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Abstract

We propose a new family of regularizers for the inverse

ECG problem, using a variational principle that underlies

finite element approximation methods. As an alternative to

traditional Tikhonov regularizers, the variational formu-

lation has several advantages: 1)it enables a simple con-

struction of the gradient operator (in a matrix form) over

irregular meshes, which is often difficult to derive; 2)it

achieves consistent regularization under multi-scale sim-

ulations by preserving the norm, which is evaluated by the

resolution-independent L2-norm rather than the discrete

Euclidean norm; and 3)it allows simultaneous application

of multiple constraints efficiently. Our proposed method is

validated by simulation on a realistic 3D model with clin-

ical heart data, showing that the variational formulation

may improve a broader range of potential-based electro-

cardiographic problems.

1. Introduction

This paper studies one type of inverse problem in elec-

trocardiography (ECG): non-invasively recovering epicar-

dial potentials from body-surface recordings. The underly-

ing bioelectric model is a potential-based boundary value

problem with the Laplace’s equation. Using finite ele-

ments or boundary elements, the equation is numerically

solved over the source-free volume between the heart and

torso surfaces, yielding a transfer matrix K that relates

the epicardial potentials uH with the torso potentials uT :

KuH = uT. The inverse calculation involves solving uH

given K and uT .

The matrix K is well-known to be severely ill-

conditioned due to the ill-posed nature of the inverse prob-

lem. One common method for stabilizing the inverse solu-

tion is the Tikhonov regularization:

uH = argmin {‖KuH − uT‖
2

2
+ λ2(‖LuH‖2

2
)} (1)

where ‖ · ‖2 is the Euclidean norm. The first term is

the residual error whereas the second term is a regular-

izer constraining certain property of the epicardial poten-

tials. There are three basic Tikhonov schemes based on

the choice for L. The zero-order Tikhonov (ZOT) takes L

as an identity matrix, constraining the amplitude of epicar-

dial potentials. The first-order Tikhonov (FOT) takes L as

a gradient operator, constraining the spatial derivative of

potentials. The second-order Tikhonov (SOT) takes L as a

surface Laplacian operator and constrains the curvature.

While there are several ad-hoc local approximation tech-

niques in the literature, few explain how to derive the

gradient operator in an explicit matrix form over irregu-

lar meshes. The matrix form is needed for implementing

FOT or the total-variation regularization, but given an ir-

regular mesh it is hard to determine weights over neigh-

boring nodes. We formulate a gradient operator by adopt-

ing the variational principles underlying the finite element

method. We then generalize the variational formulation

and propose a family of new regularizers for ZOT, SOT or

other Sobolev-norm regularizations. These “variational-

formed” regularizers convey similar ideas to traditional

regularizers, but have advantages such as numerical ef-

ficiency, allowing imposition of multiple constraints, and

consistent regularization under multi-scale simulation.

2. Method

Variational-Formed Gradient Operator. We rewrite

the Tikhonov regularization (1) using the continuous L2-

norm:

‖KũH − ũT‖
2

L2
+ λ2‖LũH‖2

L2
(2)

where ũH and ũT denote continuous potential fields. ‖·‖L2

the norm of a continuous function, given by:

‖u‖2

L2
= (u, u) =

∫
H

u · udΩ (3)

Let {φi(x)} denote the finite element basis function asso-

ciated with node i on the heart surface mesh H, and uH be

the vector of potentials on mesh nodes. By finite element

formulation, ũH =
∑

k u
k
Hφk, k ∈ H. The L2-norm of

the potential gradient field on H can be written as

‖∇ũH‖2

L2
= (

∑
i

u
i
H∇φi,

∑
j

u
j
H∇φj) = u

T
HSuH (4)
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where S is the stiffness matrix defined over the heart sur-

face. For the first-order Tikhonov, L in (2) can be taken

as the Cholesky factor of S: L
T
L = S. Such an L can

be viewed as a variational form of the gradient operator.

To justify this formulation, recall that if L is the discrete

gradient operator such that Lu = ∇u, it should satisfy

‖∇uH‖2 = ‖LuH‖2

2
= u

T
HL

T
LuH . Equating this ex-

pression with (4) gives L
T
L = S.

Generalized Variational-Formed Operators. One can

generalize the variational formulation to the magnitude op-

erator, Laplacian operator, or higher order Sobolev-space

operators in a similar fashion, by computing the inner

product of the derivatives of basis functions. Table 1 com-

pares the variational-formed regularizers with traditional

regulariers for ZOT, FOT and SOT. Note that the exis-

tence of these variational-formed regularizers are guaran-

teed, because the matrices M, S and Q are by nature sym-

metric and semi-positive-definite.

Measured by the L2-norm over a continuous field,

variational-formed regularizers preserve their norms re-

gardless of discretization resolution, because the basis

functions φi already accounts for mesh spacing. In con-

trast, traditional operators measure the Euclidean norm,

thus susceptible to the size of discretization. Norm preser-

vation is a desirable quality that ensures consistent regu-

larization under multi-scale simulations, as will be seen in

the Result section.

Imposing Multiple Regularizers. Our proposed

variational-formed regularizers are inherently suited for

regularization with multiple constraints in the form:

uH = argmin ‖KuH − uT ‖
2

2
+

k∑
i=1

λ2

i ‖LiuH ||2
2

(5)

For computational efficiency, one can build a compact

constraint (denoted as L
∗) that is equivalent to the su-

perposition of all constraints. L
∗ satisfies the condition

L∗T Li
∗ =

∑k

i=1
λ2

i ‖L
T
i L‖2. Each L

T
i Li can be pre-

computed using the mesh information only. L
∗ can be

obtained efficiently without solving each Li.

3. Results

Experiment Setup. Our simulation uses a geometric

model consisting of a realistic canine heart suspended in

a human torso tank created from MRI scans[1]. The tank

is filled with a homogeneous electolytic medium. Both the

heart surface and the torso surface are triangulated, and the

volume is discretized by a tetrahedral mesh. The heart sur-

face comprises 337 nodes and 670 triangles, the torso sur-

face comprises 771 nodes and 1538 triangles, and the torso

volume comprises 27,361 tetrahedra. Epicardial potentials

Table 1. The choice of L for traditional and variational-

formed Tikhonov regularization.
Regularization Type Traditional Regularizer Variational Regularizer

ZOT Identity Matrix L
T

L = M

FOT Hard to Define L
T

L = S

SOT Discrete Laplacian Operator L
T

L = Q

Note: L is associated with the mesh of the heart surface. The matrices

M, S and Q are given by Mi,j = (φi, φj), Si,j = (∇φi,∇φj),

Qi,j = (∇2φi,∇
2φj), i, j ∈ H. (, ) is the inner product. M is

usually named the mass matrix and S named the stiffness matrix.

Figure 1. Epicardial potentials calculated under 30dB input white

noise. FOT uses the variational-formed gradient operator given by Table

1. For better visualization effect the view is slightly changed at each

instant. Color scale: -44.3 mV to 32.9 mV.

are measured in vivo via a sock of electrodes surrounding

the heart. With the geometry and epicardial potentials, we

conduct finite element simulation to obtain the transfer ma-

trix and the torso potentials. After adding noise to the torso

potentials, we inversely calculate epicardial potentials us-

ing the Tikhonov method. The regularizing parameter λ is

determined by the corner of the L-curve, a parametric plot-

ting of ‖LuH‖ versus the residual error ‖KuH − uT‖.

Typically in a L-shape, this curve shows the tradeoff be-

tween minimizing the residual error and minimizing the

constraint (see Fig 4 for example).
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