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Abstract

By combining a static bidomain heart model with a torso conduction model, we studied the
inverse electrocardiographic problem of computing the transmembrane potentials (TMPS)
throughout the myocardium from a body-surface potential map, and then used the recovered
potentials to localize myocardial ischemia. Our main contribution is solving the inverse problem
within a constrained optimization framework, which is a generalization of previous methods for
calculating transmembrane potentials. The framework offers ample flexibility for users to apply
various physiologically-based constraints, and is well supported by mature algorithms and solvers
developed by the optimization community. By avoiding the traditional inverse ECG approach of
building the lead-field matrix, the framework greatly reduces computation cost and, by setting the
associated forward problem as a constraint, the framework enables one to flexibly set
individualized resolutions for each physical variable, a desirable feature for balancing model
accuracy, ill-conditioning and computation tractability. Although the task of computing
myocardial TMPs at an arbitrary time instance remains an open problem, we showed that it is
possible to obtain TMPs with moderate accuracy during the ST segment by assuming all cardiac
cells are at the plateau phase. Moreover, the calculated TMPs yielded a good estimate of ischemic
regions, which was of more clinical interest than the voltage values themselves. We conducted
finite element simulations of a phantom experiment over a 2D torso model with synthetic ischemic
data. Preliminary results indicated that our approach is feasible and suitably accurate for the
common case of transmural myocardial ischemia.

Index Terms

Inverse Problem; Electrocardiography; Finite Element Method; Myocardial Ischemia; Constrained
Optimization

[. Introduction

A leading cause of death in the western world, myocardial ischemia (or more severely,
infarction) occurs when cardiac myocytes are damaged for lack of oxygen or nutrients,
normally caused by occlusion of coronary arteries. Electrocardiographic (ECG) diagnosis of
myocardial ischemia relies on detecting the elevation/depression of the normally isoelectric
ST segment, which is caused by the injury currents resulting from the transmembrane
voltage difference between healthy and ischemic tissues. However, ECG-morphology
analysis has limited ability to localize ischemic regions, and a computerized method
achieving that function would effectively promote clinical diagnosis and treatment. We
attempted to localize ischemia by inversely computing the transmembrane potentials
(TMPs) throughout the myocardium from the voltages measured at the body surface. We
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proposed a constrained optimization framework for solving this inverse source problem,
which is the main contribution of this paper.

The TMP is typically the source model for myocardial ischemia studies. While there are
extensive studies on inverse ECG problems recovering epicardial potentials or activation
sequences, research has been limited on reconstructing TMPs within the heart from the
body-surface potentials. Because of its ill-posed nature, it still remains an open problem to
accurately calculate myocardial TMPs at an arbitrary time instance. Methods for localizing
myocardial ischemia have been proposed such as the model-based optimization, the level set
method, or calculating the ST-segment integral of TMPs [1], but they do not directly
calculate TMPs.

Our study was based on the hypothesis that one may obtain modestly accurate TMPs at one
time instant in the ST interval. Although the reconstructed voltage values are not sufficiently
accurate for precise quantification of the TMPs, their qualitative “patterns” may enable a
satisfying recovery of the size and position of ischemic regions. We modeled the ECG
problem by combining a mono-domain torso model with a static bidomain heart model,
which represents the cardiac source by the distribution of TMPs. A framework for
computing TMPs was proposed in [2], in which the inverse problem was formulated as a
minimization problem constrained by the associated forward problem, and was solved by a
one-shot adjoint method. This framework is limited to quadratic objective functions with
equality constraints only. We generalized their constrained optimization framework so as to
enable broader types of objective functions, both equality and inequality constraints, and
flexibility for applying various physiologically-based constraints. It also has two advantages
over the traditional way of solving inverse ECG problems, which first forms a lead-field
matrix and then “inverts” it by regularization techniques. First, our method does not
compute the lead-field matrix and thus has lower computational cost. Second, it allows a
flexible setting of the discretization resolution for the TMPs and other state variables, a
desirable feature as the ill-posed inverse problem typically requires different resolutions for
the sought-for unknowns and other state variables [3], [4].

