
Level-Of-Detail Volume Rendering via 3D Textures

Manfred Weiler�, Rüdiger Westermann�

Chuck Hanseny, Kurt Zimmermany, Thomas Ertl�

�Visualization and Interactive Systems Group
University of Stuttgart

yScientific Computing and Imaging Institute
University of Utah

Figure 1: All images show 3D texture based volume rendering of the engine data set. On the left, the data set is displayed with full resolution.
In the middle, two different levels of detail are used with lower resolution in the back. This reduces texture memory consumption to 57%. On
the right, the adaptive representation using four levels of detail from front-to-back requires only 29% of the original texture memory. Here,
the data set was rendered with only 32% of the originally needed number of texture lookups.

Abstract

In this paper we present an adaptive approach to volume rendering
via 3D textures at arbitrary levels of detail. The algorithm has been
designed to enable interactive exploration of large-scale data sets
while providing user-adjustable resolution levels. A texture map
hierarchy is constructed in a way that minimizes the amount of tex-
ture memory with respect to the power-of-two restriction imposed
by OpenGL implementations. In addition, our hierarchical level-
of-detail representation guarantees consistent interpolation between
different resolution levels. Special attention has been paid to the fix-
ing of rendering artifacts that are introduced by non-corrected opac-
ities at level transitions. By adapting the sample slice distance with
regard to the desired level-of-detail, the number of texture lookups
is reduced significantly.

�Universität Stuttgart, IfI, Abt. VIS, Breitwiesen-
str. 20-22, 70565 Stuttgart, Germany; E-mail:
Manfred.Weiler@informatik.uni-stuttgart.de .

1 Introduction

Volume data sets most commonly occur in two fields: imaging and
computational science. 3D imaging devices continue to increase
the resolution of their sampled volumes with the current generation
approaching data volumes of 10243 samples. Similarly, computa-
tional science continues to increase the mesh resolutions for large
scale simulation thereby increasing the size of the data to be visual-
ized. The challenge is to provide interactive visualization of these
large 3D scalar fields while avoiding rendering artifacts.

Hardware assisted volume rendering can provide interactive vi-
sualization of 3D scalar fields[2, 3, 8, 10]. The ability to interact
with transfer functions and viewpoint orientation provides pow-
erful visual cues that would be difficult to reproduce in batch-
mode volume rendering. 3D texture mapping hardware that is now
also available on PC graphics adapters [6] is the most prevalent
choice for hardware assisted volume rendering although dedicated
volume processors have recently been introduced[10]. While 3D
texture mapping is a powerful tool that allows one to investigate
volumes easily, either by direct volume rendering, or by visualiz-
ing these functions on intermediate surfaces, the limited amount
of texture memory is a serious constraint. Methods exist for per-
forming volume rendering where the entire data volume resides
in texture memory[2, 3]. If one exceeds the limits of physical
texture memory, some graphics libraries allow for the paging of
textures[14, 5]. However, such brute-force methods for dealing
with volumes whose size exceeds physical texture memory severely
hamper the interactivity of the rendering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Volume Visualization 2000 Salt Lake City, Utah USA
Copyright ACM 2000 1-58113-308-1/00/10 ... $5.00

7

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 12:04 from IEEE Xplore. Restrictions apply.

Fortunately, most data sets have large regions that don’t contain
interesting data. This paves the way for the application of multires-
olution representations of the volume data. Such representations
allow regions of interest to be rendered at higher resolutions than
other parts of the data set, allowing interactive rendering of data
whose uniform grid is much larger than texture memory. A second
benefit is the reduction of trilinear interpolations. Since coarser lev-
els provide a filtered, more compact, representation of the original
data, resampling based upon the level-of-detail is desirable because
it reduces the number of expensive trilinear interpolations. The
problem with multiresolution methods is the introduction of ren-
dering artifacts when adjoining regions differ in the level-of-detail.

