is con-
volved with uncertainties from other sources during the simulation.
For example, other simulation inputs will include the geometry of
the device or control volume, detailed specification of the boundary
conditions and the initial conditions, and various numerical algo-
rithm control parameters, and all of these have their own model
form and parameter uncertainties. During the simulation, these un-
certainties interact, and the uncertainty in the response of interest
is a function of the individual uncertainties and their generally non-
linear interactions.

1.1.2 The Mie-Grüneisen Equation-of-State Model

In this work we have used a Mie-Grüneisen (MG) model for alu-
minum to provide test data for prototype visualizations. The MG
EOS describes a single phase, and has a number of parameters that
engineering codes allow the user to specify. The model is defined



by

P(ρ,E) = PR(ρ)+Γ0ρ0(E −ER(ρ)) (1)
E(ρ,T ) = ER(ρ)+CV (T −TR(ρ)) (2)

where ρ is the density, P is the pressure, E is the internal energy per
unit mass, T is the temperature, Γ0 is the Grüneisen parameter, ρ0
is the reference density, and CV is the heat capacity. The last three
are material-specific constants. The MG model relates the pressure
and energy to a reference Hugoniot, a special curve comprised of
the locus of shock states for a given initial state; the subscript R
denotes the reference Hugoniot. For many metals in the solid phase,
a linear Hugoniot relation expressed in the shock velocity, Us, and
the particle velocity, up provides an excellent fit to experimental
data:

Us =Cs +S1up (3)

where Cs is the speed of sound at reference conditions and S1 is the
slope of the linear relationship (both material-specific constants.)
The Rankine-Hugoniot equations relate the states on each side of a
shock wave, and can be used to derive

PR(ρ) = P0 +ρ0Usup (4)
ER(ρ) = E0 +(PR(ρ)+P0)µ/2ρ0 (5)

TR(ρ) = eΓ0µ [T0 +C−1
V

∫
µ

0
e−Γ0µ

µ
2Us

dUs

dµ
dµ], (6)

where µ = 1−ρ0/ρ and P0, E0, and T0 define the initial state.
As we have noted, uncertainties are abundant throughout the ma-

terials models workflow. For clarification, some of the different
types of uncertainties are now identified in the MG EOS model. As
an example of model form uncertainty, many materials are not are
well-described by the linear Us−up relationship, and no calibration
of the parameters of the MG model will be able to compensate for
the error or uncertainty introduced by the linear relationship over
a significant range of densities. Parameter uncertainties are associ-
ated with the material-specific model parameters Γ0, Cv, ρ0, Cs, S1,
P0, E0, and T0. For this single-phase model, the range of validity is
not provided.

1.2 Research Method
A focus group is a structured group interview, facilitated by a mod-
erator, in which participants explore an issue or set of issues of re-
search importance. Because so many disciplines use focus groups,
approaches to designing, deploying, and analyzing focus groups
vary tremendously. However, all focus groups begin with the same
basic principle: that exchanges among participants facilitate the
expression of ideas, knowledge, behaviors, and opinions that may
be invisible to individualized methods (such as a questionnaire or
a one-on-one interview). Groups enable researchers to access a
broader range of skills and experiences than a single respondent;
listening to others express ideas and opinions can spur participants
to remember and share information that might not have emerged
in a one-on-one setting. Not surprisingly, focus groups are an ex-
cellent way of eliciting the kinds of information that people natu-
rally express in group settings; or for documenting how knowledge
emerges in the context of group interactions.

Focus groups play an important role in computer science re-
search and software engineering, in ways that are germane to the
goals of the MMUV project. Studies of software engineering pro-
cesses have used focus groups to gather data about workflow pat-
terns in engineering teams [9]. User- and interaction-oriented de-
sign paradigms suggest the use of focus groups to gather qualitative
data on user expectations and system requirements, and to evaluate
prototype interfaces [17, 4, 10]. For technology developers, focus
groups also afford the opportunity to demonstrate sincere interest in
user concerns. In that sense, focus groups can enhance relationships

between the user community and the technology developers by es-
tablishing a foundation for ongoing communication and exchange
of information. Over time, the user community perceives itself as
a dedicated stakeholder in the work of the technology developers,
instead of recipients of a product tossed over the proverbial fence.

