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Abstract. Analysis of 4D medical images presenting pathology (i.e., le-
sions) is significantly challenging due to the presence of complex changes
over time. Image analysis methods for 4D images with lesions need to
account for changes in brain structures due to deformation, as well as the
formation and deletion of new structures (e.g., edema, bleeding) due to
the physiological processes associated with damage, intervention, and
recovery. We propose a novel framework that models 4D changes in
pathological anatomy across time, and provides explicit mapping from
a healthy template to subjects with pathology. Moreover, our frame-
work uses transfer learning to leverage rich information from a known
source domain, where we have a collection of completely segmented im-
ages, to yield effective appearance models for the input target domain.
The automatic 4D segmentation method uses a novel domain adapta-
tion technique for generative kernel density models to transfer informa-
tion between different domains, resulting in a fully automatic method
that requires no user interaction. We demonstrate the effectiveness of
our novel approach with the analysis of 4D images of traumatic brain
injury (TBI), using a synthetic tumor database as the source domain.

1 Introduction

Traumatic brain injury (TBI) is a critical problem in healthcare that impacts
approximately 1.7 million people in the United States every year [3]. The varying
cause and degree of injury (falls, car accidents, etc.) presents significant chal-
lenges in the interpretation of image data but also in quantitative assessment of
brain pathology via image analysis. Determining effective therapy and interven-
tion strategies requires the ability to track the image changes over time, which
motivates the development of segmentation and registration methods for longi-
tudinal 4D Magnetic Resonance (MR) images. Such methods need to account
for changes in brain structures due to deformation, as well as the formation and



2 Bo Wang, Marcel Prastawa, Avishek Saha, et al.

deletion of new structures (e.g., edema, bleeding) due to physiological processes
associated with damage, therapeutical intervention, and recovery.

In 4D image analysis, researchers have proposed methods [9, 2, 5, 6] to register
images with lesions over time accounting for appearance of new structures. How-
ever, these methods have not been evaluated for mapping healthy subjects to a
patient with lesions. Niethammer et al. proposed a registration method for TBI
images using geometric metamorphosis that maps TBI over time using known,
pre-segmented lesion boundaries defined manually [5]. Wang et al. [14] proposed
a registration-segmentation method for 4D TBI images using personalized atlas
construction that combines information from multiple time points, accounting
for diffeomorphic changes (smooth deformation) and non-diffeomorphic changes
(creation/deletion of lesions) over time. However, their method requires manual
initialization in the form of user-defined spheres covering the lesions and only
provides modeling of intra-patient changes without providing explicit mapping
to normative healthy brain anatomy.

We propose a novel framework that models changes in 4D pathological anatomy
across time and provides explicit mapping from a healthy template to TBI sub-
ject images. This aids analysis of TBI patients by enabling the mapping of par-
cellation labels describing anatomical regions of interest and quantitative com-
parison against a common reference space defined by the normative template.
Moreover, our framework uses transfer learning [7] to leverage rich information
from a “known source” domain, where we have a large collection of fully seg-
mented images, to yield effective models for the “input target” domain (TBI
images). This is essential as such a database does not exist for TBI imaging, and
thus we explore and demonstrate the use of an existing database of multi-modal
tumor imaging that serves as a well-studied source domain. The information in
the learned tumor model are transferred to the domain of TBI images using
importance weighting based domain adaptation [12], a well known transfer learn-
ing technique, resulting in a fully automatic method that does not require user
input. In this paper, we propose importance weighting based domain adaptation
for generative kernel density models, thus extending its applications beyond
standard discriminative models available in machine learning literature [1].

2 Method

We propose a framework that constructs 4D models of pathological anatomy
starting from a healthy template, to describe changes at different time points ac-
counting for the complete 4D information. Our framework also leverages known
domains, such as brain tumors, where we have a rich collection of information in
the form of segmented tumor images with varying size, shape, deformations, and
appearance. The database of tumor images is obtained by using the brain tumor
simulator1 developed by Prastawa et al.[11]. It is capable of generating synthetic
images for a large variety of tumor cases with complete 3D segmentations. Fig. 1
shows a conceptual overview of our mathematical framework.

1 http://www.nitrc.org/projects/tumorsim



Modeling 4D Pathological Anatomy Changes 3

Healthy
Template

Known Domain

Subject at Time 1

Subject at Time T

4D 
Anatomical 

Model

Domain 
Adaptation

Input Domain

+

.

.

.

Fig. 1. Conceptual overview of the proposed framework. Our framework maps a healthy
template to input TBI images at different time points using a 4D anatomical model
which provides spatial context. The model leverages information from a different known
domain, in this case tumor images that are fully segmented. Data from the known
domain with lesions (indicated in red) at different locations with varying size, shape,
and deformations are used to estimate an appearance model for the input TBI images.

