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An adaptive-mesh parallel CFD software package for time-dependent problems is
described. The package uses unstructured meshes and is intended to be portable across
MIMD architectures. A new algorithm for the load-balancing of such meshes and their
data structure is discussed and its efficiency is demonstrated numerically.

1. Introduction

Two recent trends in software for CFD problems are the use of unstructured adaptive
meshes and the need to implement the software on distributed memory parallel com-
puters. The subject of this paper is the implementation of one particular code of this
type for the solution of time-dependent compressible Euler and Navier Stokes prob-
lems.

The software described here uses the method of lines with the spatial discretisation
performed using a cell-centred finite volume scheme on unstructured triangular meshes,
[2], to generate an ODE system which is integrated forward in time. Time-integration
may be performed using a variety of methods; in the experiments reported here a Theta
method algorithm with functional iteration is employed. The code attempts to control
both the spatial and temporal errors and to balance them so that the spatial error dom-
inates, [2]. This spatial error control means that the position and density of the mesh
points may vary dramatically over the course of an integration. In order to ensure that
the mesh is load-balanced as it evolves it is desirable to use a dynamic load-balancing
technique. This approach is in contrast to work on regular grids which lend themselves
to parallelisation via compiler directives & Fortran 90/HPF and also differs from recent
work on a distributed memory compiler for irregular problems, [3], which uses a static
mesh decomposition executed at runtime.

2. Software Outline and Development Strategy

An outline of the structure of the code is given in Figure 1. The four main Modules
are mesh generation, evaluation of the residual of the ODE system, time-stepping and
mesh refinement & load-balancing. A layered software approach, based on these four
modules, has been used to generate the parallel code from the serial versions.

The mesh generation software, Module 1, remains serial code at present as the ini-
tial mesh generation may be regarded as a start-up overhead for transient problems.
In addition, highly refined meshes can be constructed by repeated applications of the



adaptivity code before any time-stepping takes place and therefore it seems sensible to
devote code development resources to parallel remeshing as opposed to parallel mesh
generation. However, very complex domains could still pose a sequential bottleneck
and so development of a parallel mesh generator is desirable in the future.
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Figure 1. Software Outline

Module 2 contains the bulk of the computational workload (about 80%) in the form of
repeated residual evaluations – at least for the explicit functional iteration/time-marching
scheme used for hyperbolic problems. Each residual evaluation involves the spatial dis-
cretisation of the PDE on the unstructured mesh and so the parallel code for this routine
uses a distributed version of the complex pointer-based mesh data structure in C. This
is accomplished by the construction of tiles.

Conceptually, the tile is a spatially coherent subset of the data defined by a partition
of the solution vector (not directly by the mesh). Each of these partitions defines the core
of a tile and then the tile as a whole consists of this core, a halo of replicated elements
of the solution vector lying in other tiles plus any of the underlying mesh structure re-
quired for calculations on core elements. The core of the tile is thus an independent
self-contained unit whilst the halo forms a read-only database.

The introduction of some high-level routines to split, move and merge tiles allows the
tiles to be moved from processor to processor as required by the partitioning. The rou-
tine flush halo copies elements of the solution vector around the system to update
the halo database.

Module 3 integrates the temporal ODE system arising from the method of lines ap-
proach. The code here involves only simple operations on the solution vector – essen-
tially an extended set of level 1 BLAS. Once the solution vector has been distributed
(using the mapping between triangles and solution components) these operations are
easily parallelised by the implementation of a combine communication primitive for
norms and dot products. Routines to communicate updated solution values to the ha-



los have also been written. Parallel linear algebra for implicit time-integration has been
developed separately and is currently being integrated into the code.

The adaptivity and load-balancing software, Module 4, is still serial code. Although
this has not caused a bottleneck, very large meshes could present a serious obstacle to
scalability because the host has someO�n� operations and must broadcast the mesh out
to the processors. Hence Module 4 is now due for parallelisation.

2.1. Hardware Platforms and Portability
The software abstraction used is that of a data parallel system with non-local data ac-

cess provided by explicit message passing calls hidden in a communications library. A
single control thread is multiply instantiated for both efficiency and compatibility with
sequential and shared memory versions. The machine abstraction is a fully connected
network of distributed memory processors connected to a host processor. At present
the host has several functions such as I/O, graphics and control of the geometrical data.
However as the code is being increasingly parallelised this will be phased out.

The code currently runs in parallel on the development platform of a Meiko CS-1
equipped with 32 T800 transputers and a SPARC 2 host. It has also been ported to the
new Meiko CS-2 but the test machine to be used has not yet been fully commissioned.

For portability between different message passing systems the machine specific com-
munications routines are hidden by a minimal set of more general communications prim-
itives, such as send, receive, broadcast and combine. These primitives may be
written in terms of the current message passing standards (such as MPI or the de facto
standard PVM). A further library of useful ‘macros’ are then implemented in terms of
these primitives. This library includes the level 1 BLAS, routines for updating halo in-
formation, and the linear algebra software. Should porting to different machines be re-
quired, all that is necessary is the implementation of the communication primitives.