The focus group approach does have significant drawbacks:
while participants often generate excellent contextual insights, fo-
cus group data is less useful for analyzing long-term trends or gen-
eralizing about large populations. Moreover, focus groups are prone
to groupthink bias and social dominance bias (i.e., when one of
the group members exerts undue influence on the interactions or
content of the group, either consciously or unconsciously [12]. A
structured script, pilot runs, careful moderation, and a sound qual-
itative sampling strategy can enhance the quality and dependabil-
ity of focus group findings. Even so, software developers should
treat focus groups as a starting point for technology design and
evaluation, if only because because focus groups only capture in-
formation on what users “say they do – not how they actually do
it” [14]. Other approaches, including observation, user participa-
tion in design teams, multiple prototyping and iterative re-designs,
are necessary to develop technologies that people perceive as truly
adoptable.

1.3 Focus Group Process

As noted above, one of the major goals of the MMUV project was
the design and development of visualizations that would be usable
and useful to experts who generate, interact with, or rely on material
models in their work – what we have described above as the “stake-
holder community.” The domain complexity of material modeling
and the organizational complexity of the stakeholder community
are precisely what makes material modeling an interesting compu-
tational science, information visualization, and technology design
problem; but they also make it difficult to understand what “usabil-
ity” and “utility” mean in the many contexts of work where mate-
rial model visualization might be useful. Accordingly, we decided
to use focus groups as a way of gathering expert knowledge about
material modeling challenges at Sandia National Laboratories, and
as a way of opening a dialogue with the user community so that
we could better understand the current state of practice. For spe-
cific feedback on representing uncertainty in EOS models, four vi-
sualization prototypes were developed by the MMUV project. In
May, June, and July of 2011, we conducted four focus groups with
participants representing the various material modeling stakeholder
communities described above. Participants were technical staff at,
or in some way affiliated with, Sandia.

The diversity of the material modeling stakeholder community
made composition of the focus groups a bit challenging, since mem-
bers of the stakeholder subcommunities tend not to interact with
each other on a regular basis (more on this issue below). The suc-
cess of a focus group depends on the composition of the participant
pool; people need to have enough common ground that they can
communicate productively about the topic of discussion, but diver-
sity of perspective can spark insights that might not emerge in a ho-
mogeneous group. All four focus groups included representatives
of each of the three primary subcommunities – material modelers,
code developers, and analysts. To recruit participants, we drew on
contacts from our own Sandia networks. We scheduled the focus
groups and invited participants but offered no additional incentives
(neither snacks nor money), and all participation was completely
voluntary.

In moderating the groups, we decided to use a team facilitation
approach, in which a technical leader and a process leader managed
the group logistics and flow of conversation. To ensure a smooth
process, we developed a script with timing notations to ensure ade-
quate and balanced coverage of the topics of interest. In this script,
we split the focus groups into four phases of discussion: an intro-



duction, a general discussion about material modeling and uncer-
tainty; presentation and discussion of the prototypes; and a wrap-up
discussion. Rather than ask participants to dive right into assessing
the MMUV prototypes, we decided to prime the discussion by ask-
ing the participants to talk about the role of material modeling in
their work. In doing so, participants exchanged observations about
the importance of material models for engineering analyses; identi-
fied key sources of material model uncertainties; discussed the im-
pact of material uncertainty on their work; and described strategies
for representing and managing uncertainty. These exchanges set the
stage for the second half of the focus group, during which the visu-
alization prototype developers took turns presenting and discussing
their prototype designs with the group participants. As expected,
putting prototype designs in front of the experts generated intense
discussion about the problem of understanding and managing un-
certainty in material models.

In the following sections, we describe the focus groups and sum-
marize key themes. The prototypes are described in Section 3. The
participants provided detailed comments on these prototypes and
concrete suggestions for enhancing visualization utility and interac-
tivity, as discussed in Section 4. However, the participants’ discus-
sions also illuminated the complicated organizational and technical
relationships through which information about material properties
and performance is exchanged and incorporated into Sandia’s engi-
neering research and development. Although there was an aware-
ness that the stakeholder community was only loosely connected, a
much clearer picture emerged during our focus groups, and since it
provides the context for all of the participants’ comments, we begin
with an overview of these relationships in the next section.

