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Abstract

We study how finite element method (FEM) can be
selected to optimize numerical discretization of the in-
verse electrocardiographic (ECG) problem. Due to its ill-
posedness, the inverse ECG problem poses different dis-
cretization requirements from its forward problem coun-
terpart. Conventional refinements effective for the for-
ward problem may become ineffective when applied to
the inverse problem. We propose two refining methods
specifically tackling the ill-posedness of the inverse prob-
lem. One is hybrid-shaped elements involving quadrilat-
eral/triangular elements in 2D and prismatic/tetrahedral
elements in 3D. Another method uses high-order FEM, ex-
tracts from the resulting system the linear component and
solves the linear part only. Simulations on realistic human
torso models demonstrate that both methods improve both
the discrete problem’s conditioning and the inverse solu-
tion, indicating our strategies might provide guidelines for
mesh generation in practical biomedical simulations.

1. Introduction

The inverse electrocardiographic (ECG) problem of re-
covering epicardial potentials from body-surface measure-
ments has wide applications from noninvasive diagnosis of
cardiac diseases (e.g. ischemia) to guidance of intervention
(e.g. ablation and defibrillation). ECG simulations include
mathematical modeling of the biophysical process and ge-
ometric approximation of the anatomical structure of hu-
man bodies. We consider the problem that models the car-
diac source by epicardial potential distribution, given by:

V- (o(x)Vu(xz)) = 0, x e (1)
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where (2 is the torso volume bounded by the epicardium
Ty and the torso surface I'7. u(x) is the potential field on
Q, ug is the epicardial potential, and ¢g denotes the mea-
sured body-surface potential. ¢ is the conductivity ten-
sor and 77 denotes the outward facing vector normal to I'7.
The forward problem seeks the potential field u(x) given
the cardiac source ug. The inverse problem attempts to
recover ug from the measurement g.

This paper studies discretization strategies when the
governing equations are solved by the finite element meth-
ods (FEM). While most refinement methods are able to
achieve satisfactory accuracy for the forward problem, the
ill-posedness of the inverse problem requires different re-
finement considerations than its forward counterpart[1].
After showing that the conditioning property of the numer-
ical system is subject to how the FEM is applied and re-
fined, we propose two methods that specifically tackle the
concerns of the inverse problem: (1) hybrid finite elements
and (2) linear component truncation from high-order ele-
ments. Both methods alleviate the ill-conditioning of the
numerical system to be solved, and both can be combined
with other classical regularization methods to further im-
prove the inverse solution accuracy.

2. Discretization and refinement

Finite Element Discretization. In a theoretical FEM
approach, the potential field u(x) can be decomposed into
u(x) = v(x) + w(x) where w(x) satisfies boundary con-
ditions (2) and (3) and v(x) is a homogeneous term char-
acterized by:

V- (cVu(z)) = -V -(cVuw(x)),zec (5
v(ie) = 0, zelp (6)
n-oVu(x) = 0, xely (7)

Here, one first projects the source term from the epi-
cardium onto the function space over the entire domain
(by setting w), then solves a homogeneous problem whose
forcing function is the source after projection. This formu-
lation reveals three approximation issues: 1) the accuracy
of the epicardial potential ug(x), 2) the accuracy of the
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projection operator w, and 3) the accuracy of solving the
homogeneous problem v ().

A practical finite element application tessellates €2 and
constructs a set of basis functions {¢; }, each of which is
associated with one node. The potential field u(x) is ap-
proximated by the linear combination of the basis func-
tions. The coefficient of each basis function is the potential
value at its associated node. Substituting this expansion
into (1) and applying the Galerkin method yield a linear

system of the form:

where uy, up, and u; denote the vector of potentials
on the discretized heart surface(H ), torso surface(1’), and
interior volume(/). The stiffness matrix A is given by
Aij = [, ViVp;. Ais partitioned based on the three
divisions H,I, and T'. Its capitalized subscript in (8) shows
the interaction between each two divisions.

From (8) we derive the relation between w and wy:

©))

where K is named the transfer matrix and severely ill-
conditioned. The inverse ECG problem intends to solve
(9). Note that (8) is a special case of the general approach
given by (5): the projection w is set piecewise-linear in
the first layer of elements adjacent to the heart surface and
zero elsewhere. (8) hence exemplifies the aforementioned
three issues. Once the resolution of uys is determined, the
accuracy of the FEM approximation is dictated by the dis-
cretization of the heart/volume projection (A;y) and the
volume conductor (the left-side matrix).