This paper describes a method for hierarchically subdividing the
data. Care is taken to insure interpolation consistency between lev-
els while maintaining a minimal amount of data replication. Even
with the interpolation consistency, rendering artifacts can occur at
the boundaries between levels. We present a description of these
errors and describe a solution which provides continuity at level
boundaries. In the next section, we briefly describe related work.
In section 3, we describe the level-of-detail representation. Section
4 provides insight into the rendering artifacts previously seen in
multiresolution volume rendering. We conclude with some results
and areas of future research.

2 Related work

As described in the introduction, hardware assisted volume render-
ing has been a reality for the past several years[1, 2, 10]. While
dedicated hardware is now commercially available[10], 3D texture
mapping approaches are the most prevalent due the vast numbers of
machines, mainly SGIs, upon which this OpenGL extension runs.
Fundamentally, these systems resample volume data, represented
as a 3D texture, onto a sampling surface. The most common sur-
face is a plane that can be aligned with the data, aligned orthogonal
to the viewing direction, or aligned in other configurations (such
as spherical shells). The ability to leverage the embedded trilinear
interpolation hardware is at the core of this acceleration technique.

This capability was first described by Cullip and Neumann[3].
They discussed the necessary sampling schemes as well as axis
aligned and viewpoint aligned sampling planes. Further develop-
ment of this idea, as well as the extension to more advanced medi-
cal imaging, was described by Cabral et al.[2]. They demonstrated
that both interactive volume reconstruction and interactive volume
rendering was possible with hardware providing 3D texture acceler-
ation. Further improvements providing non-polygonal surface ren-
dering and effective handling of arbitrary clipping geometries have
been proposed in [12].

The work most similar to ours was reported by LaMar et al.[7].
They described a multiresolution approach to interactive volume
rendering. The use of multiresolution for importance based volume
rendering is well motivated by LaMar et al. Their multiresolution
hierarchy filtered the volume to create levels-of-detail in an octree,
but they did not explicitly address the avoidance of interpolation er-
rors in their multiresolution model. They investigated several slic-
ing methods and concluded that spherical shells were an approach
to deal with rendering artifacts. Their solution did not guarantee
continuity between levels but attempted to reduce the visual arti-
facts through spherical sampling.

Our work differs from theirs in that we develop a multiresolution
hierarchy that allows consistent interpolation between levels. We
also address the rendering artifacts that still persist when render-
ing two differing but adjacent levels. Our multiresolution hierarchy
is not strictly based upon an octree. Our work uses slicing planes
which are parallel to the image plane rather than spherical shells
for rendering efficiency. It should be noted that LaMar’s method
will allow a much wider field-of-view than our method, but since

this is not the common viewing frustum, this is not a severe limita-
tion. In the next section, we describe our multiresolution hierarchy
followed by a description and solution to the artifact problem.

3 Level-of-detail texture representation

Since in practical applications the size of the volume data sets is
likely to exceed the amount of available texture memory, the data
is usually split into subvolumes or bricks that are small enough to
fit into texture memory. Each brick can be rendered separately in
back-to-front or front-to-back order, but since for every frame all
bricks have to be reloaded, the rendering performance decreases
considerably.

In order to overcome this limitation we propose a level-of-detail
texture representation that provides an alternative for interactive
rendering of large-scale data sets. The goal of this hierarchical
representation is twofold: to convert the volume data into a mul-
tiresolution representation that entirely fits into the limited texture
memory and to minimize texture lookups by adaptively resampling
the data with respect to the selected level-of-detail.

Each brick locally stores approximations of the original data at
an ever coarser resolution. These copies are then used to adap-
tively render arbitrary regions with reduced detail size. Even if the
multiscale representation does not entirely fit into texture memory,
texture loading will be reduced. In addition a considerable number
of rasterization operations can be saved by choosing the sampling
frequency according to the detail size present within each copy. In
summary, by taking advantage of a level-of-detail representation as
described, our goal is improved rendering performance.