2 THE DISTRIBUTED WORKFLOW OF MATERIAL MODELING

The focus group sessions revealed a great deal about the state of
practice in material modeling and the use of material models in
Sandia’s research and engineering domains. Material model de-
velopment and use exist in a distributed information workflow: a
particular material model is developed by material modelers, in-
corporated into a continuum engineering simulation code by code
developers, and used by analysts when they run simulations for spe-
cific applications. Ultimately, a decision maker chooses actions that
are informed by those simulations. Each of these different groups is
a stakeholder in the material model, but their knowledge about the
material behavior and their use of the material model vary widely.
Naturally, the meaning of material model “uncertainty” also varies
widely across these stakeholder roles.

2.1 Material Modelers
As described in Section 1, material model development begins with
theories that may be incomplete, contain acknowledged gaps in ap-
plicability, or have other known deficiencies. A typical model has
a number of parameters that must be determined for each particular
material; these parameters are calibrated to match available experi-
mental data, or lacking that, to data from simulations of more fun-
damental models such as density functional theory (DFT) or molec-
ular dynamics (MD) simulations. These parameters might be ex-
posed to end users of the model, or might be internal to the model
and relevant only to the material model developer. Finally, while a
material model may have a functional interface that accepts input
values and returns output values, in many cases the model is incor-
porated into the engineering code in precomputed, tabular form and
output values are interpolated. For a material modeler, each of these
steps is a source of a different kind of error that contributes to the
overall uncertainty of the model.

For a given material model, material modelers struggle to inte-
grate the uncertainties from these different sources into a single un-
certainty field for a given thermodynamic variable. Some material
modelers in our focus groups were hesitant to even attempt to put

a number on the sum uncertainty for any model, because they saw
no constructive value in, essentially, guessing. This emphasizes the
technical complexity of material modeling, and indicates that rigor-
ous quantification of material model uncertainty is at an early stage.
With that said, serious efforts are underway for quantifying model
form uncertainty, parameter uncertainty, uncertainty in experimen-
tal data, and errors in discretization, and providing this information
in a form that is accessible to the engineering simulation codes.

Material modelers implement their models in software libraries.
A typical library life cycle begins with a minimal set of models for a
particular engineering code, but over time more models are added.
At some point the library is refactored so that it can be used in
another code, which may have different algorithms or be intended
for a different class of engineering applications. Material model li-
braries are reused in different engineering codes because they are
expensive to develop and test. Most libraries have many contrib-
utors over a number of years or decades, sometimes from several
labs and companies. The level of documentation on how a model
was developed can vary significantly across models. Historically,
uncertainty information has not been included in material mode li-
braries beyond a few very general text comments.

2.2 Code Developers

The code developers in our focus groups are programmers, but their
educational degrees were PhDs in various engineering disciplines,
physics, or applied math. Development and maintenance of engi-
neering simulation codes require a solid foundation in numerical
discretization techniques as well as domain-specific expertise. Re-
garding material modeling, the essential concern of code developers
is the interaction between the material models and the discretiza-
tion algorithms. The discretization algorithms assume the EOS
possesses certain properties, such as convexity, or a positive speed
of sound. Likewise, the EOS library often assumes it will only
be given valid input data, e.g., density and temperature points for
which the EOS has been validated. In practice both sets of assump-
tions are sometimes violated, and occasionally the code crashes and
does not produce a solution. In engineering codes, developers ad-
dress these cases with a number of techniques that vary widely in
their theoretical credibility.

Ideally, code developers could treat a material model library as
a black box and focus on the interface between the models and dis-
cretization techniques. Unfortunately, this separation of concerns
is rarely possible for a number of reasons. The primary reason is
that it is difficult to completely separate the material model imple-
mentation from the host code (the code that calls the model from
the library.) Complicated material behavior, described by a number
of different submodels, often requires specialized treatment by the
algorithms in the engineering code. A particularly difficult exam-
ple is the treatment of mixed-material elements, or computational
cells that contain more than one material. To properly treat such
an element, the engineering code will need to know what materials
are included, and the phases of each material; different algorithms
apply for each combination of phases. The relative positions of the
materials are also important when at least one material is in the solid
phase, requiring complicated interface reconstruction algorithms.

Because some models in a library might have been intended for a
different engineering code, or with a different application in mind,
code developers spend a significant amount of time updating mate-
rial models to be consistent with other models and the host code.
Consequently, the maintenance of material model libraries is often
shared between code developers and material modelers. Code de-
velopers work with material modelers, but rarely do they know the
authors of all the material models included in the libraries that their
engineering code uses.



