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ABSTRACT
Quantitative imaging biomarkers are important for assess-
ment of impact, recovery and treatment efficacy in patients
with traumatic brain injury (TBI). To our knowledge, the
identification of such biomarkers characterizing disease
progress and recovery has been insufficiently explored in
TBI due to difficulties in registration of baseline and follow-
up data and automatic segmentation of tissue and lesions from
multimodal, longitudinal MR image data. We propose a new
methodology for computing imaging biomarkers in TBI by
extending a recently proposed spatiotemporal 4D modeling
approach in order to compute quantitative features of tissue
change. The proposed method computes surface-based and
voxel-based measurements such as cortical thickness, volume
changes, and geometric deformation. We analyze the poten-
tial for clinical use of these biomarkers by correlating them
with TBI-specific patient scores at the level of the whole brain
and of individual regions. Our preliminary results indicate
that the proposed voxel-based biomarkers are correlated with
clinical outcomes.

Index Terms— Imaging biomarkers, longitudinal MRI,
correlation analysis, clinical outcome.

1. INTRODUCTION

A typical approach for identification of important imaging
biomarkers is the correlation of image-derived features with
clinical scores. Most previous work in this respect explores
TBI outcome using biomarkers derived from diffusion ten-
sor imaging (DTI) [1, 2, 3, 4] because certain injury types
(such as diffuse axonal injury, DAI) are difficult to detect
via structural computed tomography (CT) and magnetic reso-
nance imaging (MRI). Studies on the use of structural or volu-
metric measures as biomarkers are limited due to the difficul-
ties in segmenting and registering MR images presenting se-
vere TBI [5]. Earlier research has been limited to single time
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point analysis [1, 2], while recent contributions have imple-
mented longitudinal analyses [3, 4] and, due to the difficulty
of registering images between time points, previous longitudi-
nal analyses have not typically gone beyond correlating imag-
ing findings at the level of the whole brain to clinical score
recorded at the same time point. To our knowledge, longitu-
dinal analysis of local brain changes, obtained via spatiotem-
poral analysis of multimodal serial image data with TBI, has
not been presented yet.

Spatiotemporal analysis in TBI imaging is challenging
because large geometric, appearance and topology changes
present difficulties for registration across time points and for
tissue and lesion segmentation [6]. In particular, over the
time course between impact and chronic stage, structures
may deform and lesions can disappear or appear due to in-
tervention, recovery or formation of new injuries. A recently
developed method for spatiotemporal model construction [7]
is capable of handling topological changes by using personal-
ized atlas construction and estimation of regions undergoing
alterations of topology. The method generates segmentation
labels of tissue and lesion classes, probability of local topo-
logical changes, and temporal deformations. In this paper,
we are building on this technology and propose new methods
for computing surface- and voxel-based imaging biomarkers.
These biomarkers include measures of cortical thickness, vol-
umes of brain lobes and tissue deformations. The potential of
our proposed methods to identifying imaging biomarkers of
TBI temporal evolution is illustrated using five subjects with
different types and severity of trauma.

2. METHOD

2.1. Spatiotemporal 4D modeling

Given multimodal images at time point t denoted by It =
{I(x1), . . . , I(xN )}t with N voxels indexed by positions x
and Mt the number of channels, outputs of the spatiotempo-
ral model construction [7] are a set of labels Lt at each time
point t which contains kt labels of all healthy and patholog-
ical classes and a diffeomorphic mapping ht between each



time point t to the personalized atlas space. By composing
ht between time points, we obtain the deformation Ti,j from
time point i to j (see Fig. 1).

Fig. 1. Spatiotemporal model for a subject with severe TBI.
Top: 3D display of WM (a), lesions (b) and (c) regular grid
for the acute time point. Bottom: Same displays for chronic
time point (d) and (e), and deformation mapping from actue
to chronic shown in (f).

2.2. Surface-based imaging biomarkers

Algorithm 1 Compute cortical thickness and change
Input: Segmentation labels Lt at time points i, j, deforma-
tions hi and hj between time points i, j to the atlas space.
Output: Cortical thickness Ci and Cj on WM surface of
time points i, j, and cortical thickness change Cj−i be-
tween time point i and j using j − i on WM surface of
time point i.
for t = each time point of i, j do

1: Extract WM surface→ St.
2: Compute distance map to outer GM boundary→ Dt

3: Evaluate the value of cortical thickness using Dt at
each point on WM surface St → Ct.

end for
4: Compose the the transforms hi and hj to get mapping
from time point j to i: Tj,i = hj ◦ h−1i .
5: Compute cortical thickness change at each location

Vj−i = Dj ◦ Tj,i −Di.
6: Evaluate the value of cortical thickness change Vj−i at
each point on WM surface Si of time point i→ Cj−i.
7: Report Ci, Cj as cortical thickness at time i and j. Re-
port Cj−i as the changes between time points i and j.