In the remainder of this section let us assume that we initially
decompose the data set into a number of bricks. After constructing
the texture hierarchy these bricks can be rendered at arbitrary reso-
lutions. As will be outlined below, some additional expense is re-
quired to guarantee continuous transitions between adjacent bricks
at different levels. Criteria that are applied to determine the number
of initially selected bricks and the resolution level that is to be used
for rendering will be discussed in subsection 3.4.

3.1 Texture decomposition

Prior to the rendering, the volume data set is subdivided into multi-
ple bricks of smaller size, which get assigned the chunk of texture
that is necessary to render the brick at the original resolution. Each
brick builds its own local hierarchy by constructing copies of the
original texture at ever coarser resolution. These different levels-
of-detail are stored in additional texture maps as shown in Figure 2.

0

Level Brick A Brick B

1

3

2

0 2

2

2

2

6

6

6

4

4

4

4

10

10

12

12

14

14

20 22 26 2824188

8

8

16

16

30 32

0

0

0

Figure 2: One-dimensional example of a data set with four levels
of detail. On every level the size of texture elements increases by
a factor of two. Note that at brick boundaries on the same level
texture elements have to be included in multiple bricks in order to
guarantee continuous texture interpolation (filled areas). Since tex-
tures always have to be specified in powers of two, copies for each
brick need to be extended and padded with zero voxels.

8

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 12:04 from IEEE Xplore. Restrictions apply.

The original data set is represented by textures of level 0. As-
cending level indices indicate coarser texture resolution. The width
of texture elements on level k is twice the width of elements on
level k� 1, whereas the texture size is reduced by a factor of two.
Texture elements on different resolution levels are aligned in such a
way, that their centers on a certain level correspond to the center of
an even element on the next finer level. Since the geometry or shape
of bricks will be retained throughout the hierarchy, the domain of
the underlying texture function, necessary to compute appropriate
texture coordinates, has to be adapted accordingly.

On the first level, the domain of texture coordinates ranges from
the center of the first element to the center of the last one. Due to
the alignment of voxels on different levels, borders of the texture
function domain on coarser levels often fall between two adjacent
voxels. In this case additional voxels are needed in order to guar-
antee correct interpolation. On the other hand, since the width of
texture elements on each level is known and because the shape of
bricks is not going to be modified, offsets for correct calculation of
texture coordinates can always be determined.

Copies of the original data at coarser resolutions are constructed
by iteratively filtering the data. In general, this filter can be chosen
arbitrarily, although merely sub-sampling the original data to obtain
coarser approximations leads to unsatisfactory results after only a
few coarsening steps. In our implementation a quadratic spline ker-
nel was used to consecutively build the low-pass filtered copies.

We should note that it is always necessary to expand textures
in order to cope with the power-of-two restriction imposed by the
OpenGL implementation. However, a hierarchical technique will
be outlined below that allows us to effectively avoid unnecessary
texture elements.

3.2 Continuous level transitions

If local texture hierarchies are constructed as described, interpola-
tion artifacts at the boundaries between adjacent bricks at the same
level do not appear. This is because boundary voxels are shared
by adjacent bricks. However, this does not apply to adjacent bricks
rendered on different levels.

Therefore, it is necessary to slightly modify the treatment of level
transitions to meet the continuity requirements: in the level-of-
detail representation the continuity at level transitions can be estab-
lished by letting the finer cells to the left and to the right of the brick
boundary interpolate the scalar field from the coarser level (Fig-
ure 3). For cells with even index in each dimension this is equiva-
lent to a copy operation as they correspond exactly to a cell on the
next coarser level. This procedure only adapts the brick textures on
the finer level. Thus, with the combination of the proposed mul-
tiresolution representation together with appropriately re-sampled
values at level transitions we guarantee the continuity of the 3D
scalar field.

Note in particular, that we restrict transitions to differ by at most
one level in order to maintain the continuity between levels. How-
ever, this does not impose a real restriction as higher transitions can
be achieved by consecutive transitions of one level.

