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ABSTRACT

Extracting neural structures with their fine details from confo-
cal volumes is essential to quantitative analysis in neurobiol-
ogy research. Despite the abundance of various segmentation
methods and tools, for complex neural structures, both man-
ual and semi-automatic methods are ineffective either in full
3D or when user interactions are restricted to 2D slices. Novel
interaction techniques and fast algorithms are demanded by
neurobiologists to interactively and intuitively extract neural
structures from confocal data. In this paper, we present such
an algorithm-technique combination, which lets users inter-
actively select desired structures from visualization results
instead of 2D slices. By integrating the segmentation func-
tions with a confocal visualization tool neurobiologists can
easily extract complex neural structures within their typical
visualization workflow.

Index Terms: Computer Graphics [1.3.8]: Methodology
and Techniques—Interaction techniques; Image Processing
and Computer Vision [I.4.6]: Segmentation—Region grow-
ing, partitioning; Life and Medical Sciences [J.3]: Biology and
genetics—

1 INTRODUCTION

In neurobiology research, data analysis focuses on extraction
and comparison of geometric and topological properties of
neural structures acquired from microscopy. In recent years,
laser scanning confocal microscopy has gained substantial
popularity because of its capability of capturing fine-detailed
structures in 3D. With laser scanning confocal microscopy,
neural structures of biological samples are tagged with fluo-
rescent staining and scanned with laser excitation. Although
there are tools that can generate clear visualizations and facil-
itate qualitative analysis of confocal microscopy data, quan-
titative analysis requires extracting important features. For
example, a user may want to extract just one of two adjacent
neurons and analyze its structure. In such case, segmentation
requires the user’s guidance in order to correctly separate the
desired structure from the background. There exist many in-
teractive segmentation tools that allow users to select seeds
(or draw boundaries) within one slice of volumetric data. Ei-
ther the selected seeds grow (or the boundaries evolve) in
2D and then user repeats the operation for all slices, or the
seeds grow (or the boundaries evolve) three dimensionally.
Interactive segmentation with interactions on 2D slices may
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be sufficient for structures with relatively simple shapes, such
as most internal organs or a single fiber. However, for most
neural structures from confocal microscopy, the high com-
plexity of their shapes and intricacy between structures make
even identifying desired structures from 2D slices difficult.
Figure 1 shows the user interface of Amira [30], which is com-
monly used in neurobiology for data processing. Neurons of a
Drosophila adult brain are loaded. From its interactive volume
rendering view, two neurons are in proximity, whereas the
fine structures of branching axons are merely distinct blobs in
the 2D slice views. This makes 2D-slice-based interactions of
most volume segmentation tools in neurobiology ineffective.
It becomes difficult to choose proper seeds or draw bound-
aries on slices. Furthermore, even if seeds are chosen and
their growth in 3D is automatic, it is difficult for unguided
3D growth to avoid over- or under-segmentations, especially
at detailed and complex structures such as axon terminals.
Lastly, there is no interactive method to quickly identify and
correct the segmented results at problematic regions. With
well-designed visualization tools, neurobiologists are able to
observe the complex neural structures and inspect them from
different view directions. Segmentation interactions that are
designed based on volume visualization tools and let users
select from what they see are apparently the most intuitive. In
practice, confocal laser scanning can generate datasets with
high throughput, and neurobiologists often conduct experi-
ments and scan multiple mutant samples in batches. Thus, a
segmentation algorithm for neural structure extraction from
confocal data also needs to make good use of the parallel com-
puting power of contemporary PC hardware and generate a
stable segmented result with real-time speed.
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Figure 1: The user interface for segmentation in Amira. In the volume
rendering view, we can observe that two neurons are in proximity and
have complex details. However it is difficult to tell them apart or infer
their shapes from any of the slice views. Unfortunately, users have
to select structures from the slice views rather than the volume ren-
dering view, where they can actually see the data more clearly. Many
interactive volume segmentation tools in neurobiology use similar in-
teractions, which are difficult to use for complex shapes.