3. Load-Balancing

The key problem in obtaining optimal performance is ensuring that the load is evenly
balanced and that the communication cost is reduced as much as possible by minimis-
ing inter-processor dependencies. It is well known that this mapping problem is NP-
complete and so heuristics must be employed to obtain a usable algorithm. In addition,
the adaptive nature of such codes mean that the unstructured mesh may be modified
every few time steps and so the load balancing must have a low cost relative to that of
the solution algorithm in between remeshing.

A number of good load-balancing algorithms, in particular Recursive Spectral Bisec-
tion (RSB) and its extensions, [1], [6] & [9], are based on partitioning a graph which
corresponds to the communication requirements of the spatial discretisation of an un-
structured mesh. Until now, however, such algorithms have not addressed adaptive
mesh codes and the resulting incremental update partitioning problem posed when a
mesh with an existing partition is being refined and/or coarsened. The failure to utilise
this existing partition suggests that the load-balancing may be unnecessarily computa-
tionally expensive. In [7] an iterative preprocessing technique for the update problem
was proposed to enhance existing graph-based partitioning methods and in Section 3.3 a
summary is provided of how this new algorithm can be used in the context of adaptive



meshes.

3.1. Recursive Bisection Methods
The Recursive Bisection approach is based on the principal that bisecting a domain is

a much easier task than subdividing into p subdomains. The bisection is obtained by a
given strategy and then the same strategy is applied to the subdomains recursively. In
this manner a partition into p � �q subdomains can be obtained in q recursive steps. Si-
mon, [6], considers three strategies – Recursive Coordinate, Graph & Spectral Bisection
– and demonstrates the superiority of RSB over the other two.

It should be noted that Recursive Bisection algorithms can create any number of par-
titions (not necessarily a power of 2). For example, to create 3 partitions, the bisection
field (the Fiedler vector in the case of RSB or the x/y coordinates for RCB – see below)
can either be divided directly into 3, so called strip-wise partitioning, or bisected with
a 1:2 split and then bisection applied again to the larger partition.

3.1.1. Recursive Coordinate Bisection
RCB is a simple and intuitive technique which bisects the mesh by sorting the ele-

ments using alternately x and y coordinates. Although the method is computationally
inexpensive it can provide poor separator sets due to ignoring communication infor-
mation. This is particularly noticeable on very irregular meshes where the subdomains
are likely to be disconnected, [6].

3.1.2. Recursive Spectral Bisection
Spectral Bisection, [6], associates each mesh element with a node of an undirected

graph. The dual communication graph, G�V�E� where V is the set of nodes and E the set
of edges, is then defined by connecting nodes together (with an edge) when the spatial
discretisation gives rise to a dependency between the corresponding mesh elements.
This dual graph can be represented by an n�n symmetric matrixL, known as the Lapla-
cian, where n is the number of graph nodes. The diagonal of L gives the degree of each
graph node whilst the off-diagonals are�� at �i� j� where an edge connects nodes i and
j and zero elsewhere. Due to the special properties of this matrix, an approximate solu-
tion of the bisection problem can be found by using the eigenvector (or Fiedler vector)
associated with the smallest non-trivial eigenvalue of L to weight the graph nodes (see
[6] for details).

3.2. Load-Balancing of Adaptive Meshes
Whilst Spectral Bisection usually gives good results for a static problem, it does have

a number of drawbacks for the dynamic partitioning of adaptive meshes. In particu-
lar the method is computationally expensive; the cost of finding the eigenvector for a
problem size n, being at least O�n logn�. This problem has been addressed in the lat-
est version of RSB, [1], where the initial bisection is found on a coarse graph and then
projected onto increasingly finer graphs using multigrid type techniques.

A second important consideration for adaptive meshes is that the method tends to
be sensitive to small perturbations in the graph. For instance Williams, [9, page 477],
states that ‘a small change in mesh refinement may lead to a large change in the sec-
ond eigenvector’. Combined with the fact that the RSB algorithm has no mechanism



for using existing information about the previous partition, heavy node migration may
result. This problem has also been recently addressed by Driessche & Roose, [4].

In the next Section an incremental method is presented that enables a graph-based
algorithm to use existing information about the partition of a previous mesh. It is anal-
ogous to adaptive techniques in the same way that multilevel RSB is analogous to multi-
grid techniques.

3.3. A Dynamic Partitioning Approach
When a partitioned mesh is modified by the addition of new elements or the removal

of existing ones an immediate load-imbalance (and hence a new partitioning problem)
is created. Provided that the new mesh is based on coarsening or refining of the existing
one, as in this case [2], it is possible to interpolate the existing partition onto the new
mesh and to use this partition as a starting point in a repartitioning algorithm.