Given the spatiotemporal model with segmentation labels
and deformations, we can compute surface-based features at
each time point and between time points. In Algorithm 1,
we show our method for computing cortical thickness at each
time point and its changes between time points. We use dis-
tance transform for cortical thickness computation which is

made freely available as the ARCTIC package1. The primary
reason for implementing this method was to avoid the genera-
tion of topologically correct brain surfaces as required in tools
designed for high-quality normal appearing brain imaging,
and thus its robustness to noise and changes induced by le-
sions. Algorithm 1 is generic and can be generalized to other
surface-based measures such as displacement and curvature
on the surface.

We analyze the surface-based measures through their
sample means and histograms. The cortical thickness feature
in particular is modeled as a beta distribution, motivated by
the observation that the histograms are unimodal and non-
symmetric. Longitudinal changes in these measures are com-
puted through distances between sample means and distances
between histograms, here using the symmetrized Kullback-
Leibler divergence to measure distance between the beta dis-
tributions. Given X1 ∼ Beta(α, β) and X2 ∼ Beta(α′, β′),
the distance between these surface based random variables is
D(X1, X2) = 1

2 (DKL(X1, X2) +DKL(X2, X1)).

2.3. Voxel-based imaging biomarkers

We also explore voxelwise morphometric features as biomark-
ers, particularly volume and deformation measures. Volumet-
ric measures are directly obtained from the spatiotemporal
modeling via the 4D tissue segmentation, and deformation
measures are obtained from the diffeomorphic deformations
across time points, using the log of the Jacobian determinant
as the deformation measure. Specifically, given the diffeo-
morphisms hi and hj between time points i, j to the atlas
space, we obtain the mapping from i to j via composition,
Ti,j = hi ◦ h−1j and then compute log Jacobian determi-
nant log |D Ti,j | where D is the differential operator. The
influence of lesioned regions was reduced by masking.

2.4. Lobe-based analysis

So far in sections 2.2 and 2.3, biomarkers are defined over
the whole brain. We investigate the relationship between the
image findings in certain parts of the brain to clinical scores
by subdividing the brain into major lobes. The methodology
for parcellating the TBI brains into these lobes is presented
in Algorithm 2 by using a healthy brain template. Fig. 2

1http://www.nitrc.org/projects/arctic/.

Fig. 2. Brain parcellation mapped to a sample TBI subject.



shows the result of parcellation of WM surface of one sub-
ject with severe TBI. Parcellation is used to calculate lobe-
specific surface-based (Sec. 2.2) and voxel-based biomarkers
(Sec. 2.3).

Algorithm 2 Parcellation of biomarker of MRI with TBI
Input: Segmentation labels L, T1 MR image I , and the
biomarker B at time point i, skull-stripped template of
healthy brainH and associated brain parcellation label vol-
ume PH .
Output: Parcellation label PB for biomarker B at time
point i.
1: Combine subject WM, GM, and CSF→M
2: Use M to mask I to get skull-stripped image IM .
3: Do affine registration from H to IM → TH,i.
4: Apply the affine transformation TH,i to PH → P .
for (i, j, k) = each location of B with value but no parcel-
lation label assigned do

5: Search the nearest location with assigned parcellation
label, assign the label value to PB(i, j, k).

end for

3. RESULTS

We apply our analysis to multimodal image data of five TBI
patients with large lesions. Each subject was scanned at two
time points, an acute scan at ≈ 5 days and another chronic
scan at ≈ 6 months post injury. The image data of each sub-
ject include T1, T2, FLAIR, and GRE modalities. Fig. 3 illus-
trates T1 images of five subjects at the acute stage. We have
access to three clinical scores per subject: Glasgow Coma
Scale (GCS) at admittance, Glasgow Outcome Scale (GOS)
at acute, and GOS at the chronic phase, scores which are rou-
tinely used in the literature [1, 2, 3, 4] for correlation with
imaging findings.

