
NeuroImage 55 (2011) 1577–1586

Contents lists available at ScienceDirect

NeuroImage

j ourna l homepage: www.e lsev ie r.com/ locate /yn img
DTI registration in atlas based fiber analysis of infantile Krabbe disease

Yi Wang a,b, Aditya Gupta b,⁎, Zhexing Liu b, Hui Zhang c, Maria L. Escolar d, John H. Gilmore b,
Sylvain Gouttard e, Pierre Fillard g, Eric Maltbie b, Guido Gerig e, Martin Styner b,f

a School of Electronics and Information, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
b Department of Psychiatry, University of North Carolina at Chapel Hill, NC, USA
c Department of Computer Science, University College London, London, UK
d Program for Neurodevelopmental Function in Rare Disorders, Clinical Center for the Study of Development and Learning, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
e Scientific Computing and Imaging Institute, School of Computing, University of Utah, Salt Lake City, UT, USA
f Department of Computer Science, University of North Carolina at Chapel Hill, NC, USA
g Parietal team, INRIA Saclay - Ile-de-France
⁎ Corresponding author. Fax: +1 9199667225.
E-mail address: adigupta@med.unc.edu (A. Gupta).

1053-8119/$ – see front matter © 2011 Elsevier Inc. Al
doi:10.1016/j.neuroimage.2011.01.038
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 4 November 2010
Revised 7 January 2011
Accepted 12 January 2011
Available online 19 January 2011

Keywords:
Diffusion tensor imaging
Registration
Krabbe disease
Fiber tracts
MRI
Evaluation metrics
In recent years, diffusion tensor imaging (DTI) has become the modality of choice to investigate white matter
pathology in the developing brain. To study neonate Krabbe disease with DTI, we evaluate the performance of
linear and non-linear DTI registration algorithms for atlas based fiber tract analysis. The DTI scans of 10 age-
matched neonates with infantile Krabbe disease are mapped into an atlas for the analysis of major fiber
tracts — the genu and splenium of the corpus callosum, the internal capsules tracts and the uncinate fasciculi.
The neonate atlas is based on 377 healthy control subjects, generated using an unbiased diffeomorphic atlas
building method. To evaluate the performance of one linear and seven nonlinear commonly used registration
algorithms for DTI we propose the use of two novel evaluation metrics: a regional matching quality criterion
incorporating the local tensor orientation similarity, and a fiber property profile based metric using normative
correlation. Our experimental results indicate that the whole tensor based registration method within the
DTI-ToolKit (DTI-TK) shows the best performance for our application.
l rights reserved.
© 2011 Elsevier Inc. All rights reserved.
Introduction

Diffusion tensor imaging (DTI) is a magnetic resonance imaging
(MRI) technique that enables the measurement of restricted diffusion
of water molecules in tissue to produce neural tract images. This
technique, although relatively new, has become increasingly impor-
tant for studies of anatomical and functional connectivity of the brain
regions. DTI is now extensively used to study the fiber architecture in
the living human brain via DTI tractography. This technique has
proven especially of value in clinical studies of white matter (WM)
integrity in the developing brain for diseases (Basser et al., 1994), such
as metachromatic leukodystrophy (MLD), cerebral palsy and Krabbe
(Escolar et al., 2009).

Krabbe disease (also called globoid cell leukodystrophy) is a rare,
autosomal recessive neurodegenerative disorder caused by a defi-
ciency of an enzyme called galactocerebrosidase, which aids in the
breakdown and removal of galactolipids found in myelin (Wenger
et al., 2001). The buildup of these galactolipids affects the growth of
the nerve's protective myelin sheath and causes degeneration of
myelin in both the central and peripheral nervous system. If left
untreated, children with Krabbe's disease generally experience severe
neurologic deterioration and death. (Escolar et al., 2005). The major
forms of the disease include an early onset (infantile) form and a late
onset (juvenile or adult) form. The early onset form is a more severe
type and is characterized by a rapidly progressing neurological
deterioration resulting in a vegetative state and typically death within
the first few years of life. The infantile form is seen in 1 for every 70
000–100 000 (Wenger et al., 2001). Children with infantile Krabbe
disease are seen to have hyperintense lesions within the white matter
on T2-weighted MR images. Particularly the abnormal hyperintense
signal is observed in the posterior limb of the internal capsule, the
whitematter adjacent to the lateral ventricles, the centrum semiovale,
the corona radiate and the white matter and dentate nuclei of the
cerebellum. Hematopoietic stem cell transplantation has shown
promise as therapy for Krabbe disease based on the fact that donor
leukocytes can provide the deficient enzymes to cells in the peripheral
and central nervous system. Treatment at asymptomatic, neonate
stage has shown to stop disease progression (Escolar et al., 2005).