The number of voxels that has to be adapted depends on the po-
sition of the brick boundary relative to the voxel coordinates. Either
the boundary is located at the center of one voxel, as is the case on
level 0, or between two voxels, as is the case on other levels. In
the first case only one voxel needs to be adapted while both voxels
have to be modified in the latter case. Due to the overlap between
bricks, adaption has to be performed whenever a brick is adjacent to
a coarser one. Consequently up to 26 bricks have to be considered
in 3D.

0

Level Brick A Brick B

1

3

2

0 2

2

2

2

6

6

6

4

4

4

10

10

12

12

14

14

20 22 26 2824188

8

16 30

0

0

0

Figure 3: Adjacent bricks with different level-of-detail need adap-
tion to ensure consistent texture interpolation. Only the texture on
the finer level has to be adapted by either interpolating or copying
the voxels to the left and to the right of the brick boundary from
the coarser level. On a brick at level 0 the black voxel has to be
interpolated. Those voxels to be adapted on level 1 to level 2 are
colored in dark and light grey respectively .

3.3 Level-wise texture merging

The enlargement of textures in order to guarantee continuous level
transitions leads to significant overhead in the texture memory that
is used. Refer to the example shown in Figure 2. If we want to
render the information represented by the first 31 voxels on level 0,
we need two textures of size 16 for the finest level and two textures
of size 16 on level 1 whereas only nine texture elements are neces-
sary to store the information. Effectively there is no saving of tex-
ture memory when switching from level 0 to level 1. Considering
higher levels leads to similar results, as only half of the voxels of
every texture – plus one or two for overlap – contain non-redundant
information.

This overhead can be minimized by merging the texture data of
adjacent bricks into a single texture as shown in Figure 4. This
figure demonstrates the one-dimensional analogue. For each level-
of-detail the same texture size is used. In level 0 each brick has
a texture of its own. As in any direction only half the voxels of a
particular level are needed on the next coarser level, eight adjacent
bricks can be represented by the same texture map, with appropriate
texture coordinates. On higher levels, the number of bricks sharing
the same texture map is multiplied by a factor of 8, which finally
results in an octree-like hierarchy of texture maps.

Merging textures works best when the starting number of bricks
in every direction matches a power of two. If more than 2l�1 bricks
are created by the subdivision of the initial data set, where l is the
number of levels used for rendering, additional bricks will be gen-
erated that build their own set of textures as described in subsec-
tion 3.1. If fewer bricks are generated, then the depth of the texture
hierarchy has to be reduced by storing textures on the coarsest level
individually. We utilize a texture manager object for administra-
tion of the texture hierarchy. This object creates the desired texture
maps and assigns appropriate sub-textures to the bricks requesting
texture memory.

3.4 Adaptive level-of-detail

The initial size of each brick has to be specified in advance be-
fore the multiscale volume representation is constructed. In our
implementation the resolution of each brick is set up via a focus
point oracle. According to the distance of the center of a brick to
a user defined focus point, each brick determines its appropriate
level-of-detail. In order to account for continuous level transitions,
brick boundaries need to be adapted again whenever the hierarchy
is changed by moving the focus point.

Furthermore, as long as no level transitions greater than one are

9

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 12:04 from IEEE Xplore. Restrictions apply.

0

Level

1

3

2

Figure 4: A hierarchy is used to store the textures of the bricks
more efficiently. The same size of textures is used on every level.
On level 0 every brick contains a texture of its own. On level 1
one texture is shared by 8 adjacent bricks. On every consecutive
level the number of bricks sharing a single texture is multiplied by
a factor of 8. In order to take advantage of the hierarchy as effective
as possible, the number of bricks created in each direction has to
be a power of two.

specified, our approach allows us to use arbitrary texture resolu-
tion for every brick. In particular, this can not be achieved by the
technique proposed in [7], due to the strict correspondence between
texture tiles and brick geometry.

One major drawback of the focus-point based construction of the
texture hierarchy is that we do not consider the approximation error
that is introduced if the data is sampled from a certain resolution
level. As a matter of fact, if high frequencies are present in the data
we obtain an approximation that differs significantly from the origi-
nal signal. Consequently this scheme will impose artifacts between
brick boundaries even if continuity is guaranteed.