We construct spatiotemporal models for each subject to
obtain segmentations and deformation maps between acute
and chronic time points [7], followed by calculation of the
imaging biomarkers such as cortical thickness, volume, and
deformation at every location in the brain. Fig. 4 (a) illustrates
visualization of both cortical thickness and spatial displace-
ment on the white matter surface at the acute time point, in
which cortical thickness change is represented as scalar over-
lay and displacements are shown as arrows. Fig. 4 (b) shows
the distributions of cortical thickness at acute and chronic
time points for the whole brain, where a trend of cortical
thickness decrease is observed.

Spearman’s rank correlation was used to assess the mono-
tonic dependence between imaging biomarkers and clinical
scores. Our first analysis of biomarkers is about global cor-
relation in which we analyze the relationship between whole-
brain image findings and clinical scores. Table. 1 lists the

Fig. 3. Axial views of acute T1 images of five subjects, show-
ing injury at different locations.

Fig. 4. Surface-based biomarkers shown for one subject:
(a) Visualization of cortical thickness change and spatial dis-
placement, (b) cortical thickness distributions at acute and
chronic time points.

GCS GOS1 GOS2 ∆ GOS
Cort. thick. -0.0513 0.0000 -0.1581 -0.5270
Displ. -0.4104 -0.7071 -0.3162 0.0000
WM volume 0.0513 0.7071 0.6325 0.7906
GM volume 0.3591 0.7071 -0.1581 -0.9487
CSF volume -0.1026 -0.3536 -0.1581 -0.5270
NHL volume -0.6669 0.0000 0.9487 0.9487
HL volume 0.0513 0.7071 0.9487 0.7379
Jac. 0.6669 0.7071 0.6325 0.3689

Table 1. Whole-brain correlations between imaging biomark-
ers and clinical scores. First row shows clinical scores, GOS1

is the GOS at acute time point, GOS2 is the GOS at chronic
time point, ∆ GOS = GOS2 − GOS1. The first column indi-
cates image-derived features: cort. thick. is the cortical thick-
ness, displ. is the mean of the spatial displacements. NHL
denotes non-hemorrhagic lesion and HL denotes hemorrhagic
lesion. Jac. is the mean of the log Jacobian determinant of the
deformation field.

Spearman’s correlation values between image-derived fea-
tures and clinical scores, where imaging biomarkers (3D) at
individual time points were used for correlation with GCS,
GOS1, and GOS2 and changes of imaging biomarkers (4D)
between time points were correlated with the differential ∆
GOS score. In general, the top three correlated features are
the Jacobian determinant of deformation field, volume of
non-hemorrhagic lesion and volume of hemorrhagic lesion.
We also find that the volume of non-hemorrhagic lesion has
high correlation with acute GCS but no correlation with acute



GOS. Contrary to this, the volume of the hemorrhagic lesion
has nearly no correlation with acute GCS but high correlation
with acute GOS. Although preliminary on our small sample
size, these observations may be of interest because both clin-
ical scores are measurements for acute time point but show
distinctive correlations with the two lesion types.

Regional analysis was conducted using brain parcellation
for studying each major lobe separately, yielding information
on the time trajectory of tissue after trauma. Fig. 5 shows
the lobar correlation analysis, where we show the result on 14
major lobes. In general, the lobar analysis agrees with whole
brain analysis but provides better insight on how different
functional regions are related to clinical outcome. We find the
correlations between GOS difference and the change of WM
volume are complementary to the correlations between GOS
difference and the change of GM volume. This finding agrees
with the trend in whole-brain analysis showing GM volume
decrease and WM volume increase in chronic MR scans.

4. CONCLUSIONS

We propose a new framework for computing imaging biomark-
ers by extending our recently developed spatiotemporal
model construction. This generates full spatiotemporal infor-
mation of imaging-related changes and provides descriptive
visualizations of TBI-related structural changes. Prelimi-
nary results show that the top three correlated biomakers are
Jacobian determinant of deformation field, volume of non-
hemorrhagic lesion and of hemorrhagic lesion. Due to the
small data set in this study, we do not draw any general con-
clusion from our analysis. However, we see our contribution
as a first step to extract quantitative parameters from longi-
tudinal multimodal imaging that will inform clinicians about
brain and lesion changes due to impact, but also changes
during recovery in regions not primarily affected by impact.
In the future, we will evaluate the proposed methodologies
using a larger data set, and also explore the addition of other
modalities such as DTI, where a spatiotemporal model of con-
nectomic changes would provide additional highly valuable
information.
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