2.1 4D Modeling of Pathological Anatomy

We model the anatomical changes over time as a combination of diffeomorphic
image deformation and non-diffeomorphic changes of probabilities for lesion cat-
egories, accounting for temporally smooth deformations and abrupt changes,
e.g., due to lesions appearing and disappearing over time. Specifically, the spa-
tial prior P ct for each class c at time point t is modeled as

P ct = Ac ◦ φt +Qct (1)

where A is the tissue class probability that is initially associated with the healthy
template, φt is the diffeomorphic deformation from time t to the atlas, and Qt is
the non-diffeomorphic probabilistic change for time t. This approach follows the
metamorphosis framework of Trouvé and Younes [13]. Our method estimates a
common subject-specific atlas A for all time points.

Given the model and 4D multimodal images It at timepoints t, we estimate
model parameters that minimize the following functional:

argminA,φt,Qt,θt F(A, φt, Qt, θt) +R1(Q) +R2(A) +R3(φ) (2)

s. t.Ac ∈ [0, 1],
∑
cA

c = 1, (Ac ◦ φt +Qct) ∈ [0, 1],
∑
c(A

c ◦ φt +Qct) = 1

where F represents the data functional (the negative total log-likelihood)

F(A, φt, Qt) = −
T∑
t=1

N∑
x=1

log

(
C∑
c=1

P ct (x) p(It(x)|c, θct )

)
, (3)

and R represents the regularity terms:

R1(Q) = α
∑
t

‖ Qt ‖L1
, R2(A) = β ‖ A−A(0) ‖L2

, R3(φ) = γ
∑
t

d(id, φt).

(4)
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Fig. 2. Example data in different domains, containing the T1, T2, and FLAIR (Fluid
Attenuated Inversion Recovery) modalities. Appearance information from the known
tumor domain, which contains 3D anatomical labels, are transferred to the input TBI
domain using domain adaptation.

T denotes the number of observed time points, C denotes the number of tissue
classes, p(It|c, θct ) is the image likelihood function for class c with parameter θct ,
A(0) is the initial atlas A obtained from the healthy template, and d(id, ·) is the
distance to the identity transform. R1 enforces the sparsity of Q, R2 prevents
extreme deviations in A from the initial model, and R3 enforces the smoothness
of the deformations φt. These regularization functionals are weighted by user-
defined parameters α, β, γ respectively.

2.2 Image Appearance Model using Domain Adaptation

We compute our image appearance model p(It|c, θct ) using the well-known do-
main adaptation technique, where we adapt an appearance model from a known
domain (tumor images) to the input domain (TBI images). We use a simula-
tor [11] to generate a large collection of synthetic tumor images that resemble
TBI images, and we use the rich information in this database to automatically
compute the likelihood density model and then transfer this model to the TBI
domain. Fig. 2 shows examples of fully segmented synthetic tumor images from
the known domain and unsegmented TBI images in the input domain.

We select a tumor image from the database that has the smallest earth
mover’s distance [8] compared to the input TBI images. We then obtain train-
ing samples in the known or “source” domain as a subset of the completely
segmented tumor data {Î(x̂), ˆ̀(x̂), P̂c(x̂)}, with Î representing the tumor inten-

sities, ˆ̀representing the discrete segmentations, P̂c representing the probabilistic
segmentations, and x̂ representing the coordinates in the tumor image domain.
The transfer of learned appearance models is accomplished via domain adapta-
tion that incorporates importance weighting. We weight intensity observations

I using the weights w(I) = p(I)
p̂(I) with p̂ being the density in the source domain.

In practice, w is estimated using KLIEP (Kullback-Leibler Importance Estima-
tion Procedure) [12] which minimizes the Kullback-Leibler divergence between
the density of the input domain and the weighted density of the source domain
KL(p(I) ‖ w(I) p̂(I)).



Modeling 4D Pathological Anatomy Changes 5

Healthy

TBI

Tumor

A(0)

I
t

Domain
Adaptation

w
t

θ
t

(0)

Model Estimation

Gradient descent on Q
t

Gradient descent on A
t

Gradient descent on φ
t

Gradient descent on θ
t

4D Anatomical Model

Fig. 3. Model parameter estimation process. The healthy template provides the initial
personalized atlas A in the 4D anatomical model. Input images together with the
tumor database are used to generate densities represented by importance weights wt

and kernel width parameter θt. All parameters are updated using alternating gradient
descent, where initially Qt is zero and φt is the identity transform.

Using the estimated weights w, we compute the density parameter θ̂ that
maximize the data likelihood in the tumor domain:

argmax
θ̂

∑
x̂

w(Î(x̂)) log

(∑
c

P̂c(x̂) p̂(Î(x̂)|c, θ̂c)

)
. (5)

We use the kernel density model for the image appearance, parametrized by the
kernel bandwidths for each class θ̂ = {ĥc=1, · · · , ĥc=C}. The image likelihood
in the TBI domain is modeled in the same fashion, where we initialize TBI
parameter θ using the “domain adapted” tumor parameter θ̂ from Eq. (5).