Il. Methods
1) The Bioelectric Model

Our bioelectric model consists of a static bidomain heart model combined with a mono-
domain torso model, as shown in Fig 1(B). The combined model can be simply written as a
Poisson equation as follows:

0, x €Q,
V- oVu(x)= { V.oVu(x)., xeH. @
n, - oVu(x)=0, x € dQ, o)
()= torso potential, x€Q,
" | extracellular potential, x € H, ®)
o ()= oi+0., Xx€H,
B Oy, x € Q. (4)
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The first row of (1) describes the passive torso volume conductor Q, and the second row
describes the static bidomain equation for the heart A. We only considered the static
bidomain because the TMP (denoted by v) remains largely stable during the plateau phase.
o;and o, are the intra/extracellular conductivity, and ois the conductivity of torso tissues.
Eq (2) implies no electrical currents leave the torso surface, I' 7z This model implicitly
assumes three boundary conditions at the heart/torso interface: 1) the extracellular potential
is continuous; 2) the electrical current flowing out of the heart is equal to that flowing into
the torso; and 3) the cardiac intracellular space is insulated from the torso. Details of the
model can be found in Chapter 5 of [5].

In this study, we solved (1) by the finite element method, which converts the Poisson
equation into a matrix system:

Au=Sv (5

where Aand Sare the stiffness matrix corresponding to the operator on each side of (1).
Given v, the task of solving (5) for vis referred to as the associated forward problem.

2) The Ischemia Model

We adopted a synthetic ischemia model represented by the TMP at the plateau phase, given
as follows:

(x)= 0mV, in healthy tissue;

YW=\ 30 mV, in ischemic tissue; ®)

where the assumed 30 mV voltage difference is an approximation suggested by previous
studies [6]. The value is not critical to the simulations because of the threshold operation
performed on the solution (see sections below). Although very simplified, the binary
assumption of the TMP is not critical to the inverse simulation because our inverse
calculation incorporated no a priori information of the TMP field. When implementing (6)
by the finite element method, we assumed a linear transition of v(X) at the border zone,
which comprises the first layer of elements surrounding the ischemic region. With this
model, we simulated the effect of myocardial ischemia of different locations and sizes.

3) Traditional Methods for Inverse Problems

The traditional way of solving our inverse ECG problem is to derive from (5) a lead-field
matrix K that relates v and the torso-surface potential v7: v7=Kv. Because K is ill-
conditioned, regularization such as the Tikhonov method is applied to obtain v:

v=argmin {|[Kv — u,[l,+A|Wull}, O

where W describes the property of v to be constrained. Although this approach is popular
among other inverse ECG problems (e.g., recovering epicardial potentials), its
computational cost becomes prohibitive when applied to the inverse problem considered in
this paper. Suppose the discrete Poisson equation (5) has a size of mand v has a size of 7,
deriving the lead-field matrix requires one to solve a mby mlinear system for ntimes. For a
bidomain model in three dimension, mand 7 can easily reach hundreds of thousands.

Nielson et af[2] avoided the lead-field matrix by forming the inverse problem as a
constrained optimization problem:
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v=argmin {||Qu — u,|[3+Wul[3}, ®
v

subject to Au=Suv, 9)

where Q maps the potential field ¢ to the measurement location. This formulation is
equivalent to the Tikhonov method (7) except that #and v are related by a constraint
equation. The minimization was repeated with a decreasing sequence of A until the misfit
Qu - urreached the noise level, which was known. For each A, the constrained
minimization was tackled by analytically solving its Karush-Kuhn-Tucker (KKT) conditions
[7], which happened to be a system of linear equations. This method, however, is limited to
quadratic objective functions and equality constraints, for otherwise the KKT equations
would be non-linear. Another drawback is that the minimization starts from scratch with
each A. Given that normally 100 As are to be tested, the minimization process may become
slow and inefficient.