The contribution of this paper is a novel segmentation
method that is able to interactively extract neural structures
from confocal microscopy data. It uses morphological dif-
fusion for region-growing, which can generate stable results
for confocal data in real-time; its interaction scheme explores
the visualization capabilities of an existing confocal visualiza-
tion system, FluoRender [31], and lets users paint directly on
volume rendering results and select desired structures. The
algorithm and interaction techniques are discussed in this pa-
per, which is organized as follows: Section 2 discusses related
work; Section 3 introduces morphological diffusion by for-
mulating it as an anisotropic diffusion under non-conserving
energy transmission; Section 4 uses the result from Section 3
and details our interactive scheme for confocal volume seg-
mentation; Section 5 discusses implementation details and
results; and the paper concludes in Section 6.

2 ReLaTED WoORK

Current segmentation methods for volumetric data are gen-
erally categorized into two kinds: full manual and semi-
automatic. The concept of fully automatic segmentation does
exist, however either the implementations are limited to ideal
and simple structures, or they require complex parameter ad-
justment, or a vast amount of manually segmented results are
used for training. They fail in the presence of noisy data, such
as confocal scans. Thus, robust fully automatic segmentation
methods do not exist in practice, especially in cases described
in the introduction, where complex and intricate structures
are extracted according to users’ research needs.

In biology research, fully manual segmentation is still the
most-used method. Though actual tools vary, they all allow
selecting structures from each slice of volumetric data. For
example, Amira [30] is often used for extracting structures
from confocal data. For complex structures, such as neurons
in confocal microscopy data, it requires great familiarity with
the data and the capability of inferring 3D shapes from slices.
For the same confocal dataset shown in Figure 1, it took one
of the neurobiologist co-authors one week to manually select
one neuron, since it was difficult to separate the details of
the two neurons in proximity. However, such intense work
would not guarantee a satisfactory result: some fine fibers
of low scalar intensities might be missing. Even when the
missing parts could be visualized with a volume rendering
tool, it was still difficult to go back and track the problems
within the slices. To improve the efficiency of manual seg-
mentations, biologists have tried different methods. For ex-
ample, VolumeViewer from Sowell et al. [26] allows users to
draw contours on oblique slicing planes, which helps surface
construction for simple shapes but is still not effective for
complex structures. Using the volume intersection technique
from Martin and Aggarwal [13] or Space Carving from Ku-
tulakos and Seitz [10], Tay et al. [27] drew masks from two
orthographic MIP renderings and projected them into 3D to
carve a neuron out from their confocal data. However, the
extracted neuron in their research had very simple shape.

For extracting complex 3D structures, semi-automatic
methods, which combine specific segmentation algorithms
with user guidance, seem to be more advantageous than man-
ual segmentation. However, choosing an appropriate com-
bination of algorithm and user interaction for a specific seg-
mentation problem, such as neural structure extraction from
confocal data, remains an active research topic. Though the
variety of segmentation algorithms is myriad, which cannot
be enumerated here, many of them for extracting irregular
shapes consist of two major calculations, i.e. noise removal
and boundary detection. Most filters designed for 2D image