To overcome this problem other criteria will have to be consid-
ered to determine the appropriate level-of-detail of each brick. An
evaluation of different kinds of pyramidal representations for error
controlled volume ray-casting has been presented in [4]. Apart from
that, wavelet analysis as introduced for improved volume rendering
in [9, 13] provides an effective tool for the calculation of the devi-
ation between the original data and approximations at ever coarser
resolution. This measure can then be used to select the appropriate
level-of-detail automatically.

3.5 Internal texture format

According to the OpenGL specification textures can be stored in
different internal formats in the graphics subsystem. In general, the
texture maps used for volume rendering can either consist of color
values or color indices, which are then transformed to color values
using texture lookup tables.

The hierarchical decomposition as proposed does not imply any
restrictions on the internal format to be used. Down-sampling and
interpolation at brick boundaries can be performed in any case.

Although we are aware of the fact that in practical applications
pre-shaded color values are often favored, interactive manipulation
of visual quantities can only be achieved in color index mode. Thus,
in the current implementation we decided to keep the obvious ben-
efits of texture lookup tables resulting in the hierarchical decompo-
sition of color indices, which are then transformed to color values
during rendering.

4 Opacity corrected texture slicing

Once the original volume data set has been decomposed into the
multiscale representation as described in section 3, each brick is
rendered separately in back-to-front order at the appropriate level-
of-detail. Therefore, we utilize the standard technique usually em-
ployed in volume rendering via 3D textures as outlined in [2, 3].

The basic idea is to re-sample a discrete 3D texture map on cut-
ting planes parallel to the viewing plane by trilinear interpolation,
and by compositing the resulting fragments in the frame buffer. Be-
fore we continue with a detailed description of our extensions for
multiresolution 3D texture based volume rendering, let us point out
again that the following explanations assume the color index mode.

Initially, the sample slice distance between consecutive cutting
planes is chosen with respect to the width of texture elements.
Let ∆0 be this distance and assume that for a certain color in-
dex Ci the opacity entry α0 in the color lookup table is computed
as 1� e�map�Ci�∆0 , where map�Ci� defines the mapping from color
indices to extinction coefficients. When the sample slice distance
changes to ∆k, opacity values stored in the color table have to be
corrected with the new values computed as follows:

αk � 1� e�map�Ci �∆k

� 1�
h
e�map�Ci�∆0

i ∆k
∆0

� 1� �1�α0�
∆k
∆0 (1)

Since our level-of-detail representation already guarantees continu-
ous transitions at brick boundaries, we can render the volume with
an arbitrary sample slice distance while still achieving correct re-
sults even if bricks from different resolution levels are adjacent to
each other.

However as previously noted, the goal of the proposed method is
twofold: to minimize the amount of texture memory needed to ren-
der the data at the desired level-of-detail and to reduce the number
of rasterization operations or texture lookups that have to be per-
formed. Therefore, we adapt the sample slice distance within each
brick with respect to the chosen resolution level.

In order to account for increasing width of texture elements on
coarser resolution levels, a lookup table equipped with the cor-
rected opacity values is stored for each possible resolution. Thus,
the opacity values in each table account for the varying distance
of slices to be rendered. Whenever a brick is rendered at a cer-
tain resolution the sample slice distance is set and the appropriate
color table is used. Slices on level k are positioned in such a way
that they are always in a distance n � 2k∆0, n � Z, from the view-
ing plane in order to guarantee correct alignment between slices in
different bricks. In the following, whenever two bricks at level k
and k�1 are adjacent to each other, we will call slices at positions
n �2k�1∆0 the even-slices and slices at positions �n �2k�1 �1�∆0 the
odd-slices.