2.3 Model Parameter Estimation

We perform model parameter estimation by minimizing the overall objective
function (Eq. 2) with respect to each parameter. Fig. 3 provides a conceptual
view of the parameter estimation process, which incorporates gradient descent
updates that are effectively image registration and segmentation operations. In
particular, we use these gradient equations to optimize the data functional F :

∇Qc
t
F(x) = − p(It(x)|c, θct )∑

c′ P
c′
t (x) p(It(x)|c′, θc′t )

, (6)

∇AcF(x) = −
∑
t

|D φt(x)| p(It(φ−1t (x))|c, θct )∑
c′ [A

c′(x) +Qc
′
t (φ−1t (x))] p(It(φ

−1
t (x))|c′, θc′t )

, (7)

∇φt
F(x) = −

∑
c

p(It(x)|c, θct )∑
c′ P

c′
t (x) p(It(x)|c′, θc′t )

∇(Ac ◦ φt(x)), (8)

where |Dφ| denotes the determinant of the Jacobian of φ. The updates show that
Qt moves to the data likelihood specific to time t, A moves to the average data
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Method 4D Model Appearance Model Subject 1 Subject 2 Subject 3

I None Not adapted 0.2536 0.1211 0.5238

II None Domain adapted 0.3053 0.1131 0.5238

III Proposed Domain adapted 0.3792 0.1367 0.6035
Table 1. Dice overlap values for segmentations of acute-stage lesions comparing our
proposed method to a direct application of tumor appearance model and an application
of domain adaption, both without using a 4D model. The new integrated method
yields improved results by combining 4D anatomical information and adapting tumor
appearance information.

likelihood over time, and φt deforms A to match the boundaries between data
and atlas. Constraints are enforced using projected gradient descent [10]. The
image likelihood model p(It|c, θct ) obtained from domain adaptation is fitted to
the input image data using gradient descent update ∇hc

t
F , which finds the set of

widths that best matches data to the current estimate of the atlas at timepoint
t, P ct = Ac ◦ φt +Qct .

3 Results

We evaluate the performance of our new approach on 4D TBI image data con-
taining two time points: acute and chronic (≈ 3 days and ≈ 6 months post-
surgery). The performance of our proposed method is shown in Tab. 1, where
we compare our method against those that do not use 4D modeling, with and
without domain adaptation. Dice overlap values comparing automatic lesion seg-
mentations against a human expert rater are relatively low, which is a well known
fact when dealing with small objects with complex and fuzzily defined bound-
aries. However, our method not only provides improved lesion segmentation but
also better overall segmentation, as shown qualitatively in Fig. 4.

The estimated 4D spatial priors for TBI subject 3 are illustrated in Fig. 5, in-
corporating template deformation to match image boundaries and non-diffeomorphic
changes due to lesions. Subject 3 provides an interesting and revealing example
of longitudinal pathology progression. The acute scan reveals gross pathology
in the left frontal region, which results in considerable atrophy in this region
at the chronic stage. However, the subject’s chronic scan features an additional
large lesion in the mid-frontal region due to the occurrence of a large abscess
between acute and chronic scans. This is an excellent example of the dynamic
and complex longitudinal changes that can occur in TBI patients.

The proposed method brings the advantage of providing a mapping from a
normative template to a TBI subject. In Fig. 6, we show a parcellation label
image, provided by the International Consortium for Brain Mapping (ICBM),
that has been mapped to a TBI subject. The mapping of a normal anatomy to
pathological anatomy will be potentially important to compare type, locality and
spatial extent of brain damages in the context of anatomically relevant regions
with associated brain function information.
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Fig. 4. Segmentation results for subject 1 at acute (top) and chronic (bottom) stages
using different methods. Our proposed method (III) has the best segmentation quality
overall. Red: white matter, green: gray matter, blue: cerebrospinal fluid, and yellow:
lesion.

4 Conclusions

We demonstrate work in progress towards a framework that estimates 4D anatom-
ical models from longitudinal TBI images. Our framework is fully automatic
and leverages information from a different domain (brain tumor) to generate
appearance models via domain adaptation. In addition to the new 4D anatomi-
cal modeling, we also presented a new domain adaptation method for generative
kernel density models, integrated with our anatomical model in a single objective
function (Eq. 2). Results on 3 TBI subjects show that our automatic method
yields segmentations that match ground truth of manual segmentations. Fur-
thermore, our method generates diffeomorphic deformation models as well as
non-diffeomorphic probabilistic changes that have potential for analyzing and
characterizing changes of normal appearing tissue and lesions. In the future, we
will quantify temporal brain changes across a large set of TBI patients which
were exposed to different treatment strategies. Our approach has potential to
significantly improve regional and connectivity analysis of individuals relative to
a population [4], by making use of the mapping of a normative template with
associated parcellation labels to TBI subjects, without tedious manual input.
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Fig. 5. Estimated 4D anatomical priors for TBI subject 3. First row shows the initial
atlas A(0) in the template space, with the healthy T1 image as a reference. Second
and third row show the personalized atlas Pt = A ◦ φt + Qt for acute and chronic
stages, with input T2 images shown. Our method is able to account for changes in the
left-frontal and mid-frontal regions across time.
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