Water motion in myelinated white matter is anisotropic and DTI-
MR signal is sensitized to the microscopic movement of water
molecules. Myelinated white matter is seen to have higher anisotropy
values on DTI derived anisotropy maps (Provenzale et al., 2005).
Previous studies show that patientswith infantile Krabbe disease have
lower fractional anisotropy (FA) across the corpus callosum (Guo
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et al., 2001) and along the DTI fiber bundle of internal capsules (IC)
when compared with healthy age-matched controls (Escolar et al.,
2009). Escolar et al. (2009) also showed a correlation of pretreatment
FA measurements with post treatment gross motor function.

Based on the above research findings (Escolar et al., 2009; Goodlett
et al., 2009), we use an atlas based fiber tract analysis for analyzing
DTI images of Krabbe subjects. For an accurate analysis it is crucial to
establish a registration based voxel-wise correspondence between a
normal control neonate DTI atlas (with prior information of fiber tract
locations) and the Krabbe subjects' DTI images. The research
presented in this paper highlights our work to determine the best
state-of-the-art approach to individually register DTI images of
Krabbe subjects into the atlas space.

Challenges in DTI registration for Krabbe neonates

The registration of diffusion tensor images is particularly chal-
lenging when compared to registering scalar images as DTI data is
multi-dimensional and the tensor orientations after image transfor-
mations must remain consistent with the anatomy (Alexander et al.,
2001; Gee and Alexander, 2005). The application of the registration
methods on DTI of Krabbe neonates makes the problem even more
challenging due to the following factors. Most of the registration
methods discussed in this paper are based on the intensity of the fiber
tracts in the fractional anisotropy maps and as discussed earlier, the
Krabbe patients have lower FA values as compared to the control
group. Lower FA values are due to the anisotropy caused by the
demyelination of the nerves. Relatively rapid changes occur in white
matter during the first year of life restricting the control provided age
matched controls to a relatively narrow age range relative to the
patient. Also regional variations between FA values in white matter
sites could cause inaccurate comparisons and hence the analysis
needs to be performed in specific well definedwhitematter structures
(Provenzale et al., 2005). In addition to these points, the analysis in
this paper is restricted to neonates and this adds to the complexity as
DTI MRI of neonates have low signal-to-noise (SNR) and poorly
developed white matter tracts.

DTI registration algorithms

DTI registration algorithms can be broadly categorized into two
groups (Zhang et al., 2006). The first kind uses scalar images derived
from DTI images and performs deformable registration with traditional
image registration algorithms (Schnabel et al., 2001; Joshi et al., 2004;
Andersson et al., 2007; Christensen et al., 1994; Christensen et al., 1997).
Although this groupdiscards the orientation component of the data, it is
themost commonly usedmethod because of the simplicity and the ease
of implementation. The second group of DTI registration algorithms
directly use higher order information of diffusion tensor images like the
correspondingprincipal eigenvectors (Yapet al., 2009), or the full tensor
information (Zhang et al., 2006; Yeo et al., 2008). Due to the complexity
involved and the difficulty in realizing such algorithms, this group has
not been explored extensively.

In this paper, we investigate eight DTI registration approaches
from both groups, available either in-house or publicly:

1) Affine registration by Studholme et al. (1999) using normalized
mutual information as a registration metric within the Image
Registration Toolkit1 (referred to as Affine in this paper).

2) B-spline based registration by Schnabel et al. (2001) using
normalized mutual information as a registration metric within the
Image Registration Toolkit (referred to as B-spline in this paper).

3) B-spline based registration by Andersson et al. (2007) using
weighted sum of scaled sum-of-squared differences as a registra-
1 http://www.doc.ic.ac.uk/~dr/software.
tion metric via the “fnirt” implementation within FSL2 (referred to
as FSL in this paper).

4) Diffeomorphic demons3 by Vercauteren et al. (2009) using sum-
of-squared differences as a registration metric3 (referred to as
Demons in this paper).

5) Log demons3 by Vercauteren et al. (2008) using sum-of-squared
differences as a registration metric (referred to as Demons-log in
this paper).