4.1 Opacity correction by polygon clipping

Even with the opacity correction integrated in our approach as de-
scribed above, the projection of adjoining voxels might still result
in erroneously drawn pixels at boundaries between different reso-
lution levels. The region of error can be determined by projecting
cutting planes along the slice boundaries. The errors are due to the
following cases, demonstrated in Figure 5:

� Case 1: One slice of thickness ∆k�1 and one slice of thick-
ness ∆k are rendered but should only cover a width of ∆k�1.
On the left of Figure 5, going from back-to-front we render
even-slice i and odd-slice i�1 on the finer level in region A.
In region B we only render even-slice i on the coarser level but
with correctly adapted opacity. In region C, however, even-
slice i is rendered on the coarser level and odd-slice i� 1 is
rendered on the finer level before even-slice i�2 will be ren-
dered.

10

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 12:04 from IEEE Xplore. Restrictions apply.

� Case 2: Only one slice of thickness ∆k is rendered but should
cover a width of ∆k�1. On the right of Figure 5, going from
back-to-front we render even-slice i and odd-slice i�1 on the
finer resolution level in region B. In region A we only render
even-slice i on the coarser level but with correctly adapted
opacity. In region C, however, only even-slice i is rendered on
the finer level before even-slice i�2 will be rendered.

odd slices

even slices

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

��������
��������
��������
��������

��������
��
��
��
��
��
��
��

��
��
��
��
��
��
��

B

C i

i+1

A

viewpointviewpoint

B

∆k ∆ k+1

i+1

i+2

A

C i

i+2

Figure 5: Opacity correction at level transitions for orthographic
and perspective views falls into two basic classes, which depend on
whether we look through a brick at the coarser level to a brick at
the finer level or vice versa.

In general, however, incorrect opacities can be avoided by deter-
mining the erroneously rendered regions within cutting planes - the
thick line segments in Figure 5 - and by rendering these parts with
corrected opacity.

We proceed by recognizing that only bricks adjacent to at least
one neighbor on a finer resolution level need to be adapted. In
case 1, the even-slice i in the coarser brick has to be clipped with the
perspective projection of the odd-slice i� 1 that has already been
reconstructed in the finer brick onto slice i. Finally, the clipped
polygon in region C has to be rendered with the same opacity as
issued on the finer level. In case 2, odd-slice i�1 has to be recon-
structed in the coarser brick and clipped with the perspective pro-
jection of even-slice i in the finer brick onto the slice i�1. Finally,
the clipped polygon included in region C has to be rendered with
corrected opacity αk�1. Note that this also works for orthographic
projection.

The entire procedure can easily be generalized to the 3D case
(see Figure 6). Here, for each pair of even/odd-slices in the coarser
brick, we consecutively clip the even-slice i with all odd-slices i�1
in the same brick and neighboring bricks on the same or a finer
level, and we clip the odd-slice i�1 only with even-slices i in neigh-
boring bricks on a finer level. The opacity of clipping polygons is
adapted according to the level of the neighboring brick. In this way,
we completely avoid discontinuous transitions at brick boundaries
as long as the difference between adjacent levels does not exceed
one.

The described procedure still works if the previous even-slice or
the next odd-slice are outside the current brick, and other special
cases can only occur at the volume boundaries. At the boundaries
it is possible that there are no other polygons with which the actual
polygon can be clipped. In this case, we insert additional slices
with the smallest sample distance in order to guarantee the correct
opacity contribution.

As many clipping operations have to be performed, the imple-
mentation of the clipping algorithm is of particular relevance in
order to keep the introduced overhead low. We modified a three-
dimensional Sutherland-Hodgman [11] polygon clipping algorithm
in such a way, that the clipped polygon as well as the area excluded
from the original polygon is computed with little overhead. Thus
the number of clip operations can be reduced significantly as both
areas are needed in order to obtain correct opacities.

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

���
���
���
���
���
���

���
���
���
���
���
���

����
����

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����������������

������������
������������

������������
������������
������������ fine

odd slice i+1

even slice i

coarse

finefine

coarsefine

Figure 6: The extension of opacity corrected clipping to 3D. Note
that the brick under consideration is always located on the coarser
resolution level. In the image, solid lines indicate clip polygon re-
constructed in the current brick. Dashed lines indicate clip polygon
reconstructed in neighboring bricks.