segmentation can be easily applied for volumetric data. Fil-
ters commonly seen include all varieties of low-pass filters, bi-
lateral filters, and rank filters (including median filter, as well
as dilation and erosion from mathematical morphology) [6].
Boundaries within the processed results are very commonly
extracted by calculations on their scalar values, gradient mag-
nitudes, and sometimes curvatures. Prominent segmentation
algorithms that see many practical applications in biology re-
search include watershed [28], level set [15], and anisotropic
diffusion [19]. The latest technological advances in graphics
hardware allow interactive application of many previously
proposed algorithms to volumetric data. Sherbondy et al. [24]
implemented anisotropic diffusion on programmable graph-
ics hardware and applied the framework to medical volume
data. Viola et al. [29] implemented nonlinear filtering on
graphics hardware and applied it to segmenting medical vol-
umes. Lefohn et al. [11] implemented the level-set algorithm
on graphics hardware and demonstrated an interactive vol-
ume visualization/segmentation system. Jeong et al. [8] ap-
plied the level-set method to EM datasets, and they demon-
strated an interactive volume visualization/segmentation sys-
tem. Hossain and Moller [7] presented an anisotropic diffu-
sion model for 3D scalar data, and used the directional second
derivative to define boundaries. Saad et al. [22] developed
an interactive analysis and visualization tool for probabilis-
tic segmentation results in medical imaging. They demon-
strated a novel uncertainty-based segmentation editing tech-
nique, and incorporated shape and appearance knowledge
learned from expert-segmented images [21] to identify suspi-
cious regions and correct the misclassification results. Kniss
and Wang [9] presented a segmentation method for image
and volume data, which is based on manifold distance met-
rics. They explored a range of feature spaces and allowed
interactive, user-guided segmentation.

Most segmentation research has focused on improving ac-
curacy and robustness, but little has been done from the per-
spective of user interactions, especially in real-world appli-
cations. Sketch-based interaction methods, which let users
directly paint on volume rendering results and select desired
structures, have demonstrated the potential towards more in-
tuitive semi-automatic volume segmentation schemes. Yuan
et al. [32] presented a method for cutting out 3D volumetric
structures based on simple strokes that are drawn directly
on volume rendered images. They used a graph-cuts algo-
rithm and could achieve near-interactive speed for CT and
MRI data. Chen et al. [5] enabled sketch-based seed planting
for interactive region growing in their volume manipulation
tool. Owada et al. [18] proposed several sketching user in-
terface tools for region selection in volume data. Their tools
are implemented as part of the Volume Catcher system [17].
Biirger et al. [3] proposed direct volume editing, a method for
interactive volume editing on GPUs. They used 3D spherical
brushes for intuitive coloring of particular structures in volu-
metric scalar fields. Abeysinghe and Ju [1] used 2D sketches
to constrain skeletonization of intensity volumes. They tested
their interactive tool on a range of biomedical data. To further
facilitate selection and improve quality, Akers [2] incorpo-
rated a tablet screen into his segmentation system for neural
pathways. We extend the methodology of sketch-based vol-
ume selection methods. Our work focuses on searching for a
combination of segmentation algorithm and interactive tech-
niques, as well as developing an interactive tool for intuitive
extraction of neural structures from confocal data.



3 MatHemATICAL BackGrounD oF MorPHoLOGICAL DIFFusioN

For interactive speed of confocal volume segmentation, we
propose morphological diffusion on a mask volume for se-
lecting desired neural structures. Morphological diffusion
can be derived as one type of anisotropic diffusion under the
assumption that energy can be non-conserving during trans-
mission. Its derivation uses the results from both anisotropic
diffusion and mathematical morphology.

3.1 Diffusion Equation and Anisotropic Diffusion

The diffusion equation describes energy or mass distribution
in a physical process exhibiting diffusive behavior. For ex-
ample, the distribution of heat (1) in a given isotropic region
over time (f) is described by the heat equation:

Ju(x,t)

= ev2u(x, ) = v (cvu(x, ) (1)

In Equation 1, c is a constant factor describing how fast tem-
perature can change within the region. We want to establish
a relationship between heat diffusion and morphological di-
lation. First we look at the conditions for a heat diffusion
process to reach its equilibrium state. Equation 1 simply tells
us that the change of temperature equals the divergence of
the temperature gradient field, modulated by a factor c. We
can then classify the conditions for the equilibrium state into
two cases:

Zero gradient. Temperatures are the same everywhere in
the region.