6) Fluid registration by Joshi et al. (2004) using sum-of-squared
differences as a registration metric (referred to as Fluid in this
paper).

7) Tensor-based registration by Zhang et al. (2006) using explicit
optimization of tensor reorientation in an analytic manner within
DTI-ToolKit4 (referred to as DTI-TK in this paper).

8) Diffeomorphic tensor-based registration by Yeo et al. (2008) using
the exact finite strain gradient within MedINRIA5 (referred to as
MedINRIA in this paper).

The first six methods are based on normalized FA maps whereas
the last two are whole tensor based registration methods. An
evaluation of algorithms from both the groups will give an insight
into the higher performance of one group over the other, particularly
considering the complexities in registering Krabbe neonates. To
evaluate the performance of the registration algorithms, we introduce
two novel evaluation metrics. The first metric is based on the
matching quality of the local tensor orientation and atlas anisotropy
in each voxel. The voxel-wise metric values are averaged over
predefined regions within the atlas (such as the genu, splenium,
internal capsules and uncinates). The second evaluation metric
employs a normative fiber tract profile based criterion, which
computes the correlation of the FA profile along the major tracts in
the registered dataset and the atlas.

Materials and methods

Subjects

The studies are approved by the institutional review board at the
University of North Carolina. Due to the difficulty of Krabbe data
acquisition, only ten neonates with Krabbe disease identified by
family history or through the New York State screening programwere
used in this study. The ten Krabbe neonates are aged 8 to 67 days
(mean: 22 days) at the time of scan. These subjects were referred to
the Program for Neuro-developmental Function in Rare Disorders
(NFRD) at the University of North Carolina at Chapel Hill for
assessment of baseline neurologic function before receiving unrelated
umbilical cord blood transplantation at Duke University Medical
Center. The assessment included a detailed neurodevelopmental
evaluation concurrent with a brain MR imaging within the first four
weeks of life. 377 age-matched neonatal controls (aged 7 days to
92 days with a mean value of 23 days) were recruited in a separate,
unrelated study of brain development in normal controls and high risk
offspring as part of UNC's Conte center (Knickmeyer et al., 2008).

Scans

All neonates (control and Krabbe subjects) were scanned without
sedation on an Allegra 3T head-only MR scanner (Magnetom Allegra;
Siemens, Erlangen, Germany). Two separate DTI protocols were
employed due to the change in DTI acquisition methodology. Protocol
1, the protocol employed in scans — before July 2008, acquired seven
4 http://www.nitrc.org/projects/dtitk.
5 http://www-sop.inria.fr/asclepios/software/MedINRIA/.
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images, one without diffusion gradient (b=0) and six diffusion
weighted images along unique gradient directions with b=1000 s/
mm2 (TR=4219 ms; TE=92.2 ms; in-plane resolution=2×2 mm2;
slice thickness=2 mm; five averages). Since July 2008, a newer
protocol (protocol 2) was employed to improve SNR and the gradient
direction acquisition scheme. Protocol 2, forty-nine images are
acquired, seven without diffusion gradients (b=0) and 42 diffusion
weighted images along unique gradient directions with b=1000 s/
mm2 (TR=7680 ms; TE=82 ms; in-plane resolution=2×2 mm2;
slice thickness=2 mm; one average). The first seven Krabbe neonates
as well as all healthy control subjects were scanned with protocol 1
(K1 to K7). The three final Krabbe neonates were scanned with
protocol 2 (K8 to K10). No sedation was used; all scans were
performed with subjects fully asleep. Neonates were fed before
scanning, then swaddled, put to sleep and were fitted with ear
protection and had their heads secured in a vacuum-fixation device. A
physician or nurse was present during each scan; a pulse oximeter
was used to monitor heart rate and oxygen saturation. More details of
the image acquisition and processing can be found in Gilmore et al.
(2004).

DTI atlas building

In order to build the normativeDTI atlas, we used a scalar, unbiased
diffeomorphic atlas building method based on a nonlinear high-
dimensional fluid deformation method (Joshi et al., 2004; Goodlett et
al., 2006). The DTI derived intensity-histogram normalized FA is
selected as the feature for atlas building. Nonlinear transformations
are applied on the feature image to produce a deformation field for
each image. All the tensor images are then reoriented into the
unbiased space using the finite strain approximation proposed by
Alexander et al. (2001). The atlas is thendevelopedby averaging all the
reoriented tensor images in log-Euclidean space (Arsigny et al., 2006).
The selection of normalized FA image as the feature is based on the
studies of Liu et al. (2010), wherein the authors show that this feature
is the best scalar feature for DTI atlas building among all the other
scalar measurements and their combinations. We did not investigate
the use of alternative atlas building methods as part of this paper.