Inadequacy of Uniform Refinement. Most adaptive
refinements designed for forward problems are essentially
equivalent to uniform refinement if not considering cost
and efficiency. Although uniform refinement indeed im-
proves the three approximation issues aforementioned, it
worsens the conditioning property of K. Fig 1 compares
the forward solution error and the singular values of K re-
sulting from uniformly refining a 2D torso mesh. Singular
value decomposition is an effective means for evaluating
the numerical quality of K, because it reveals how each
spatial-frequency component of uy contributes to ur[2].
A well-conditioned system is characterized by a slowly-
descending singular value spectrum and a large propor-
tion of nontrivial singular values. Fig 1 shows while uni-
form refinement reduces the forward solution error, it ex-
tends the number of trivial singular values of K, thereby
lowering the proportion of the recoverable components of
wp, which are associated with non-trivial singular values.
This is because the ill-conditioning of K is an exponential
function of the spatial frequency determined by the fidelity
of epicardium[3]. Practitioners should assess this fidelity
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Figure 1. Top: forward solution error from four increasingly refined
meshes labeled as A-D. Mesh A and C are displayed. |u | is the epi-
cardial resolution. |@ — wp| is the forward solution error. Bottom: sin-
gular value spectra of K. Curves A-D are singular values in their original

length; Curves B-D are normalized to the length of A, shown as B’-D’.

based on satisfying the clinical needs, but be cautious to
solve beyond the limit.

The guidelines for discretizing the inverse ECG prob-
lem should be stated as follows: 1)determine a reason-
able resolution on epicardium and 2)refine the volume and
heart/volume projection while fixing the heart boundary.
Such requirement leads to our advocacy of hybrid-shaped
FEM and linear truncation from high-order finite elements.

Hybrid Finite Elements. The two guidelines pose a
technical challenge to triangular or tetrahedral elements,
which are typically available in commodity mesh gener-
ators, because such requirement leads to ill-shaped ele-
ments that by themselves cause extra numerical problems.
We place quadrilateral elements (2D) and prismatic ele-
ments (3D) around the epicardium, as illustrated by Fig
2. The quads/prisms can be refined along their normal
direction to capture the high potential gradient near the
heart, without affecting the resolution on the epicardium.
Hybrid elements is simple to implement: we first built
quads/prisms from the triangulated bounding surfaces be-
fore calling tetrahedral mesh-generating routines. This pa-
per will present some results in 3D. We refer to [3] for



detailed investigation of hybrid elements in 2D.

Linear Truncation from High-Order Elements. The
finite element community has long been approximating
continuous equations with high-order basis polynomials,
which achieve higher accuracy and faster convergence rate
than linear finite elements. High-order interpolation in an
element can be made hierarchical, composed by linear,
quadratic, cubic basis functions, etc. The coefficients of
linear components have a physical meaning of being the
voltage value on the nodes of the element, whereas all
high-order components are made zero on mesh nodes. It
can be seen that a high-order FEM is built from a linear
FEM, but adding approximation by higher-order polyno-
mials. Accordingly, (9) can be rewritten as follows (for
simplicity, we present a quadratic expansion here):

1 1,1 1,2 1
(43) = (bt ) ()
ur Ky Kiy) \¥n
where the superscript indicates the order of each compo-

nent of wyp or wy. Our truncation scheme solves only the
linear part of this high-order expansion:

(10)

1 _ 11 1
up = Ky yup.

an

Such truncation is based on two concerns: (1) to preserve
the pre-determined epicardium resolution, (2) wp is piece-
wise linear because measurements are made only on mesh
nodes. Note that (11) differs from (9) in that it contains
high-order expansion of A;; and A;py given in (8).

This truncation scheme provides a seamless approach of
refining the heart/torso projection and the volume conduc-
tor (by high-order FEM) while preserving the epicardial
resolution (by truncation). As the truncation is conducted
in a hierarchical polynomial space, it keeps the smooth-
ness of the solution and avoids aspect-ratio problems that
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Fi gure 2. (Left): a segmented 2D torso slice with two layers of quadri-
laterals around the heart. (Right): the torso/cage geometry with one layer
of prisms around the cage. The rest torso volume is filled by tetrahe-
dra. For simplicity, volume mesh is not shown completely. The dark dots
represent vertices of the tetrahedral volume mesh.
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obstruct spatial refinement methods. We found third-order
FEM was sufficient for the inverse ECG problem.