Solenoidal (divergence-free) gradient. The temperature
gradient is non-zero, but satisfies the divergence theorem for
an incompressible field, i.e. for any closed surface within
the region, the total heat transfer (net heat flux) through the
surface must be zero.

The non-zero gradient field can be sustained because of the
law of conservation of energy. Consider the simple 1D case
in Figure 2, where the temperature is linearly increasing over
the horizontal axis. For any given point, it gives heat out to
its left neighbor with lower temperature and simultaneously
receives heat of the same amount from its right neighbor. In
this 1D case, the loss and gain of heat reach a balance when
the temperature field is linear. As we are going to see later,
if we lift the restriction of energy conservation, the condition
for equilibrium may not hold, and we need to rewrite the heat
equation under new propositions.

Figure 2: Conserving and non-conserving energy transmissions. A:
the initial state has a linear gradient. We are interested in the energy
change of the center piece. B: Energy is transferred from high to low
(gradient direction), as indicated by the arrows. C: Result of typical
conserving transmission. The center piece receives and gives the
same amount of energy, which maintains a solenoidal gradient field.
D: Result of dilation-like transmission, which is not energy conserv-
ing. The center piece gains energy and a solenoidal gradient field
cannot be sustained.

The generalized diffusion equation is anisotropic. Specifi-
cally, we are interested in the anisotropic diffusion equation

proposed by Perona and Malik [19], which has been exten-
sively studied in image processing.

@ = V- (gx t)vu(x, 1)) @

In Equation 2, the constant c in the heat equation is replaced
by a function g(), which is commonly calculated in order to
stop diffusion at high gradient magnitude of u.

3.2 Morphological Operators and Morphological Gradi-
ents

In mathematical morphology, erosion and dilation are the fun-
damental morphological operators. The erosion of an image
I by a structuring element B is:

e(x) = min(I(x + b)|b € B) 3)
And the dilation of an image I by a structuring element B is:
O(x) = max(I(x + b)|b € B) 4)

For aflat structuring element B, they are equivalent to filtering
the image with minimum and maximum filters (rank filters
of rank 1 and N, where N is the total number of pixels in B)
respectively.

In differential morphology, erosion and dilation are used to
define morphological gradients, including Beucher gradient,
internal and external gradients, etc. Detailed discussions can
be found in [20] and [25]. In this paper, we are interested in
the external gradient with a flat structuring element, since for
confocal data we always want to extract structures with high
scalar values and the region-growing process of high scalar
values resembles dilation. Thus the morphological gradient
used in this paper is:

[VI()| = 6(x) = I(x) ©)

Please note that for a multi-variable function I, Equation 5 is
essentially a discretization scheme for calculating the gradient
magnitude of I at position x.

3.3 Morphological Diffusion

If we consider the morphological dilation defined in Equa-
tion 4 as energy transmission, it is interesting to notice that
energy is not conserved. In Figure 2, we show that within
a neighborhood of a given position, the local maximum can
give out energy without losing its own. Thus, for a closed
surface within the whole region, the net energy flux can be
non-negative. In other words, under the above assumption of
non-conserving energy transmission, the solenoidal gradient
condition (Section 3.1) for the equilibrium of heat diffusion
no longer holds. Therefore, the heat diffusion can only reach
its equilibrium when the energy field has zero gradient.

Based on the above reasoning, we can rewrite the heat
equation (Equation 1) to its form under the dilation-like en-
ergy transmission:

200D — oue bl ®)

Equation 6 can be simply derived from Fourier’s law of heat
conduction [4], which states that heat flux is proportional to
negative temperature gradient. However we feel our deriva-
tion can better reveal the relationship between heat diffusion
and morphological dilation. To solve this equation, we use
forward Euler through time and the morphological gradient
in Equation 5. Notice that the time step At can be specified