5 Results and Analysis

In this section we provide results and we analyze the main mod-
ules of the proposed technique. All tests were run on a SGI Oc-
tane equipped with one R10000, 250 MHz processor, 4 MB texture
memory and 256 MB main memory.

In Figure 7, results of the proposed level-of-detail rendering
technique applied to a MRI-scan of size 2563 are shown. All images
were rendered using 83 bricks of size 323. An additional clipping
plane was set up in order to demonstrate the multiresolution hier-
archy more clearly. In the leftmost image all bricks were rendered
with full resolution. In the middle image only the four upper slabs
of bricks were rendered at full resolution. In the right image, only
the two upper slabs of bricks were rendered with full resolution.
The remaining slabs were consecutively rendered with decreasing
resolution.

Although opacity was corrected as proposed, these images
clearly show the potential drawback of a non topology preserving
coarsification as introduced by our focus point based approach: the
selection of the level-of-detail to be used in each brick exclusively
relies on the focus point oracle but does not consider the approxi-
mation error that is introduced due to the coarsification. Thus, the
topology of structures within the data set is not preserved and visual
artifacts at brick boundaries may occur if the resampled approxi-
mation significantly differs from the original data. The same effect
can be noticed in Figure 9, where the data set is rendered using four
different levels of detail from front to back. Many of the relevant
structures disappear due to the low pass filtering.

The hierarchical representation of the head data set, on the other
hand, leads to a significant saving of texture memory. In the middle
image only 64% of the original texture memory was used, while on
the right, only 37% was used. The number of texture lookups was
reduced, from 69% to 40%. This leads to improved rendering per-
formance. Whereas every frame took about 2 seconds with the full
resolution data set, the level-of-detail representation used for the
rightmost image allows us to create a new image every 0.5 seconds.

Special attention has been paid to sorting the clipped polygons
with regard to a minimal number of color table reloads. Otherwise
the performance is decreased significantly: this is due to the fact
that for opacity correction about 2500 clipping operations have to
be performed on average, and every clipped region potentially re-
quires a color table switch. In the worst case, when looking along
a diagonal of the data set, up to 5500 polygons have to be clipped.
The efficiency of our clipping algorithm can be seen from the fact
that the overhead imposed by the clipping is less than 0.1 seconds.

We should point out the fact that the adaption of the finer tex-
tures, in order to guarantee continuity of the 3D scalar field (see
section 3.2), only took about 0.2 seconds for the level-of-detail used
in the rightmost image. Thus we can provide interactive change the

11

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 12:04 from IEEE Xplore. Restrictions apply.

level-of-detail of the bricks.
In Figure 8 we demonstrate the artifacts that typically occur if

opacity is not corrected with respect to different sample slice dis-
tances at level transitions. These artifacts manifest as light and dark
bands along the boundary, which are exactly the erroneously ren-
dered regions specified in section 4. In the the rightmost image,
these artifacts are completely removed by the proposed technique.
As can be seen, artifacts still show up at external faces, where we
can clearly recognize the geometry of cutting planes used to re-
sample the data. These are exactly the kind of artifacts that usu-
ally occur in volume rendering via 3D textures. However, in the
presented examples, the sample slice distance is large at the bound-
aries. Thus, the artifacts are visually much more apparent than in
the standard technique.

6 Conclusion

In this work we have emphasized a multiresolution approach for
the rendering of large-scale volume data via 3D textures. The ma-
jor contribution here is that we entirely avoid artifacts that occur
due to incorrect texture interpolation and opacity correction at brick
boundaries. In this respect, we have developed two beneficial exten-
sions that guarantee continuous transitions between different levels
of detail, and yield correct pixel opacities when using view depen-
dent cutting planes.

We have demonstrated that the loss in the performance due to
the polygon clipping is negligible when we factor in the gains from
the considerable reduction of texture lookups and minimal texture
memory use.

Furthermore, we developed a hierarchical texture representation
that allows different bricks to be rendered at arbitrary resolution,
with the only restriction being that the resolution of adjacent bricks
can not differ by more than one level.