4) Constrained Optimization Framework

We generalized the above optimization framework, allowing both equality and inequality
constraints and /-norms in the objective function. The framework is presented below:

vzarglfninIIW(U = Uprior)l ,» (10)
subject to Au=Suv, (11)

and  IQu — u,ll, < &llull,, (12)
and v <0, (13)

where all terms have been defined before. Equation (12) states that the misfit between the
predicted data and the measured data (¢7) should be within the noise level e, which is
known. Equation (11) and (12) are the “necessary” constraints, whereas (13), which assumes
that TMPs should be no greater than 0 mV, exemplifies how one may flexibly add
physiologically-based constraints into the framework. The framework also offers flexibility
for one to choose an objective function other than the 4 norm, e.g., /-norm minimization is
often preferable.

Our proposed constrained optimization has been well-studied by the optimization
community. The simplest case is A-norm minimization with equality constraints, where one
may solve the KKT conditions analytically. The second level is equality constraints with a
convex objective function, where the optimization problem can be reduced to an
unconstrained optimization problem and then solved by Newton’s method. Inequality
constraints form the next level in the hierarchy, where the problem can be transformed into a
second-order cone program and solved by interior point methods (e.g., log-barrier
algorithm), with the philosophy of reducing an inequality-constrained problem to a sequence
of equality-constrained problems. Mature methodologies and solvers are available in this
field [7]. We used CVX, a package for specifying and solving convex programs [8].

It is worth mentioning that our framework is equivalent to the previous methods (7) or (8),
but without needing to tune the parameter A. Instead the tuning is fulfilled when executing
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interior-point methods and is often more efficient. For example, when the log-barrier
method minimizes a sequence of sub-problems, the solution of the previous sub-problem
becomes the initial guess of the next one. In contrast, when A is tuned in (7) and (8),
calculation starts from scratch.

5) Simulation Setup

We conducted finite element simulation based on a 2D thorax domain illustrated in Fig 1.
All potential fields were defined on mesh nodes. As the goal of this study was to validate the
feasibility of the optimization method, we minimized the effect of the conductivities by
using simple phantom values. The conductivities are given as o;= o,=[0.5, 0.5] and o=
[1.0, 1.0], along the longitudinal and transverse directions, respectively.

In each simulation, we first specified an ischemic region and set the synthetic TMP values
according to (6). We then performed forward simulation to obtain the torso-surface
potentials, which, after being contaminated with noise, served as the input for the inverse
calculation. Ischemic regions were estimated from the calculated TMP field by the following
criterion: if the TMP at a node was below a threshold value, the node was an ischemic site
and all elements adjacent to this node were regarded as ischemic regions. The threshold
value for a given TMP field v was determined by

threshold=mean(v) — 0.4(mean(v) — min(v)), (14)

based on the hypothesis that the TMP at an ischemic site should be notably below the
average TMP voltage because ischemic regions were assumed to account for a minor part of
the myocardium.

6) Evaluating the Shape of Ischemia

[1l. Results

Besides visual comparison, we quantitatively evaluated how close the reconstructed
ischemic region is to the “true” region by two metrics: the centroid distance, which measures
the distance between the centers of two shapes, and the Hausdorff distance, which is defined
below for two shapes Xand Y

Hdist= in d(x,y), in d(x,
e g midy o) g iy dee )

where d(x, J) denotes the Euclidean distance between points x and y. The Hausdorff
distance means that, from any point in either shape, one is guaranteed to reach a point in the
other shape within the Hausdorff distance. The Hausdorff distance measures the proximity
of “contour” of two shapes, whereas the centroid distance measures the proximity of
“position”.

1) Ischemia Setup

Fig 1 shows a case of left anterior transmural ischemia and its resulting extracellular
potential field (the forward solution). In following sections, reconstructed values are to be
compared with this “ground truth”. Recall that the TMPs were =30 mV for ischemic region
and 0 mV for health region.

2) Solution by Inequality Constraints

Here we present an example of calculating the TMP using the general optimization
framework (10)—(12). The framework poses a convex optimization problem, so its solution

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2012 April 25.
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does not rely on its initial value, which we set all zero. We constrained the Laplacian of the
TMPs by letting W be a discrete Laplacian operator obtained by performing second-order
Taylor expansion at each node. From recovered TMPs, ischemic regions were identified by
the thresholding (14). The results are shown in Fig 2. Since the optimization here was
equivalent to the second-order Tikhonov regularization, the calculated TMPs were smoothed
compared to the true values. However, with proper color rescaling one may see that the
recovered TMPs preserved the polarity of the original field, thereby enabling a satisfactory
estimate of the ischemic region after a simple thresholding.