Figure 3: Volume paint selection of neural structures from a confocal volume. A: The visualization of certain neural structures (top) and the
camera setup (bottom). B: A user paints on the viewport. The stroke (green) is projected back into the volume to define the seed generation
region. C: The user paints on the viewport to define the diffusion region. The stroke (red) is projected similarly and the seeds generated in B
grow to either the structural boundaries or the boundary defined by the red stroke. D: The intended neural structure is extracted.

with ¢ for simplicity when the discretization of time is uni-
form. Then the discretization of Equation 6 becomes:

i1 () = 1,(6) +(6,() = 1) ”
=cb;(x) + (1 —c)u;(x)

When ¢ =1, the trivial solution of Equation 6 becomes the
successive dilation of the initial heat field, which is exactly
what we expected.

Thus, we have established the relationship between mor-
phological dilation and heat diffusion from the perspective of
energy transmission. We name Equation 7 morphological dif-
fusion, which can be seen as one type of heat diffusion process
under non-conserving energy transmission. Though a similar
term has been used in the work of Segall and Acton [23], we
use morphological operators for the actual diffusion process
rather than calculating the stopping function of anisotropic
diffusion. Our purpose of using the result for interactive vol-
ume segmentation rather than simulating physical processes
legitimizes the lifting of the requirement for conservation. We
are interested in the anisotropic version of Equation 7, which
is obtained simply by replacing the constant ¢ with a stopping
function g(x):

Uip1 (%) = ui(x) + g(0)(6i(x) — u;(x))
= 8(x)0;(x) + (1= g(x))u;(x)

In Equation 8, when the stopping function g(x) is in [0,1], the
iterative results are bounded and monotonically increasing,
which lead to a stable solution. By using morphological di-
lation (i.e. maximum filtering), morphological diffusion has
several advantages when applied to confocal data and imple-
mented with graphics hardware. Morphological dilation’s
kernel is composed of only comparisons and has the least
computational overhead. The diffusion process only eval-
uates at non local maxima, which are forced to reach their
stable states with fewer iterations. This unilateral influence
(vs. bilateral of a typical anisotropic diffusion) of high inten-
sity signals upon lower ones may not be desired for all situa-
tions. However, for confocal data, whose signal results from
fluorescent staining and laser excitation, high intensity sig-
nals usually represent important structures, which can then
be extracted with a faster speed. As shown in Section 5, when
coupled with our user interactions, morphological diffusion is
able to extract desired neural structures from typical confocal
data with interactive speed on common PCs.

®)

4 Uskr INTERACTIONS FOR INTERACTIVE VOLUME SEGMENTATION

Paint selection [14], [12] with brush strokes is considered one
of the most useful methods for 2D digital content author-
ing and editing. Incorporated with segmentation techniques,
such as level set and anisotropic diffusion, it becomes more
powerful yet still intuitive to use. For most volumetric data,
this method becomes difficult to use directly on the render-
ings, due to occlusion and the complexity of determining
the depth of the selection strokes. Therefore many volume
segmentation tools” user interactions are limited to 2D slices.
Taking advantage that the confocal channels usually have
sparsely distributed structures, direct paint selection on the
render viewport is actually very feasible, though selection
mistakes caused by occlusion cannot be completely avoided.
Using the result from Section 3, we developed interaction
techniques that generate accurate segmentations of neural
structures from confocal data. These techniques share simi-
larities with the sketch-based volume selection methods de-
scribed in previous literatures [32], [5], [18], [1]. However, the
algorithm presented in Section 3 allows us to use paint strokes
with varying sizes, instead of thin strokes in previous work.
We design them specifically for confocal data and emphasize
accuracy for neural structure extraction.
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Figure 4: The two parts of the stopping function. gi() is for stopping
the growth at high gradient magnitude values and g»() is for stopping
at low scalar intensities. The final stopping function is the product of
£1() and g2().

