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ABSTRACT

4D pathological anatomy modeling is key to understanding
complex pathological brain images. It is a challenging prob-
lem due to the difficulties in detecting multiple appearing and
disappearing lesions across time points and estimating dy-
namic changes and deformations between them. We propose
a novel semi-supervised method, called 4D active cut, for le-
sion recognition and deformation estimation. Existing inter-
active segmentation methods passively wait for user to refine
the segmentations which is a difficult task in 3D images that
change over time. 4D active cut instead actively selects can-
didate regions for querying the user, and obtains the most
informative user feedback. A user simply answers ‘yes’ or
‘no’ to a candidate object without having to refine the seg-
mentation slice by slice. Compared to single-object detection
of the existing methods, our method also detects multiple le-
sions with spatial coherence using Markov random fields con-
straints. Results show improvement on the lesion detection,
which subsequently improves deformation estimation.

Index Terms— Active learning, graph cuts, longitudinal
MRI, Markov Random Fields, semi-supervised learning,

1. INTRODUCTION

Quantitative studies in longitudinal pathology such as trau-
matic brain injury (TBI), autism, and Huntington’s disease are
important for measuring treatment efficacy or making predic-
tions. The modeling of 4D pathological anatomy is essential
to understand the complex dynamics of pathologies and en-
ables other analysis such as structural pathology and brain
connectivity [1]. This is a challenging task because of the dif-
ficulties in localizing multiple lesions at specific time points
and estimating deformations between time points. In effect,
this involves solving interdependent segmentation and regis-
tration problems. In the analysis of magnetic resonance (MR)
images of severe TBI patients, more difficulties arise such as
multiple lesions with complex shapes, multi-modal informa-
tion, and lack of prior knowledge of lesion location.
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Graph cuts based user-interactive image segmentation
methods have been applied to 2D and 3D imaging data [2, 3].
In particular, the GrabCut method [3] integrates human ex-
perts’ knowledge and the algorithm’s computation power. In
GrabCut, one typically gives an initial guess of the region
of interest (foreground), for example a bounding box. The
algorithm estimates globally optimal boundaries between the
foreground and background regions. The user then inspects
the segmentation results, and adjusts the boundary by draw-
ing a region as a hard constraint. This user interaction process
works well on 2D images, as users can quickly find incor-
rectly classified regions. However, such interaction is a huge
burden to users once applied to 3D volume data, since one
has to visually inspect each slice and correct it. The algorithm
is in a passive learning state, and its performance entirely de-
pends on user’s active inspection and correction. This passive
learning process is the bottleneck of the GrabCut algorithm
when applied to 3D data.

We propose 4D active cut, a method that uses active
learning for guiding interactive segmentation of 4D patholog-
ical images, specifically longitudinal TBI data. We adopt a
minimalist approach such that our algorithm needs the least
amount of user involvement. Using active learning, the al-
gorithm queries the user only on the most important regions.
Accordingly, the user’s response to such query will be the
most informative, and the number of user interaction is min-
imized. Our algorithm learns the model from a simple user
initialization, finds the candidate objects and submits them
to a user for inspection. The user is now in a passive state,
and are only required to answer a ‘yes’ or ‘no’ question for
the queried candidates. The algorithm does the remaining
work including refining the candidate objects, learning model
parameters and running graph cut algorithm to find a glob-
ally optimal map. In addition, with sufficient confidence,
the algorithm automatically identifies additional lesion ob-
jects without user interaction by self-training. Self-training
further decreases user involvement, without losing segmen-
tation accuracy. Our algorithm can detect multiple lesions,
while standard graph cut algorithm [3] only detects single
objects. Moreover, we introduce spatial context constraints
using Markov random fields (MRF) so that the estimated
label maps will become piecewise constant. We also define



the MRF prior on the candidate objects submitted to the user,
so the candidates are spatially coherent objects instead of
individual voxels.