Pre-processing of Krabbe datasets

All the Krabbe datasets were subjected to a quality control (QC)
using the DTIPrep6 tool to identify any artifacts in the diffusion
weighted images (DWI), as well as to correct for motion and eddy
current artifacts. The datasets were also cropped or embedded into
consistent image dimensions. Diffusion tensors were then estimated
for each dataset from the QC'ed DWIs using weighted least squares
tensor estimation (Salvador et al., 2005). Skull stripping was
performed semi-automatically for all Krabbe datasets by a trained
expert.

Registration methods

In this section, we briefly present the working principle of the
registration algorithms evaluated in this paper. The first five methods
are based on intensity-histogramnormalized FA images, while the last
two are based on the whole tensor information.

Affine registration is a linear transform method that is commonly
used as an initialization step for most deformable registrations
(Studholme et al., 1999). The Affine registration used in this paper
optimizes fifteen linear parameters (three for rotation, translation and
scaling and six for skewing— defining the skewing angles in different
planes) by maximizing the normalized mutual information. This is
6 http://www.nitrc.org/projects/dtiprep.
accomplished in a multi-resolution framework using Gaussian
smoothing to compute lower resolution steps.

B-spline is a parametric, non-rigid image registration method
based on multi-resolution adaptable free-form deformations using
B-splines (Schnabel et al., 2001; Rueckert et al., 1999). Similar to
Affine, this method also maximizes normalized mutual information in
a multi-resolution framework using Gaussian smoothing to compute
lower resolution steps.

FSL (or rather “FSL-B-Spline”) is similar to the previous method in
that it represents displacement fields as B-splines on a regular grid
(Andersson et al. 2007). But in this method the regularization of the
field is based on membrane energy and the registration criterion is
based on the weighted sum-of-squared intensity differences and the
membrane energy.

Demons is a non-parametric, diffeomorphic deformable image
registration algorithm based on the Thirion (Thirion, 1998) Demons
warp software in the Insight Toolkit (Vercauteren et al., 2007a,b and
Vercauteren et al., 2009). The deformation model is based on optical
flow and the registration criterion is based on the sum-of-squared
intensity differences.

Demons-log is similar to the above Demons but works completely
in the log-domain, i.e. it uses a stationary velocity field to encode the
spatial transformation as its exponential (Vercauteren et al. 2008).

Fluid is a non-parametric, diffeomorphic deformable image
registration that employs a dilatational-viscous fluid flow formulation
(Joshi et al., 2004) with sum-of-squared intensity differences as the
registration criterion.

DTI-TK is a non-parametric, diffeomorphic deformable image
registration (Zhang et al., 2007) that incrementally estimates its
displacement field using a tensor-based registration formulation
(Zhang et al., 2006). It is designed to take advantage of similarity
measures comparing whole tensors via explicit optimization of tensor
reorientation (Zhang et al., 2006).

MedINRIA is also a diffeomorphic deformable image registration
(Yeo et al., 2008) that incorporates the exact finite strain gradient into
a diffeomorphic DTI registration scheme.

In order to be consistent across methods, we adopted the
deformation fields from each registration method and performed
DTI reorientation and interpolation using the same software (Resam-
pleDTILogEuclidean7) based on standard finite strain tensor realign-
ment (Alexander et al., 2001).

For all the registration methods, the default parameters were used
except in the case of Fluid, wherein the parameters were slightly
modified for comparable performance.
Evaluation of registration accuracy

In centralWM, FA values in DTI of neonates are considerably lower
than those at older ages (Gilmore et al., 2003). The WM pathology
causes FA values of Krabbe patients to be even lower than those of
healthy age-matched controls. In addition, Krabbe subjects are likely
to have regionally differing levels of white matter pathology. All of
these observations indicate that the development of an evaluation
criterion for the registration algorithms is a challenging task, but also
that the results may not easily be generalized to other settings.

For our evaluation, we tested one linear and seven nonlinear
algorithms to determine themost suitablemethod for our application.
We mainly focused on the tracts of i) the genu of the corpus callosum
ii) the splenium of the corpus callosum iii) the internal capsule of both
the hemispheres (left and right) and iv) the uncinate tracts (left and
right). The same tests can be further extended to a larger selection of
tracts.
7 https://www.ia.unc.edu/dev/.
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Fig. 1. Color-oriented FA images of the atlas, subjects (K1 and K8) and eight registration results.