Fig 2 also shows how the inverse solution was notably improved by adding even a simple
negative constraint (13). The regular Laplacian constraint yielded spurious elevations of
TMP in the regions near the ischemic zone where the TMP there was expected to be the
same as the rest of the heart. Adding the negative constraint not only removed this artifact,
but also enhanced the TMP difference between the ischemic and healthy regions, and
thereby yielded better ischemia recovery by both visual and quantitative assessments (see
the centroid and Hausdorff distances). In real situations, the upper bound of TMPs may not
be 0 mV. A good substitute estimate would be the average of a fast-obtained inverse
solution.

3) Multi-Resolution Study

The multi-resolution study has two goals: 1) to examine the robustness and scalability of our
optimization framework, and 2) to explore how resolution will impact the numerical ill-
conditioning of the inverse problem. This study helps researchers to discretize the bioelectric
model with proper fidelity so as to achieve a good balance between model accuracy and
numerical difficulty. We conducted a preliminary multi-resolution study by testing the
optimization framework on three heart models, as shown in Fig 3. When increasing the
model fidelities, the inverse solutions remained largely consistent but were not significantly
improved, indicating that a well-refined model may not be cost-effective for inverse
simulations.

V. Discussion and Conclusion

This paper reports our initial investigation of estimating myocardial ischemia by inversely
computing the myocardial TMPs from body-surface potentials. Our main contribution was a
constrained optimization framework for solving the inverse ECG problem. The framework
was a generalization of previous methods and provided ample flexibility for users to apply
various physiologically-based constraints so as to improve the inverse solutions. By
avoiding deriving the lead-field matrix as in traditional approaches, the framework greatly
reduced computation. Moreover, because the framework incorporated as a constraint the
associated forward problem, which dictates the relationship of all physical variables, it
enabled one to flexibly adjust individualized resolutions for each physical variable during
the inverse calculation. Such adjustment is often necessary when solving inverse problems,
in order to balance the model accuracy, ill-conditioning, and computation cost. In contrast,
traditional methods needs to recalculate the lead-field matrix each time the resolution is
adjusted. Finally, the framework was also well supported by mature, reliable algorithms and
packages.

Our future work includes extending this framework to simulations in 3D and exploring
advanced constraints. With realistic anatomical models in 3D, the problem size and
computation cost will become a major concern, so an important study would be to identify
the model resolution that balances accuracy, ill-conditioning and computation cost.

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2012 April 25.
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Fig. 1.

(A): the “true” ischemic region denoted by the green color. (B): the resulting extracellular
potential field. The mesh contains 9610, 1005 and 498 triangle elements in the torso volume,
the myocardium and the ventricular cavities, respectively. Only the myocardium mesh is
shown.
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Fig. 2.

Inverse solutions obtained by applying a Laplacian constraint (LC) on the TMPs, with and
without the extra negative constraint (13). The input body-surface potentials were corrupted
with 30 dB white noise. The top row shows the calculated TMPs. The bottom row compares
the true ischemic region with the one inferred by thresholding. Red color: healthy tissue.
Green: the ischemic tissue that was correctly recovered. Blue: the ischemic tissue that was
not recovered. Yellow: healthy tissue but incorrectly judged to be ischemic. The centroid
distance (Cdist) and Hausdorff distance (Hdist) are given for each detected ischemic region.
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Fig. 3.

Inverse simulations with three heart models. Each row shows the calculated TMPs (left) and
the inferred ischemic regions (right). The second-order constraint along with the negative
constraint was used, and 30 dB input noise was added on the body-surface potential. Heart A
has 600 nodes and 1005 triangle elements. Heart B has 890 nodes and 1530 elements. Heart
C has 1716 nodes and 3093 elements. The color code for the right column is given as
follows. Red: healthy tissue. Green: the ischemic tissue that was correctly recovered. Blue:
the ischemic tissue that was not recovered. Yellow: healthy tissue but incorrectly judged to
be ischemic. The centroid distance (Cdist) and Hausdorff distance (Hdist) are given for each
detected ischemic region.
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