Several researchers have applied active learning to 3D im-
age segmentation. Top et al. [4] proposed to query users the
most uncertain 2D slices. Iglesias et al. [5] used active learn-
ing for constructing manually labeled dataset for training su-
pervised classifiers. Veeraraghavan et al. [6] used grow cut
for segmentation and estimated the uncertainty using a sup-
port vector machine classifier. Our method is different from
them in that 1) it solves both segmentation and registration in
a unified 4D framework, and 2) instead of learning 2D slices
or individual voxels, it learns new 3D objects that better fit
human visual perception due to their spatial coherence.

In the remaining part of the paper, we discuss the model
and interaction framework in section 2, give the 4D modeling
results in section 3 and conclude in section 4.

2. METHOD

An overview of our algorithm is shown in Fig. 1. At each
time point, the algorithm takes a bounding box as the initial
user input, learns the model parameters, estimates graph cuts
for detecting the lesions, and queries a user by submitting one
or more candidate objects. The 3D label information from
all time points are then integrated by fitting a 4D model that
describes the changes across time as deformations.

2.1. Extension to GrabCut

We extend GrabCut [2, 3] to include hierarchical smoothness
constraints. We build two GMM models for the normal brain
regions and the lesions, and use the expectation maximization
(EM) method to estimate both the class labels and the model
parameters θ. In the graph cut step, the algorithm takes model
parameters of both GMMs as input, and estimates a hard label
α ∈ {0, 1} representing if each voxel n is normal (αn = 0) or
lesions (αn = 1). In addition to smoothness constraint on the
lesion boundary, we also apply MRF constraints on the label
maps within normal and lesion regions. These soft constraints
guarantee that the estimated labels are spatially coherent.
Within-Class MRF and Variational Inference: Define the
class label map z = {z1, . . . ,zN}, where zn is a K dimen-
sional binary random variable for voxel n such that

∑
kznk=

1. An element znk = 1 indicates voxel n is in Gaussian com-
ponent k. The prior distribution of z takes the MRF con-
straints into account as well as the atlas, and is defined as

p(z) =
1

C
exp(

N∑
n=1

K∑
k=1

znk log πnk + β
∑
(n,m)

〈zn, zm〉),

where πnk is the affine-registered atlas prior probability of n
being in component k, (n,m) is a pair of neighboring vox-
els, and 〈, 〉 is the inner product of two vectors, represent-
ing our preference of a piecewise constant label map, with

Fig. 1. Flowchart of the proposed algorithm.

the constraint strength given by β. Given zn, the likelihood
function is defined as a multivariate Gaussian p(xn|zn) =
N (xn; θ(zn)), with xn being the observed data vector of the
multi-modality images at n. In EM, one needs to evaluate
EP (z|x)[log p(x, z)], which is intractable due to the MRF prior
on z. Here we use the variational inference method that iter-
atively updates p(zn|zN (n),xn) given the expected value of
zn’s neighbors N (n). The update equation takes the form

log p(znk) = znkπnk +
∑

m∈N (n)

〈zm, zn〉+ logN (xn; θ(zn)),

where zm is the expected value at neighbor m. We compute
log p(znk) for all k and compute p(zn) by taking the expo-
nential and normalize. zn is just p(zn) for binary variables
and is used for updating zn’s neighbors. In the M step, we use
z to estimate θ = {µ,Σ} for all components. The variational
procedure stops when there are no changes of zn. Given α,
EM runs on both GMMs separately, with a uniform atlas map
on lesion’s GMM.