1580 Y. Wang et al. / NeuroImage 55 (2011) 1577–1586
While there are several ongoing initiatives towards an unbiased
evaluationof deformable registration algorithms (Studholme, 1997; Cao
et al., 2005), there is currently no widely accepted metric standard for
the evaluation of nonlinear registration algorithms, evenmore so forDTI
registration. The following sections discuss our evaluation strategy.

Visual assessment
The first step of our evaluation strategy consists of a qualitative,

visual quality control. To achieve this, we visualize FA and color-
oriented FA images of all the registered datasets using a multi-dataset
overview with MRIWatcher.8 While this kind of assessment is
subjective, significant errors can be easily detected. The registration
is judged to have failed on datasets that show large errors.

Regional matching quality criterion
For the second step in our evaluation framework, we propose a

novel regional matching criterion that is tailored to atlas based
analysis methods. In our specific setting, we have the following con-
ditions: 1) the streamline fiber tractography employed in our fiber
based analysis framework follows a concept developed by Mori et al.
(1999) and Xu et al. (2002), which is based on the local principal
eigenvectors eP (i.e. the vector associated with the largest of the
three principal directions of the diffusion tensor: λ1≥λ2≥λ3); 2) fiber
tracts of the genu and splenium of the corpus callosum as well as
both hemispheric internal capsule and uncinate tracts have higher
intensity in FA images as compared to their neighboring tracts.
8 https://www.ia.unc.edu/dev/download/mriwatcher.
The orientation agreement between the principal eigenvectors of
the individual subject (source) and the atlas (target) is the basis of
this criterion. In order to enhance the specific regions associated with
the selected fiber tracts and to render the method stable against small
changes in the regional definition, we use the FA value of the atlas as a
weight on the local orientation criterion. Thus, the proposed similarity
value sv is defined for each voxel as:

sv = jePI⋅ePAjFAA ð1Þ

where ePI is the subject's principal eigenvector, ePA is the atlas'
principal eigenvector, and FAA∈(0,1) is the atlas FA value. Notation | |
in the above equation indicates the absolute value and ‘∙’ indicates the
dot product. In the particular case that the principal eigenvectors of
the individual subject and the atlas are oriented in the same or fully
opposite direction, the term |ePI⋅ePA| becomes ||ePA||2, which is 1, and
sv will be equal toFAA. Using this local criterion, we compute a scalar
matching image representing the registration quality at each voxel.

Next, regions of interest (ROIs) on the atlas are defined
representingWM sections the major fiber tracts. The average regional
similarity value on these ROIs represents the regional matching
quality criterion. Thus for region r, the average similarity value sr is:

�sr =
1
Nr

∑
Nr

i=1
sv;i ð2Þ

where Nr is the number of voxels in region r, sv, i is the similarity value
at voxel i. Larger values of sr represent better registration accuracy in
our settings.

https://www.ia.unc.edu/dev/download/mriwatcher


Fig. 2. Regional definition ina)3Dbrain, b) andc)on twoaxial FA slices.Ind), 3Dvisualizationof targetfiber tracts (red for genu, yellowfor splenium, celeste&smalt for left and right internal
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Fiber property profile based criterion
As a third step in our evaluation framework, we propose another

novel matching criterion that evaluates the DTI property measure-
ments along the fiber tracts, called tract profiles (Goodlett et al.,
2009). The fiber tracts tracked in atlas space are resampled in each
registered DTI dataset. Using a prior definition of a tract origin
plane, which defines a curvilinear re-parameterization of the tracts,
corresponding average tract property profiles (we focus on FA
profiles) are extracted from each individual fiber tract. The average
is thereby computed across the individual streamlines and the pro-
file is plotted along the fiber tract.