Figure 3 illustrates the basic process of extracting a neu-
ral structure from confocal volume with our method. First,
a scalar mask volume is generated. Then user defines seed
regions by painting on the render viewport. The pixels of the
defined region are then projected into 3D as a set of cones
(cylinders if the viewport is orthographic) from the camera’s
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Figure 5: Selection brush. The dataset contains neurons of a
Drosophila adult brain. A: The original dataset has a neuron that
a user wants to extract, which is visual projection neuron LC14 [16].
B: A stroke is painted with the selection brush. C: A second stroke
is painted, which covers the remaining part of the neuron. D: The
neuron is extracted.

viewpoint. Voxels within the union of these cones are thresh-
olded to generate seeds in the mask volume, where seeds have
the maximum scalar value, and other voxels have zero value.
Then a wider region, which delimits the extent of subsequent
diffusion, is defined by painting again on the viewport. The
second region is projected into the volume similarly. Then in
the mask volume, the selected seeds propagate by iteratively
evaluating Equation 8. Structures connected to those regis-
tered by the seeds are then selected in the mask volume. The
resulting mask volume is not binary, though the structural
boundaries can be more definitive by adjusting the stopping
function, which is subsequently discussed. After each stroke,
the mask volume is instantly applied to the original volume,
and the selected structures are visualized with a different
color against the original data. User can repeat this process
for complex structures, since the calculation only modifies the
mask volume and leaves the original data intact.

We use gradient magnitude (|vV]) as well as scalar value
(V) of the original volume to calculate the stopping function
in Equation 8, since, for confocal data, important structures
are stained by fluorescent dyes, and they should have high
scalar values:

8(V)=g1(V)-g2(V)

1 [vV|< t
qiV)={ _wn?
{ e M otherwise ©)
_(v-p)?
V)= { e B V<t
1 otherwise

The graphs of the two parts of the stopping function are in
Figure 4. t; and ¢, translate the falloffs of g1() and g2(), and
the falloff steepness is controlled by k; and ky. The combined
effect of g1() and g»() is that the seed growing stops at high
gradient magnitude values and low intensities, which are
considered borders for neural structures in confocal data.

By limiting the seed growth region with brush strokes,
users have the flexibility of selecting the desired structure

Figure 6: Eraser. The dataset contains neurons of a Drosophila adult
brain. A: The yellow dotted region indicates the structure that a user
wants to extract (visual projection neuron LT1 [16]). From the observ-
ing direction, the structure obstructs another neuron behind (visual
projection neuron VS [16]). B: A stroke is painted with the selection
brush. C: LT1 is extracted, but VS is partially selected. D: The view
is rotated around the lateral axis. The yellow dotted region indicates
extra structures to be removed. E: A stroke is painted with the eraser.
F: The extra structures are removed. G: The view is rotated back. H:
A visualization of the extracted neuron (LT1).

from the most convenient angle of view. Furthermore, it also
limits the region for diffusion calculations and ensures real-
time interactions. For less complex neural structures, seed
generation and growth region definition can be combined
into one brush stroke; for over-segmented or mistakenly se-
lected structures, an eraser can subtract the unwanted parts.
We designed three brush types for both simplicity and flexibil-
ity. Neurobiologists can use these brushes to extract different
neural structures from confocal data.

Selection brush combines the definition of seed and diffu-
sion regions in one operation. As shown in Figure 5, ithas two
concentric circles in the brush stamp shape. Strokes created
by the inside circle are used for seed generation, and those
created by the outside circle are for diffusion region definition.
Usually the diameter of the inside circle is set slightly smaller
than the root of a structure. The diameter of the outside circle
is determined by how the sub-structures branch out from the
root structure. By combining the two operations, it makes



interaction easier. For example, to extract an axon and its
terminal branches, the inside circle is set roughly to the size
of the axon, and the outside circle is set to that can enclose
the terminals. Morphological diffusion is calculated on fin-
ishing each stroke, which appends newly selected structures
to existing selections. Since users can easily rotate the view
while painting, it is helpful to use this tool and select multiple
structures or different parts of one complex structure from the
most convenient observing directions. Figure 5 demonstrates
using the selection brush to extract a visual projection neuron
of a Drosophila brain.