In the future, the integration and evaluation of different error
measures that enable automatic selection of the appropriate level-
of-detail are desirable. This would lead to a topology preserving
coarsification.

Additional time should be spent in a detailed investigation of the
pixel-wise error that is introduced due to the restrictions imposed
by the available graphics hardware. Up to now, we did not consider
the visual artifacts that may occur due to limited texture and frame
buffer resolution. This is an open field of research.

References

[1] Kurt Akeley. RealityEngine graphics. 27:109–116, August
1993.

[2] Brian Cabral, Nancy Cam, and Jim Foran. Accelerated vol-
ume rendering and tomographic reconstruction using texture
mapping hardware. 1994 Symposium on Volume Visualiza-
tion, pages 91–98, October 1994. ISBN 0-89791-741-3.

[3] T. J. Cullip and U. Neumann. Accelerating volume recon-
struction with 3d texture mapping hardware. Technical Re-
port TR93-027, Department of Computer Science,University
of North Carolina, Chapel Hill, 1989.

[4] John Danskin and Pat Hanrahan. Fast algorithms for volume
ray tracing. 1992 Workshop on Volume Visualization, pages
91–98, 1992.

[5] George Eckel. OpenGL Volumizer Programmer’s Guide. Sil-
icon Graphics Computer Systems, Mountain View, CA, USA,
1998.

[6] Intense3D. http://www.intense3D.com.

[7] Eric LaMar, Bernd Hamann, and Kenneth Joy. Multiresolu-
tion techniques for interactive texture-based volume visual-
ization. In IEEE Visualization’99. IEEE CS Press, October
1999.

[8] David Laur and Pat Hanrahan. Hierarchical splatting: A pro-
gressive refinement algorithm for volume rendering. Com-
puter Graphics, 25(4):285–288, July 1991. ACM Siggraph
’91 Conference Proceedings.

[9] Shigeru Muraki. Approximation and rendering of volume data
using wavelet transforms. Computer Graphics and Applica-
tions, 13(4):50–56, 1993.

[10] Hanspeter Pfister, Jan Hardenbergh, Jim Knittel, Hugh Lauer,
and Larry Seiler. The volumepro real-time ray-casting system.
Proceedings of SIGGRAPH 99, pages 251–260, August 1999.
ISBN 0-20148-560-5. Held in Los Angeles, California.

[11] B. Sutherland and G.W. Hodgman. Reentrant Polygon Clip-
ping. CACM 17(1), pages 32–42, January 1974.

[12] R. Westermann and T. Ertl. Efficiently using graphics hard-
ware in volume rendering applications. In Computer Graphics
(SIGGRAPH 98 Proceedings), pages 291–294, 1998.

[13] Ruediger Westermann. A multiresolution framework for vol-
ume rendering. In ACM Symposium on Volume Visualiza-
tion’94, October 1994.

[14] Mason Woo, Jackie Neider, Tom Davis, and Dave Shreiner.
OpenGL Programming Guide. Addison-Wesley, Reading,
MA, 1999.

12

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 12:04 from IEEE Xplore. Restrictions apply.

Figure 7: The leftmost image shows the data set rendered with the original resolution. Then, the data was split into 43 bricks, each of
size 323. In the middle/right image the upper two/one 4x4-slabs of bricks are rendered on the finest level-of-detail, continuously decreasing
the resolution to the bottom.

Figure 8: In both images we show the same artificial data set rendered on four different resolution levels. On the left, severe artifacts at
the brick boundaries occur because opacity is only corrected with respect to the sample slice distance. On the right, artifacts can be seen
resulting from increasing sample slice distance at the volume boundaries.

Figure 9: A volume data set is rendered with full resolution via 3D textures. On the right, the adaptive representation using four levels
of detail from front-to-back requires only 38% of the original texture memory, and it was rendered with only 41% of the originally needed
number of texture lookups.

13

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 1, 2009 at 12:04 from IEEE Xplore. Restrictions apply.