2.3 Analysts
Analysts are quite interested in how the uncertainty of the material
model affects their simulation results, and less concerned about the
material model uncertainty itself. It is analysts that view material
model uncertainty as just one type of contribution among many to
the overall uncertainty in their simulations. As a group, the an-
alysts that participated in our focus groups had the most widely
varying backgrounds. Some had been code developers or worked
on specific aspects of material modeling, while others had only an
introductory understanding of material modeling. Analysts have
minimal access to information about material model uncertainties;
if material modelers have this information, it is rarely in an easily
accessible, published document, and analysts have minimal contact
with material modelers. Analysts are more likely to contact code
developers with their questions and concerns. A disturbing theme,
heard repeatedly, was that analysts have little guidance on choosing
among the EOS models available for the same material – they do
not have a way to obtain and compare the uncertainties from two
EOS models for the conditions that matter in their application.

2.4 Uncertainty Propagation Through the Workflow
Uncertainty quantification is most often presented as a mathemati-
cal problem, in which a number of uncertain inputs produce an un-
certain output. If probability distributions of the inputs are known,
and the output can be computed for specific values of the inputs,
the probability distribution of the output can be determined. In this
mathematical problem, the process that produces an output value
from a set of input values is arbitrary: the outputs can be determined
by controlled physical experiments, or observations for measured
inputs in uncontrolled experiments (e.g., weather), or produced by
a model or numerical simulation. The main impact of the process on
the mathematical problem is that in most cases, it limits the amount
of output values available; a model evaluation or controlled experi-
ment may be expensive or time consuming to perform, or may pro-
vide output values for only a small sampling of input values. As
a result of limited output data, estimates of output probabilities are
less accurate.

In this context, the uncertainty of simulation outputs on some
material model uncertainties can be examined. The uncertainty of
an input (e.g., a material model parameter) is described by a proba-
bility distribution, and a variety of techniques are available to prop-
agate a number of input uncertainties to the uncertainty of a sim-
ulation output. Nonintrusive methods rely on running a number
of simulations for different input values and examining the distri-
bution of the output quantity. Software for propagating uncertain
inputs through an engineering simulation code to determine output
uncertainties is available, such as DAKOTA [1]. Intrusive tech-
niques are also available but are very difficult to retrofit to existing
engineering codes. Considering uncertain material models, this ap-
proach is effective for examining parameter uncertainties and to a
lesser degree, the uncertainties that can be represented by discrete
inputs.

While this mathematical formulation of the uncertainty quantifi-
cation is necessary and useful, it does not capture all of the com-
plexity of the the material modeling distributed workflow. It is
daunting to consider how many parameters would be required to
describe the many different material model uncertainties individu-
ally, the level of effort required to accurately characterize the prob-
ability distribution of each, and the number of simulations required
to adequately sample the input hypercube. And yet, the effects of
model form uncertainty and interpolation error for tabular EOSs on
simulation results are not accessible in this approach. As noted ear-
lier, material modelers struggle to determine the total uncertainty
in a material model, and are only beginning to think about how to
express that uncertainty in a material model library; however, this
is the most pragmatic next step. Ultimately, code developers would

incorporate this uncertainty into discretization and solution algo-
rithms to provide output uncertainties directly to analysts, but this
a research area in a very early stage.

In the near future, the propagation of material model uncertain-
ties through the distributed workflow is more likely to be through
people, more qualitative than quantitative, and more interactive than
automated. Software tools for visualizing material model uncer-
tainty will aid communication between the various stakeholders, as
well as help each group with their specific tasks. This state of affairs
is simply a consequence of the technical complexity and diversity
of material science.

3 PROTOTYPES

To facilitate discussion within our focus groups, we developed four
visualization prototypes, each of which present uncertainty within
a material model in a unique way. Participants evaluated specific
features of each prototype and described scenarios in which differ-
ent elements could prove helpful. We present each of the prototypes
used in the focus groups, using the Mie-Grüneisen EOS model. Be-
cause it models just the solid phase, the surfaces in the prototypes
will not exhibit the discontinuities observed in the pressure surface
in Fig. 1.