Eraser behaves similarly to the selection brush, except that
it first uses morphological diffusion to select structures, and
then subtracts the selection from previous results. The eraser
is an intuitive solution to issues caused by occluding struc-
tures: mistakenly selected structures because of obstruction
in 2D renderings can usually be erased from a different angle
of view. Figure 6 demonstrates such a situation where one
neuron obstructs another in the rendering result. The eraser
is used to remove the mistakenly selected structures.

Diffusion brush only defines diffusion region. It generates
no new seeds and only diffuses existing selections within the
region defined by its strokes. Thus it has to be used after the
selection brush. With the combination of the selection brush
and the diffusion brush, occluded or occluding neural struc-
tures can be extracted easily, even without changing viewing
angles. Figure 7 shows the same example as in Figure 6. First,
the selection brush is used to extract only the non-obstructing
part of the neuron. Then the remaining of the neuron is ap-
pended to the selection by painting with the diffusion brush.
Since the obstructing part is not connected to the neuron be-
hind, and the diffusion brush does not generate new seeds in
that region, the neuron behind is not selected.

As seen in the above examples, our interactive segmenta-
tion scheme allows inaccurate user inputs within fairly good
tolerance. However, using a mouse to conduct painting work
is not only imprecise but also causes fatigue. We support the
latest digital tablets in our tool for dexterity enhancement.
The active tablet area is automatically mapped to the render
viewport. Thus, all the available area on the tablet is used
in order to maximize the precision, and the user can better
estimate the location of the strokes even when the stylus is
hovering above the active area of the tablet. Furthermore,
stylus pressure is utilized to control the brush size. Though
the pressure sensitive brushes are a feature that can be turned
off by users, our collaborating neurobiologists like the flexi-
bility of changing the brush sizes on the fly. It helps to extract
neural structures of varying sizes more precisely (Figure 8).

5 ResuLts AND DiscussioN

The interactive volume segmentation functions have been in-
tegrated into a confocal visualization tool, FluoRender [31].
The calculations for morphological diffusion use FluoRen-
der’s rendering pipelines, which are implemented with
OpenGL and GLSL. As shown in the accompanying video,
painting interactions are facilitated by keyboard shortcuts,
which make most operations fluid.

As discussed in Section 4, the stopping function of mor-
phological diffusion has four adjustable parameters: shiftand
steepness values for scalar and gradient magnitude falloffs.
In order to reduce the total number of user-adjustable param-
eters, we empirically determine and fix the steepness values
(k1 and ky in Equation 9) to 0.02, which can generate satisfac-
tory structural boundary definitions for most of the data that
our collaborating neurobiologists are working with. The shift
values are controlled by user. Figure 9 compares the results
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Figure 7: Diffusion brush. The dataset contains neurons of a
Drosophila adult brain. A: The original dataset is the same as in
Figure 6. B: A stroke is painted with the selection brush on the non-
obstructing part of LT1. C: Part of LT1 is selected. Then the diffusion
brush is used to select the remaining of LT1. D: LT1 is selected, with-
out selecting the obstructed neuron (visual projection neuron VS). E:
The view is rotated around the lateral axis, to confirm the result. F: A
visualization of neuron LT1 after extraction.

when these parameters are adjusted, as well as results of the
default values that we have determined empirically. The de-
fault values can usually connect faintly stained fibers however
still keep noise data from being selected. Since our segmen-
tation method is real-time, users can tweak the parameters
between strokes and deal with over- and under-segmentation
problems. The one remaining parameter is the iteration times
for morphological diffusion. Common implementations usu-
ally test convergence after each iteration, however it slows
down the calculation. Therefore we also empirically deter-
mine and set iteration times to 30. As discussed in Section
3.3, morphological diffusion requires fewer iterations to reach
a stable state. The determined value ensures both satisfactory
segmentation results and interactive speed.