For the evaluation, we calculated the normative correlation
between each fiber tract profile in the registered subjects' DTI
datasets and the atlas. For this criterion also we expect larger values
to represent better accuracy in the registration. It is further
noteworthy that high degrees of white matter pathology are likely

capsules and peachblow & green for left and right uncinate).
Fig. 3. Average FA profiles of the genu for the atlas and the ten subjects for the eight registratio
the fiber tracts.
to decrease this evaluation metric, though that does not lessen its
comparative merit in the presented work here.
Results

Visualization results

We present detailed results for two individual representative
cases, K1 (with protocol 1) and K8 (with protocol 2), as well as the
summary results across the whole Krabbe population of 10 subjects.
As illustrated in Fig. 1, qualitative inspection of the registration results
of K1 and K8 indicate that all deformable registration algorithms
show satisfactory results. The linear Affine registration method fails to
map the fiber tracts of the subjects into the atlas space, as clearly seen
for the internal capsule tracts. Several qualitative differences can be
nmethods. The black profile indicates mean of the Krabbe subjects. X-axis: points along

image of Fig.�2
image of Fig.�3


Fig. 4. Average FA profiles of the splenium for the atlas and the ten subjects for the eight registration methods. The black profile indicates mean of the Krabbe subjects. X-axis:
points along the fiber tracts.

Table 1
Average similarity values for various fiber tracts. Results significantly different from the best performance algorithm are marked with * (pb5%) and ** (pb1%).

Fiber Tracts Affine B-spline FSL Demons Demons-log Fluid DTI-TK MedINRIA Best Performance

Genu MEAN 0.1177 0.1098 0.1257 0.1247 0.1233 0.1237 0.1272 0.124 DTI-TK
STDEV 0.0055 0.0063 0.0031 0.0028 0.0033 0.0025 0.0032 0.0042
p-value 0.0007** 0.0001** 0.0174* 0.0924 0.0184 0.0101* 0.0538
Rank 7 8 2 3 6 5 1 4

Splenium MEAN 0.1414 0.132 0.1506 0.1494 0.1473 0.1475 0.1519 0.149 DTI-TK
STDEV 0.0062 0.0071 0.0029 0.0038 0.0025 0.0025 0.0037 0.0059
p-value 0.0008** 0.0001** 0.3114 0.1179 0.0043 0.0089** 0.1711
Rank 7 8 2 3 6 5 1 4

Left hemisphere internal capsule MEAN 0.1325 0.1501 0.1908 0.1882 0.187 0.1843 0.1925 0.1895 DTI-TK
STDEV 0.0091 0.0166 0.0026 0.0026 0.0045 0.0023 0.0032 0.0018
p-value 0.0001** 0.0001** 0.3014 0.0243 0.0186 0.0001** 0.0295*
Rank 8 7 2 4 5 6 1 3

Left hemisphere uncinate MEAN 0.0746 0.0883 0.1357 0.1181 0.1158 0.0926 0.135 0.1317 FSL
STDEV 0.0219 0.0156 0.0018 0.0215 0.0224 0.0203 0.0039 0.0027
p-value b0.0001** 0.0001** 0.0475 0.0314 0.0001** 0.6117 0.0039**
Rank 8 7 1 4 5 6 2 3
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seen between the registration results, like the result from the B-spline
algorithm captures the local anatomy and orientations poorly when
compared to the other methods.
9 http://www.slicer.org/.
10 http://www.itksnap.org/.
Regional matching quality criterion results

To test the regional matching quality criterion, wemanually defined
six regions on the atlas labeled 1 to 6 (Fig. 2). The regions defined
represent the six tracts of interest — genu, splenium, internal capsules
(left and right) and uncinate fasciculi (left and right). Fig. 2(a) shows
the 3D visualization of ROIs' position inside the brain with Slicer.9 The
relationship between theROIs and the atlas FA image in 2Dare shown in
Figs. 2(b) and (c) using ITK-SNAP10 (Yushkevich et al., 2006). Fig. 2(d)
shows the 3D color visualization of the target fiber tracts— genu (red),
splenium (yellow), right hemisphere internal capsule (purple), left
hemisphere internal capsule (blue) and uncinate (green) with Slicer
(Catani and Thiebaut de Schotten, 2008; Wakana et al., 2004).

http://www.slicer.org/
http://www.itksnap.org/
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Fig. 5. Average FA profiles of the left hemispheric internal capsule for the atlas and the ten subjects for the eight registration methods. The black profile indicates mean of the Krabbe
subjects. X-axis: points along the fiber tracts.
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The average similarity values for each registration method for
genu, splenium, left hemisphere internal capsule and left hemi-
sphere uncinate is shown in Table 1. The analysis on the right
hemisphere internal capsule and uncinate show similar results to
their corresponding left hemisphere tracts and hence their tables
are not shown. The values in the tables indicate that the similarity
values of subject K1 and subject K8 agree with the visualization
results. This illustrates the effectiveness of our regional matching
quality criterion as a potential for quality control of DTI registration,
as well as a valid evaluation measure that highlights differences
across methods.