As noted earlier, few, if any, material model libraries contain
EOS uncertainty data, and in fact, it is not clear how best to ex-
press such information so that engineering codes could use it. To
obtain data for our prototype visualizations, we have treated two pa-
rameters of the MG EOS as uncertain. From several sets of values
for these uncertain parameters, different realizations of the model
were generated. Each model realization was evaluated at a number
of density and temperature values to produce a pressure surface,
i.e., a pressure surface is the pressure as a function of density and
temperature, and a different surface was obtained for each pair of
uncertain parameter values. The two uncertain parameters are Cs
and S1 in the linear Hugoniot (Eq. 3), which were simultaneously
varied within about 1% of the nominal values for aluminum. The
differences in the surfaces produced are quite small, but are smooth
functions of density and temperature. From these surfaces, several
of the prototypes calculated the mean and standard deviation, also
as functions of density and temperature.

One could argue the merits of this approach to generating a test
dataset, but the key feature is that the uncertainty is a field variable,
not a constant value. Whether the standard deviation is the best
measure to represent uncertainty, or if the mean pressure surface is
a better reference than the nominal surface, are important questions
for stakeholders using the visualizations; for analysts interpreting
the visualizations it is critical to understanding what they are see-
ing. However, these issues do not affect the comparisons of the
visualization prototypes.

For many metals, the linear Hugoniot relationship describes ex-
perimental data very well, so the uncertainties in the parameters
are small. In most of the prototypes the uncertainty has been
rescaled or exaggerated to improve the display. (In a production
tool this rescaling would be controlled by the user.) There are
many other use cases (more complex models and surfaces, uncer-
tain phase boundaries, or just larger parameter uncertainties) that
might raise different utility issues for the visualization prototypes,
but the dataset generated represents a realistic situation.

Finally, recall that the goal of the MMUV prototypes is to visu-
alize the uncertainty in the material model itself, and not the uncer-
tainty in engineering simulation results. We expect that simulation
data (with or without uncertainty information) could be displayed
in addition to the material model uncertainty.

3.1 Point Cloud
The first prototype, shown in Fig. 2, implements a technique pre-
sented in [8] that represents uncertainty by a cloud of points. The



emphasis of this prototype is to show uncertainty in in direct rela-
tion to the surface. The distance between each point and the surface
is random, but within a range defined by the local uncertainty as-
sociated with a point on the surface. The algorithm creates a cloud
of points that extends further away from the surface in regions of
high uncertainty, and remains closer to the surface in regions of
lower uncertainty. Additionally, the transparency of each point can
be varied with the uncertainty, so points of higher uncertainty be-
come more transparent. This creates a visual effect that feeds the
expectation of the human visual system, where regions of low un-
certainty appear crisp and solid, and regions of higher uncertainty
appear hazy and indistinct. Finally, the points can be colored by
another scalar value, such as temperature or internal energy, and
thus simultaneously convey scalar data in addition to uncertainty
information.

Figure 2: View of the point cloud prototype. The mean pressure
surface is viewed nearly from the edge, and is colored in red for the
lowest uncertainty, and dark blue for the highest. The point cloud is
colored in the same way, but in addition, the points are opaque for
the lowest uncertainty and transparent for the highest.

3.2 Surface Animation
The second prototype is based on a technique described by [3] that
uses animated visual vibrations of the points defining a surface to
show uncertainty in the surface location. A fixed, semi-transparent
mean surface provides a reference. In the animation, another solid
surface sweeps through one standard deviation above and below the
mean surface, with the animation transition defined by the sinusoid
equation:

V =
csin(2π pt + π

2 )+1
2

+ f (7)

where V is the location of the vertex along the surface normal, c
is the amplitude of the oscillation, p is the period, f is the floor of
the oscillation, and t is time. The sinusoid defines a smooth tran-
sition between the floor and amplitude over time for each vertex in
the surface mesh. If the floor and amplitude for each vertex cor-
responds to the uncertainty at that point on the surface, then the
viewers eye will naturally be drawn to areas of high uncertainty
as the surface animates. Other oscillation functions could be used
that cause more rapid transitions between states, such as step and
sawtooth functions. Figure 3 shows three frames of the animation.

3.3 Bounding Statistics
The third prototype uses statistics similar to the traditional box-
plot [16] to bound the valid regions of the simulation. The mini-
mum, maximum, and mean surfaces are calculated point-wise (i.e.,
for each density-temperature point), as is the standard deviation
across all surfaces. The user controls what is displayed through

a graphical interface, which provides options to show each of the
original pressure surfaces and contextual surfaces such as the mean
+/- standard deviation. Data values can be colormapped onto the
mean surface and the user may choose which data values are dis-
played. Figure 4 shows a screenshot of the prototype. The mean
surface is shown colored by the pressure, and is flanked by the
minimum and maximum surfaces which are partially transparent
to reduce visual clutter. Two of the original surface realizations are
shown (pink and purple, mostly obscured) below the mean surface.
The main goal of this prototype is to show the range of possible
pressures (as a function of density and temperature), as well as in-
dicate where the data is most likely to reside.