2.2. Guided User Interaction Using Active Learning

The algorithm conducts active learning by taking α and θ as
input, and computing the probability of each voxel belong-
ing to the lesions. It then builds a connected component map,
since a high-level object-based representation is convenient
for user interaction. We sort the multiple objects in a descend-
ing order of the probability of being lesions, and submit the
top ranked objects for queries to the user. When the algorithm
detects that the top ranked object should be lesion with a con-
fidence above a user-given threshold, it adds the object to le-
sion in a self-training process without querying users, further
reducing user involvement.
Query Score: The log-odds of αn is defined as

an = log p(αn = 1) + Ep(zn|xn)[log p(xn, zn; θ(αn = 1))]

− log p(αn = 0) + Ep(zn|xn)[log p(xn, zn; θ(αn = 0))],



where E is the expectation, α is a MRF in the form of p(α) =
(1/Cα) exp(η

∑
(αm,αn)

ψ(αm, αn)) to model its spatial co-
herence, with ψ = 1 if αm = αn, and ψ = 0 otherwise.
The predictive probability of a voxel being in lesion is com-
puted by the standard logistic function p(αn = 1|xn) =
1/(1+exp(−an)) once a is estimated by the variational infer-
ence. We obtain a binary map w by thresholding the predic-
tive map at 0.5, and identify a series of objects Ri by running
a connected component detection on w. To further select the
most salient objects, we sort the objects in decending order of
the following score:

q(Ri) =

(∑
n∈Ri

p(α = 1|xn)

)/
|{n : n ∈ B(Ri)}|. (1)

B(Ri) is the set of voxels on Ri’s boundary, and the denom-
inator denotes the number of voxels on the boundary of Ri.
The above query score prefers objects with larger volumes of
posterior probability. The score also prefers blob-like objects
since such an object has large volume-surface ratio. Such cri-
teria reflects our prior knowledge on the lesion object’s shape.
4D Pathological Anatomy Modeling: We integrate the 3D
information across time by taking z and θ for both normal
and lesion classes as input, and estimate the atlas prior π by
computing the deformation from the healthy template to the
images at each time point. We follow the 4D pathological
anatomy modeling framework of Wang et al. [7], and define
πk,t = Ak ◦φt +Qk,t, where A is the tissue class probability
that is initially associated with the healthy template, φt is the
diffeomorphic deformation from time t to the atlas, and Qt is
the non-diffeomorphic probabilistic change. We use alternat-
ing gradient descent to estimate A, φt and Qt by optimizing
F(A, φt, Qt) = −

∑T
t=1 Ep(z|x)[log p(z, x|θ, πt)].

Interaction Framework: With the above framework, the
learning process is described in Fig. 1. Given the user de-
fined bounding box, the hard-constraint map is set to ‘nor-
mal’ outside the box, and ‘uncertain’ inside. Then, we ini-
tialize the α map such that α = 1 (lesion) in the ‘uncertain’
region of the hard-constraint, and α= 0 elsewhere. The EM
learns θ of both GMMs given α, then a graph-cut step [3]
updates only the α for voxels within the ‘uncertain’ region.
This update strategy of graph-cuts prevents false-positive de-
tections. Upon EM & graph cuts convergence, there may be
some false-negative voxels in ‘normal’ regions. We group
these voxels into spatially coherent objects and find the one
with highest score computed from (1). The algorithm either
automatically adds the candidate to lesions or queries user for
answer, depending on its confidence on the candidate. We
then update the hard-constraint map to reflect the knowledge
learned from the new object, and a new EM & graph cuts
iteration starts. Objects already accepted or rejected in pre-
vious steps are recorded so they will be excluded from future
queries. This learning process repeats until user stops the al-
gorithm. Finally, we integrate information in all time points
of the datasets by fitting a 4D pathological anatomy model.

3. RESULTS

We applied our method to a dataset of longitudinal multi-
modal MR images of four severe TBI patients. Each pa-
tient was scanned twice: an acute scan at about 5 days and
a chronic scan at about 6 months post injury. Each subject’s
data includes T1, T2, FLAIR, and GRE. In lesions’ GMM
model, we chose K = 2 for bleeding and edema component,
and in normal regions we chose K = 3 for gray matter, white
matter and CSF. We took a 6 neighborhood system and set
the smoothness parameters γ = β = η = 1. The image in-
tensity of each modality was normalized to the range [0, 255]
before the learning process. We used the K-Means cluster-
ing together with the atlas prior to initialize the GMM. The
threshold used to decide self-training or active-learning was
set to 3.0.