The assumption is that, unless the mesh has changed dramatically, the partitions will
not need to be changed a great deal. Ideally most mesh elements will remain in the same
subdomain whilst just the boundaries are balanced. To effect this, graph nodes away
from the inter-processor boundaries are clustered together and represented by a single
node in a reduced size graph. In this way the information from the previous partition
can be utilised and, as a result, both the cost and the amount of node migration should
certainly be reduced (the factors being largely dependent on the granularity). This idea
forms the basis of the Dynamic RSB algorithm (DRSB) and a full description together
with a discussion of some implementation issues is given in [7].

Figure 2. Clustering of mesh elements and the corresponding dual graph

Figure 2 show this clustering technique on a simple mesh. The domain is shown (left)
immediately after refinement with the old (and now non optimal) partition interpolated
onto the mesh and the mesh elements which have been selected for clustering shaded.
On the right the dual graph shows the inter-processor edges as dotted lines and the clus-
tered nodes ringed. These clustered nodes will be represented by a single node in the
reduced graph. Spectral bisection (or another graph-based technique) is applied to the



reduced graph and the graph partitioned as before. Of course, it is no longer clear that
such balancing will approximate the optimal bisection, but the results ([7] & [8] and be-
low) actually seem to show an improvement over those of the RSB algorithm in most
cases.

4. Computational Example – Euler Wedge Shock Problem

The results of the above approach are best illustrated with an example problem. The
Euler equations in two space dimensions are integrated with an inflow of air at Mach
2.5 hitting a 10 degree wedge and forming a shock front. In its original form this is a
steady state problem, however, in the time-dependent form used here the shock starts
off along the wedge and rises to its steady-state position as time proceeds. The unstruc-
tured mesh becomes heavily refined around the front as it forms but remains coarse
away from the wedge and shock.

Table 1 shows solution time in seconds (neglecting any remeshing and partitioning
carried out on the host) and speed-up results for a typical run. In this case there were
1,239 residual evaluations and 18 remeshes with an average mesh size (per residual
evaluation) of 1157 triangles (1967 maximum; 92 minimum). More impressive perfor-
mance figures can be achieved with larger meshes but, since the on-processor memory
is limited, a single processor cannot store more than about 2,000 triangles and so true
speed-up figures cannot be produced.

Table 1
Solution time & speed-up for a typical run
P 1 2 4 8 16 32
t (secs) 9374 4747 2410 1247 659 372
speed-up 1.00 1.98 3.89 7.52 14.2 25.3

The most computationally effective load-balancing technique is the one which, when
combined with the solution process, produces the lowest overall run-time. Sophisti-
cated methods, such as RSB, usually result in significantly fewer cut-edges than crude
techniques, such as RCB. However, they are much more computationally expensive to
run and hence can result in a higher execution time overall. Table 2 shows some typi-
cal figures for the time-integration of the wedge shock problem on 16 processors. Here
n is mesh size, jEij is the number of graph edges cut and Tb is the time taken for the
load-balancing. The differences in the algorithms can be clearly seen; RSB & DRSB cut
significantly fewer edges than RCB but are much slower.

Table 3 compares the solution time (Ts – transputer CPU seconds) with the load-balancing
time (Tb – SPARC CPU seconds) and for all but the 32 processor case the total run time,
Ts � Tb, is lower for DRSB. This is not a fair comparison because the SPARC is a faster
than the transputer (by a factor of about 4) but this can be mitigated by the fact that the
load-balancing is currently done sequentially. For parallel load-balancing, the cost of
the DRSB algorithm is dominated by a Lanczos calculation (implemented with level 1
BLAS and one sparse matrix-vector multiply per step) which can be parallelised with



good efficiency, [5]. Then, even if a parallel efficiency of just 50% is assumed for the
whole of the algorithm, DRSB will have a faster overall solution time than RCB for all
the given results.

Table 2
Edges cut & load-balancing time on a 16 processor run

RCB DRSB RSB
n jEij Tb jEij Tb jEij Tb

...
...

...
...

...
...

...
1483 253 1.0 109 8.1 119 105.3
1869 283 1.3 131 13.6 117 52.6
1967 290 1.4 125 11.6 112 120.7
1961 284 1.4 118 9.5 114 65.0

...
...

...
...

...
...

...
17238 3413 11.9 1685 108.8 1608 660.1

A comparison of the 16 & 32 processor cases begins to show what happens when the
work per processor is reduced to the point at which the benefits of the more complex
DRSB algorithm are outweighed by the computational effort needed in the extra level
of recursive bisection. This situation would be less likely to occur if a parallel version
of DRSB were to be used, but is still possible.

Table 3
Solution & load-balancing times for varying numbers of processors

RCB DRSB
P Ts Tb Ts Tb

4 2,506 6 2,410 48
8 1,304 8 1,247 74

16 762 12 659 109
32 413 17 372 154

5. Conclusions

The development of a prototype parallel adaptive PDE solver has been considered.
The key issue of load-balancing unstructured meshes has been discussed and a new
algorithm which appears to deal well with adaptive meshes in time-dependent com-
putations has been described. Future work on this package will include the integration
of the parallel linear algebra software and the development of parallel load-balancing
and parallel adaptivity modules.
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