Figure 4: Prototype using bounding statistics and a graphical user in-
terface to explore the dataset. The mean surface is shown along with
the minimum and maximum surfaces (with partially transparency)
and two surface realizations (in pink and purple). Through a series
of buttons, the user can control which surfaces to display.

3.4 View Dependent Opacity
The final prototype uses an approach similar to the Blinn lighting
model [2], in that the view angle is compared with the normal of the
surface at each individual point. Instead of using this to modulate
the lighting, it is used to modulate the opacity of the surface at each
point. In this prototype the technique is extended to display a col-
lection of surfaces, each rendered individually. For this prototype
the internal energy was used for the test data, rather than the pres-
sure, because the internal energy surfaces have a greater variation
in the surface normal than the pressure surfaces. For each density
(ρ) and temperature (T ) pair, the transparency σρ,T is computed as
the standard deviation of the internal energy across the surface real-
izations; in regions where the differences between the surfaces are
large, the transparency will be large. At each density-temperature
point, the transparency is evenly distributed to each surface. That
is, the transparency of each of the N surfaces is N ∗σρ,T , so that
when looking through all N surfaces the transparency at ρ , T , is
σρ,T . The last step of the algorithm is to apply the dependence of
the viewpoint to the transparency. If the vector from the viewpoint
to a point on the surface is vρ,T and the surface normal at that point
is nρ,T , then the transparency is multiplied by v ·n. When the view-
point is normal to the surface, the transparency of each surface is
unchanged, but as the viewpoint becomes more oblique, the trans-
parency is reduced. When the viewer is at an oblique angle, the



Figure 3: Three frames of the surface animation. The transparent surface represents the fixed, mean pressure surface and is visible in every
frame for reference. The opaque surface sweeps through a region defined by one standard deviation distance above and below the mean
surface. Here, we show the minimal, mean, and maximal position of the animated surface. Both surfaces are colored by standard deviation, with
the largest point of deflection away from the mean surface shown in red.

surface is essentially opaque, regardless of the underlying surface’s
transparency.

The motivation behind this approach can be understood by con-
sidering objects embedded within the collection of surfaces. When
the viewpoint is normal to the surfaces, the surfaces are transpar-
ent and objects inside (such as point glyphs representing simula-
tion data) are clearly visible. This allows the viewer to determine
where the object is positioned in depth because an object farther
from the viewer will be obscured by more partially transparent sur-
faces, while a closer object will be less obscured, see Fig. 5. When
the surfaces are viewed at oblique angles, or from the side, the sur-
faces become opaque. The embedded object’s position with respect
to the surfaces is apparent because the individual surfaces can be
more easily distinguished from this viewpoint, as shown in Fig. 6.
Of the different prototypes, this technique is the most complex and
the least mature, and significant effort would be required to develop
a production capability.

Figure 5: View-dependent opacity prototype, normal view. Pressure
surfaces are colored by uncertainty, with blue indicating low uncer-
tainty and red indicating high. Individual surface opacities are also
dependent on uncertainty. The background grid is provided so that
different levels of opacity can be distinguished. In this image, the
view direction is nearly aligned with the surface normals of the red
edges of the pressure surface realizations, and the surfaces are at
nearly maximum transparency. The spherical object is partially visi-
ble behind several of the surfaces.

Figure 6: View-dependent opacity prototype, edge view. Pressure
surfaces are colored by uncertainty, with blue indicating low uncer-
tainty and red indicating high. Individual surface opacities are also
dependent on uncertainty. Here the view direction is nearly orthogo-
nal to the surface normals of the pressure surfaces, and the surfaces
are essentially opaque. The location of the spherical object within
the collection of surfaces is easy to determine because the surfaces
are distinct from this viewpoint.

4 ROLES FOR MATERIAL MODEL UNCERTAINTY VISUAL-
IZATION

After reviewing and analyzing the feedback from the focus groups,
several themes emerged. In this section we begin with the themes
more closely tied to the prototype visualizations, then move to the
broader role visualization can play in addressing the needs of the
material model stakeholders.