Results from Table 1 show that DTI-TK gives the best results. This
algorithm shows the best performance for the tracts of genu, splenium
and both hemispheric internal capsules. For the uncinate fasciculi, the
performance is second best to the FSL method. None of these seven
registration methods can be said to give optimal results on each ROI
for every subject.

We repeated the full evaluation with slightly modified regional
definitions (the six regions were independently and manually
redefined). The ranking of the methods was preserved in all regions,
thus indicating that the computed regional matching criterion is
stable and reliable.

Fiber property profile based criterion results

Fiber tractography of the genu, splenium, both hemispheric
internal capsules and uncinates is performed on the atlas. Fiber
bundles of each subject are then created using themethod in Goodlett
et al. (2009). The FA profiles along the fiber tracts — genu, splenium,
left internal capsule and left uncinate, generated from the seven
registration methods are plotted for the atlas and the ten subjects
(Figs. 3–6).

Analysis of the FA profiles gives further information on the
performance of the registration methods. Considering all the fiber
tracts, the Fluid registration results in slightly higher magnitudes of
the subjects' FA profiles compared to the other methods. The selected
tracts are the tracts with the highest FA intensities and hence higher
values of FA indicates better mapping of the subject into the atlas and
hence better registration. So based on this criteria, Fluid has a slightly
better performance. The other aspect that can be interpreted though
only visually from the FA profiles is the visual match of the average
Krabbe profile with the atlas profile. In that regard, Affine registration,
followed by B-spline, clearly shows a poor mapping. FSL and both
the tensor based registration methods — DTI-TK and MedINRIA, show
a strong similarity of the FA profiles of the subjects to the atlas FA
profile, with a slightly better matching for DTI-TK. The mean of the
Krabbe subjects (black line) is very similar to the atlas (red line) both
in terms of magnitude and shape for these three algorithms. In the
case of Fluid, Demons and Demons-log the mean of the Krabbe subjects
has a very similar shape profile as the atlas but has a different (higher)
magnitude. Thus, considering the magnitude of the FA profiles, Fluid
shows a higher performance than the other methods, whereas the
shape of the FA profiles match visually best for the DTI-TK.

The FA profiles indicate the quasi-Euclidean distance of the tensors
to a spherical shape and from the shape and magnitude of the profiles
it appears that the tensor based methods are compensating the shape
of the tensors (to make themmore spherical— isotropic) while trying
to map the tensors in to the atlas space. In a certain sense, it appears
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Fig. 6. Average FA profiles of the left hemispheric uncinate for the atlas and the ten subjects for the eight registration methods. The black profile indicates mean of the Krabbe
subjects. X-axis: points along the fiber tracts.
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that these methods are slightly over-fitting the data. Correlation
coefficients between the FA profiles in the registered subjects' dataset
and the atlas for all the registration methods are shown in Table 2. No
one algorithm shows the best performance for all the tracts. Demons-
log shows the best performance for both the internal capsules and the
right uncinate fasciculus. DTI-TK and FSL show the best result for the
splenium, genu and the left uncinate fasciculus. Hence it is difficult to
identify one best algorithm based on the normative tract profile
Table 2
Correlation coefficients between FA profile for various fiber tracts in registered subjects and t
performance algorithm are marked with * (pb5%) and ** (pb1%).

Fiber Tracts Affine B-spline FSL

Genu MEAN 0.5082 0.9057 0.9506
STDEV 0.2851 0.0691 0.0325
p-value 0.0007** 0.0721
Rank 8 6 1

Splenium MEAN 0.6431 0.8594 0.8868
STDEV 0.2884 0.0709 0.0629
p-value 0.0200* 0.1042 0.7485
Rank 8 4 2

Left hemisphere internal capsule MEAN 0.5712 0.8445 0.9453
STDEV 0.0947 0.1456 0.0223
p-value b0.0001** 0.0233 0.0172
Rank 8 7 5

Left hemisphere uncinate MEAN 0.5568 0.8546 0.9146
STDEV 0.133 0.051 0.0292
p-value b0.0001** 0.0018**
Rank 8 6 1
correlation evaluation though summarized over all fiber tracts
Demons-log followed by DTI-TK seems to do the best.