To demonstrate the computational efficiency of our seg-
mentation algorithm, we use the same user interactions how-
ever two different methods for region growing: standard
anisotropic diffusion as in [24] and morphological diffusion.
The comparisons are shown in Figure 10. The iteration num-
bers of the two methods are determined so that the diffusion
processes converge. Our method uses both fewer iterations
and less computation time to converge. Therefore, it can
be carried out for interactive volume painting selection with
negligible latency. Certain fine details of the confocal data
shown in Figure 10 are also better extracted, which make the
result more appealing to neurobiologist users. However, as
discussed in Section 3, our method is based on the assumption
that high scalar values are always preferred over lower ones
in the volume. For dense volume data with multiple layers of
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Figure 8: A digital tablet and its usage. The dataset contains neurons
of a zebrafish head. A: The original dataset contains stained tectum
lobes and photoreceptors of eyes. Since the tectum lobes and the
photoreceptors actually connect, we want to better control the brush
size for diffusion at the regions of connection, when only the tectum
lobes are to be extracted. B: Two strokes are painted with the se-
lection brush. The stroke size changes as user varies the pressure
applied to the tablet’s stylus. C: The tectum lobes are selected. D:
The tectum lobes are extracted and visualized.

different scalar intensities, our method has the limitation that
it may not correctly extract desired structures. One possible
extension of our method is combining it with transfer func-
tion designs, which can usually generate re-ordered scalar
intensities depending on importance for structure extraction.
Another direction for future research is to look at other mor-
phological gradients other than the external gradient. For
example, we can use the internal gradient if low scalar values
are preferred.

With the easy-to-use segmentation functions available with
FluoRender, neurobiologist users can select and separate
structures with different colors when they visualize their data.
Thus our method can be used for interactive data exploration
in addition to transfer function adjustments. Figure 11 shows
a result generated with our interactive segmentation method.
The zebrafish head dataset has one channel of stained neu-
rons and one of nuclei. The tectum (magenta), the eye motor
neuron (red) and the eye (green) are extracted and colored
differently, which make their spatial relationships better per-
ceived. The nucleus channel is layered behind the extracted
structures and used as a reference for their positions in the
head.

6 ConcLusioN

In this paper, we present interactive techniques for extract-
ing neural structures from confocal volumes. We first de-
rived morphological diffusion from anisotropic diffusion and
morphological gradient, and then we used the result to de-
sign user interactions for painting and region growing. Since
the user interactions work directly on rendering results and
are real-time, combined visualization and segmentation are
achieved. Using this combination it is now easy and intu-
itive to extract complex neural structures from confocal data,
which are usually difficult to select with 2D-slice-based user
interactions. For future work, we would like to improve
and complete the segmentation/visualization tool for confo-
cal microscopy data, and make it useful for all neurobiologists
working with confocal data. A short list of the improvements
for the current system includes recording operation history,

t1=04
t2=0.06

Default
values

t1=04
t2=0.2

Figure 9: The influence of the stopping function parameters on seg-
mentation results. A User wants to extract the eye muscle motor
neurons from a zebrafish head dataset. The left column shows the
selected results; the right column shows the extracted results. A:
The default values give satisfactory results: completely selected fiber
without much noise. B: Shifting the scalar falloff higher to 0.2 can
barely select any fiber at its faintly stained regions. C: Decreasing
the scalar falloff includes more noise to the selection. D: Increasing
the gradient magnitude falloff includes more details. However further
increasing the value does not make much difference, since higher
gradient magnitude values become scarce in the data. E: Decreas-
ing the gradient magnitude falloff results disconnected fiber.

undo/redo support, batch segmentation for multiple confo-
cal datasets and channels, segmentation of 4D confocal data
sequence, and volume annotation.
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