Regularization Method. We solve the inverse problem
(9) or (11) by the Tikhonov method given as follows:

up(\) = argmin {|Kug—ur|*+X*(|Jug|*+o®|Vun|*)}

where A and « are determined by exhaustive search. Our
goal is to compare inverse solutions resulting from various
refinements under an identical regularization framework.

3. Results and discussion

Hybrid Finite Elements. We present a hybrid elements
model consisting of an isotropic torso tank and a canine
heart surrounded by a cylinder cage on which potentials
are measured. The model is illustrated by Fig 2. Using
cage potentials rather than real epicardial potentials elim-
inates geometric variation incurred by heart contraction.
The torso surface consists of 771 nodes and 1538 trian-
gular elements whereas the cage has 602 nodes and 1200
triangles. This boundary discretization was kept intact dur-
ing this test. We ran the forward simulation to obtain torso
potentials, which, after being added with noise, served as
the input for the inverse calculation. Fig 3 compares an or-
dinary tetrahedral mesh with a hybrid-element mesh hav-
ing one layer of 10mm-thick prisms around the cage. The
comparison is made in a coarse level and a refined level.

Fig 3 shows the hybrid mesh yields better singular val-
ues of K than the pure tetrahedral mesh under both dis-
cretization levels. The hybrid mesh achieves this numeri-
cal superiority with less elements, implying its advantage
in efficiency. It holds for both mesh types that refining
volume while keeping boundary resolutions extends non-
trivial singular values of K. In the tetrahedral meshes or
hybrid meshes, the gap between the singular value spec-
trum of the coarse mesh and that of the refined mesh in-
dicates the increased ill-conditioning caused by insuffi-
cient discretization but not associated with ill-posedness
of the continuum problem. Any finite element discretiza-
tion should consciously avoid such numerically-induced
ill-conditioning. Fig 3 (bottom) shows the cage potentials
calculated at the instant when it had the largest spatial vari-
ances (thus the most difficult to recover). The activation
wavefront is captured well. Hybrid meshes outperform
pure tetrahedral meshes in recovering the magnitude of lo-
cal extrema. Volume refinement leads to better recovery of
the secondary local extrema (Panel C and D).

Linear Truncation from High-Order FEM. Our trun-
cation method was conducted on a 2D torso mesh anal-
ogous to the one shown in Fig 2 but without quadrilater-
als. The mesh, segmented to conform to interfaces be-
tween various tissues, contains 1071 triangles, including
60 nodes on the epicardium and 105 nodes on the torso
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Figure 3. Top: singular values of K resulting from pure tetrehedral
meshes and hybrid meshes with one layer of prisms around the cage. Each
mesh type includes two meshes with identical boundary discretization
but different volume discretizations. Bottom: cage potentials calculated
under 1% input noise. (A) exact values; (B) potentials computed from
pure tetrahedral mesh with 16940 elements; (C) potentials computed from
hybrid mesh with coarse volume (15443 elements); and (D) potentials
computed from hybrid mesh with refined volume (27037 elements).

surface. We tested isoparametric finite elements of first-,
second-, and third-order, and the results are summarized in
Fig 4. Fig 4(A) shows high-order refinement consistently
improves the singular values of K, a similar effect to spa-
tial refinement of the volume. The convergence of singular
values from the second-order FEM to the third-order FEM
implies the discretized problem has reached the same qual-
ity as the original continuous problem. In other words, re-
finement “saturates” to its asymptotic performance.

Fig 4(B) assesses the inverse solution by its relative er-
ror (the ratio of the error to the exact solution, in Euclidean
norm) and its correlation coefficient with the exact solu-
tion. The inverse solution was calculated with zero-mean
Gaussian noise of 30dB and 20dB being added to the torso
measurements. With the truncation method, high-order re-
finements effectively reduce the error and improve the cor-
relation coefficient. Fig 4(C) displays an example of re-
covered epicardial potentials under 20dB noise. The linear
truncation from third-order FEM yields the best solution.
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Figure 4. Linear truncation from first-, second- and third-order finite
elements, marked by P = 1,2, 3. (A) singular values of the respective
resulting K; (B) relative error (RE) and correlation coefficient (CC) of
the inverse solution calculated under two levels of input noise; (C) recon-
structed epicardial potentials under 20dB input noise.

4. Conclusions

We studied the FEM discretization for the inverse prob-
lem and proposed hybrid-shaped elements and truncating
linear parts from high-order elements. Both methods alle-
viate the ill-conditioning and improve the inverse solution.
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