Fig. 2. Illustration of the iterative process of 4D active cut
on subject I. Iteration 1: User-initialized bounding box. It-
eration 2: Self training. Iteration 3 and 4: Active learning.
The user stopped the process at 5th iteration. Arrows point to
the changes between iterations. The white matter surface is
visualized in all figures as reference.

Fig. 2 shows the dynamic learning process of subject I.
In iteration 1, given the user initialized bounding box, 4D ac-
tive cut successfully detected the lesion object, as shown in
the bottom α map. In iteration 2, the candidate object has a
large query score, so the algorithm decided to do self train-
ing and added the candidate to the lesion class. This object is
indeed part of the lesion in the previous bounding box. That
shows when the user leaves a portion of the lesion outside the
box, the algorithm still detects the missing portion. This re-
sult shows the robustness of the algorithm given inaccurate
user initialization. In iteration 3 and 4, the user rejected some
candidate objects and accepted some others. The accepted ob-
jects are not connected to the major lesion but our algorithm
still captured them. This result shows that our method is able
to detect multiple objects. We also note that by using object
volume, predictive probability and shape information, most
of the top-ranked candidates are indeed true positive ones;
showing the effectiveness of the proposed query score.



Fig. 3. Comparison between GrabCut and the proposed
method. Left: our method in 3D space and axial view. Right:
GrabCut. Light blue: edema. Brown: bleeding. Note the
large false-positive detection of GrabCut in the CSF region.

Baseline 4D active cut
Subject NHL HL NHL HL UI

I 0.2503 0.0613 0.6349 0.5698 5
II 0.3269 - 0.6910 - 4
III 0.1311 0.2288 0.4512 0.4840 6
IV 0.0918 0.0998 0.3503 0.1153 5

Table 1. Dice values comparing 4D active cut and GrabCut
to ground truth. HL and NHL are acute hemorrhagic and non-
hemorrhagic lesions. UI denotes the number of interactions a
user performed using 4D active cut. Subject II has no ground
truth for HL due to the lack of GRE modality.

In order to show the efficacy of the proposed method, we
used GrabCut without user interaction as a baseline method
and also allowed α outside of the bounding box to switch la-
bels in order to detect multiple lesion objects. Fig. 3 shows the
qualitative comparison of the baseline method and 4D active
cut. Without user interaction, the baseline algorithm detected
a large number of false-positive voxels due to the ambigu-
ity between lesion and CSF. Table 1 shows the quantitative
comparison of both methods. The proposed method is able to
significantly improve the segmentation.

As part of 4D active cut, we updated the atlas prior us-
ing a 4D modeling method [7]. Fig. 4 shows the parcellation
labels mapped to the space of each time point by using the
estimated deformation field. The result shows the obtained
parcellation maps match the data well, even in the presence
of large deformations at different time points. Therefore, our
integrated framework has the potential of becoming an impor-
tant processing step for connectivity analysis of pathological
brain with longitudinal data [1], where the mapping of par-
cellation labels to individual time points in the presence of
large pathologies presents the biggest obstacle and currently
requires tedious manual corrections and masking.

4. CONCLUSIONS

We presented 4D active cut for quantitative modeling of
pathological anatomy. The new algorithm can detect multi-
ple lesion objects with minimal user input. The MRF prior
ensures the spatially coherent label maps within class and
within candidates. In the future, we will explore integration

Fig. 4. Result of mapping parcellation labels associated with
the healthy template to each time point. The left two images
are the T1 reference TBI image at acute stage and mapped
parcellations, and the right two images are the same at chronic
stage.

of active learning and 4D modeling, as well as the validation
and verification on other image data presenting pathologies.
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