Based on the correlation coefficients, we used an additional
evaluation criterion to determine the number of subjects' ROIs that
the algorithms maps correctly into the atlas. We considered three
different correlation values of 0.8, 0.85 and 0.9 as thresholds and
correlation co-efficient below the threshold aremarked as a failure for
mapping the fiber tract into the atlas. Table 3 shows the number of
he atlas for the eight registration algorithms. Results significantly different from the best

Demons Demons-log Fluid DTI-TK MedINRIA Best Performance

0.9039 0.9227 0.926 0.9487 0.9369 FSL
0.0955 0.0429 0.068 0.0315 0.0296
0.2017 0.1262 0.2644 0.8362 0.2822
7 5 4 2 3
0.8173 0.8386 0.8648 0.8927 0.8368 DTI-TK
0.064 0.0559 0.0952 0.0479 0.074
0.0013 0.0114 0.2037 0.0585
7 5 3 1 6
0.9617 0.9693 0.9578 0.9499 0.9318 Demons-log
0.0145 0.0104 0.0106 0.0118 0.0272
0.0546 0.0048 0.0052 0.0015
2 1 3 4 6
0.8923 0.8988 0.7282 0.8995 0.8625 FSL
0.0808 0.0993 0.0838 0.0318 0.058
0.7439 0.9765 0.0001** 0.195 0.0046**
4 3 7 2 5
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Table 3
Number of failures in mapping the subject fiber tracts to the atlas with a correlation value greater than 0.85 for the seven registration algorithms. Best performance: DTI-TK.

Affine B-spline FSL Demons Demons-log Fluid DTITK MedINRIA

Genu 9 2 0 2 1 1 0 0
Splenium 9 3 3 7 5 2 2 3
Internal Capsule Left 10 3 0 0 0 0 0 0
Internal Capsule Right 10 1 1 0 0 0 0 0
Uncinate Left 10 5 0 3 2 9 0 2
Uncinate Right 10 7 3 0 0 9 3 2
Total Failed Cases 58 21 7 12 8 21 5 7
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instances the algorithms fail to map the six DTI fiber bundles into the
atlas for the ten subjects for a threshold of 0.85.Affine fails for almost all
the cases even for the 0.8 threshold. DTI-TK results in minimum
number of failures for all the three thresholds and can be considered as
the best algorithm based on this criterion. The success of DTI-TK in
correctly mapping the six fiber tracts for all the subject cases can be
attributed to the fact that the algorithm exploits the whole tensor
orientation information for registration compared to the scalar FA
values. The Demons-log and the FSL algorithms show the next best
performance. This can be attributed to a histogram based intensity
normalization step of the subjects to the atlas prior to these two
registration methods. The small variation in the intensities of the six
selected tracts results in the FA based registration methods mapping
certain regions of the subject to the atlas more accurately than the
other regions. The tensor based methods use the orientation
information and hence have an advantage in mapping fiber tract
related information of the subjects to the atlas more accurately.
Discussion

In this paper, we evaluated one linear and seven nonlinear
registration methods for use in an atlas based DTI fiber analysis
framework on 10 neonates with infantile Krabbe disease. No
difference was observed between the two different protocols in
terms of their registration accuracy. We used visual evaluation,
tensor orientation based criteria, FA profiles based criteria, the
correlation of the FA values and the number of failures to evaluate
the performance of the registration methods. By visual evaluation,
the linear Affine registration method and the B-spline method show
a poor matching of the subject to the atlas. The regional matching
quality criterion based on the local orientation of the tensors, which
is highly relevant to fiber tract analysis, shows that on average, the
whole tensor registra1tion using explicit optimization of tensor
reorientation — DTI-TK method performed better than the other
methods. The criterion based on the correlation values of the sub-
jects' to the atlas shows that Demons-log, followed by DTI-TK and FSL
show a better performance. Considering the number of failure rates
in mapping the subjects' fiber tracts to the atlas, theDTI-TK algorithm
has the lowest failure rate.

From the results obtained based on the various criteria, it appears
that all the deformable methods give a satisfactory performance.
Depending on the selected criteria, different algorithms show
slightly higher performance than the others. Of the above discussed
criteria, for DTI fiber tract analysis, the local orientation of the tensors
and fiber mappingminimal failure rate are themost crucial. Based on
these two criteria, we recommend the DTI-TK registration method
based on explicit optimization of tensor reorientation for fiber tract
analysis.

As is the case with any evaluation metric, the question can be
raised, whether some of these evaluation measures could be used for
the purpose of registration itself. The answer to this question with
respect to the regional matching criterion, which can be represented
in a voxel-wise manner, is currently under investigation in our lab.
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