4.1 The different prototypes were suited to different
uses

Each visualization prototype has different features. Participants
found that the features could be be positive or negative, depend-
ing on the use case. The point cloud prototype was effective at
showing how the uncertainty varied in different areas of the domain.
As intended, the points immediately conveyed a sense that the sur-
face was not known precisely. However, because points represented
the uncertainty of the material model, participants thought another
mechanism would be needed to show simulation data, which would,
most naturally, also be represented by points. A second concern,



particularly for material modelers, was that important correlations
were lost through the statistical processing of the EOS data – all
the individual surfaces were averaged to compute the mean surface,
and the point cloud was generated from the standard deviation with
respect to the average surface.

The bounding statistics prototype also applied statistical process-
ing, but maintained the original surfaces. While the emphasis of
the prototypes was on visualization techniques, participants vocally
supported the ability to display or hide the individual surfaces and
statistically generated surfaces. The bounding surface technique
worked well for this dataset, but participants were not sure how ef-
fective it would be for a larger number of surfaces or for multiphase
surfaces, which have more geometric complexity.

The surface animation prototype was developed after the others,
in response to participants’ desire to see individual surfaces and
variation within the set, but without overwhelming the viewer with
all the information. The view-dependent opacity prototype was less
intuitive to participants because initially, it wasn’t clear why the
opacity changed with the viewing angle. However, the representa-
tive point of simulation data allowed participants to grasp the value
of seeing the EOS surface, the associated uncertainty, and simula-
tion data at the same time – as the uncertainty increased the surfaces
became more transparent, and one would see simulation data more
clearly when it moved into an uncertain region, identifying a cause
for concern.

4.2 Surface data is not enough
The EOS surface, whether for pressure, energy or another thermo-
dynamic variable, provides an overview of the material behavior,
but the surface in and of itself provides just the context. Participants
expressed the need for various types of references to connect the
surface to their understanding of the material behavior. Axes and
contours labeled with numerical values would provide quantitative
references. Domain-specific landmarks, such as phase boundaries,
Hugoniots, isentropes and isotherms would provide a link back to
traditional two-dimensional plots (see below.) For analysts, simu-
lation results must be displayed on the surface to identify the re-
gion of interest; and the EOS uncertainty, while highly desired,
is only meaningful to analysts in relation to the simulation data.
Even when quantified uncertainty is not available, plotting the ex-
perimental data to which the model was calibrated would suggest
a region of higher confidence to an analyst. For material modelers,
simulation data is still informative, but curves with physical mean-
ing (Hugoniots, isentropes, etc.) are more important. A key insight
for visualization specialists is that making three-dimensional rep-
resentations usable, useful, and adoptable across the community is
likely to require careful interaction design.

4.3 Two-dimensional graphics remain the standard
The focus group participants were intrigued by the idea of hav-
ing three-dimensional, interactive visualizations to enhance their
understanding of material model dynamics. However, the partic-
ipants also indicated that two-dimensional plots of, e.g., curves in
the pressure-density plane are the existing lingua franca of material
model representation; these plots are regularly shown in textbooks
and the academic literature on the subject. The stakeholder com-
munity is already familiar with this visual form for material model
information, so this view leverages previously developed mental
models. Two-dimensional plots are relatively information impover-
ished, given the complexity and uncertainty that characterizes most
material models; but they are easy to generate, read, and share.
Three-dimensional, interactive visualizations can carry a great deal
more information, and participants valued the “big-picture” view of
the thermodynamic space. One participant remarked that he would
start with a three-dimensional view to get a qualitative feel for the
context, but wanted the ability to zoom in to a particular region

of interest and see traditional two-dimensional plots because they
were “more quantitative”. For this application, effective visualiza-
tion may depend more on the timely delivery of a key existing tech-
nique than discovering or developing a new technique.

4.4 Visualization to compare and select material mod-
els

As mentioned in the Introduction, material models are inputs to the
simulation code; that is, analysts specify the material models before
the simulations can be run. Analysts noted that selecting one ma-
terial model from several possible choices was hindered by a lack
of information about each model, and often sought out a colleague
or (if available) a material modeler for guidance. Minimally, one
would like to know the range of validity of each model. In ad-
dition, the intended application, any articles or documents on the
theory behind the model, and the experimental data used to cali-
brate the model would guide the user relative to their own appli-
cation. Analysts usually have some idea of the densities, tempera-
tures, and pressures a material is likely to experience in their appli-
cation. Comparative visualization of the different surfaces for those
conditions, particularly if uncertainty were displayed for each can-
didate model, would allow analysts to choose based on quantitative
information.

4.5 Visualization to analyze results
The most readily apparent role for visualization is to aid the anal-
ysis of the simulation results. According to the focus groups, there
are three primary use cases. The first is to “debug” a simulation that
has crashed. For some engineering codes, a majority of simulation
failures can be traced to the material model; sometimes the mate-
rial model is a poor model, sometimes the EOS is being sampled
outside (perhaps far outside) its range of validity, and sometimes
the material model catches an unrelated error committed far up-
stream. In all these cases, visualization of simulation data on the
EOS surface can provide insight and expose patterns in failures that
are difficult to identify on a case by case basis.

A second use case is to assess whether or not a simulation relies
on EOS information from a region of high uncertainty. The pro-
totypes display EOS models and their associated uncertainty; by
adding the time-dependent paths of simulation data, such as ele-
ment or cell values, or passive tracers used as diagnostics, an an-
alyst could judge whether the EOS uncertainty was important for
that particular simulation. For example, an analyst could conclude
that while regions of high uncertainty exist in the model, none of the
material in the simulation experienced conditions in those regions.
Alternatively, they might observe that a critical part experienced a
temperature near a phase transition, and the phase boundary is a
region of high uncertainty; in this case, more simulations might be
run to investigate the effect of crossing the phase boundary.

Finally, visualizing simulation data simultaneously with mate-
rial model data can provide insight into simulation results. If in
the previous example, the phase boundary was a region of low un-
certainty, the analyst might modify their design so their part came
closer to the phase transition to improve performance of the device.
Of course, these are hypothetical examples, but participants had
tried to answer similar questions about their own simulations and,
if answers were obtainable, they often required a lot of time and
effort. The material modelers who participated in the groups indi-
cated that more detailed visualizations could support better under-
standing of the sources and degree of uncertainty in various regions
of material behavior.

4.6 Visualization for Communication
Material modelers, code developers, and analysts all recognized
that communication about material models was a weak point in
their work. Analysts were concerned that they had little guidance in



choosing models for their simulations. Several code developers and
material modelers recalled frustration that they could not explain a
particular material model issue to an analyst in a way the analyst
could understand it; they could not describe a complex structure
in their own mental model to someone that did not have the same
mental model and domain-specific vocabulary. The visualization of
material models can alleviate these issues by providing a common
view for the different stakeholders. Visualization can also be used
as a training and learning tool, for more experienced practitioners
as well as those new to the field. Visualization enables analysts to
explain the reasoning and data behind their conclusions to sponsors
and decision makers. Finally, material model visualization can be
used to help researchers, managers and funding agencies identify
gaps in knowledge and prioritize resources to close those gaps.

4.7 Provenance
Our assumption has been that uncertainty is a mathematical object
that can be quantified, propagated, plotted, and visualized. But
a number of participants identified a clarity about a model’s ori-
gins and history, or provenance, as highly desirable. The lack of
provenance is a subjective uncertainty that cannot be quantified.
While quantified uncertainties for a particular model can, in prin-
ciple, be propagated across the entire distributed workflow, stake-
holders would invariably be more comfortable if the provenance of
the model were known. Provenance provides subjective confidence
not just in the model, but in the quantified uncertainty of the model.

5 CONCLUSION

The uncertainty of a material model can mean different things to
material modelers, analysts, and the code developers that incorpo-
rate the models into the engineering simulation codes that the ana-
lysts use. The focus group approach revealed a distributed informa-
tion workflow around the development and use of EOS models, and
that information bottlenecks in this workflow had organizational as
well as technical origins. Visualization prototypes anchored the dis-
cussions and better differentiated the perspectives of the different
stakeholders. There is a clear demand for a visualization capabil-
ity for EOS models and their uncertainties. This capability would
improve communication across the workflow, as well as provide an
analysis tool for material modelers and, if simulation data can be in-
corporated, for analysts and code developers. The complexity and
diversity of material modeling and the abstract nature of uncertainty
make the development of an effective tool challenging, but collabra-
tive interaction between stakeholders and software developers will
ensure the utility and usability of a such a tool.
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