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A �nite element method for the two-dimensional extended
Boussinesq equations
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SUMMARY

A new numerical method for Nwogu’s (ASCE Journal of Waterway, Port, Coastal and Ocean En-
gineering 1993; 119:618) two-dimensional extended Boussinesq equations is presented using a linear
triangular �nite element spatial discretization coupled with a sophisticated adaptive time integration
package. The authors have previously presented a �nite element method for the one-dimensional form
of these equations (M. Walkley and M. Berzins (International Journal for Numerical Methods in
Fluids 1999; 29(2):143)) and this paper describes the extension of these ideas to the two-dimensional
equations and the application of the method to complex geometries using unstructured triangular grids.
Computational results are presented for two standard test problems and a realistic harbour model. Copy-
right ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Boussinesq equations model weakly non-linear, weakly dispersive water waves in a variable
depth environment; in shallow water their linearized dispersion characteristics approximate
Stokes �rst-order wave theory [1]. In the nearshore zone accurate prediction of wave activity
needs to account for both non-linear and dispersive e�ects in order to model wave processes
such as di�raction, refraction, shoaling and harmonic interaction. Boussinesq models are com-
monly used for predicting wave elevations inside harbours [2; 3] and wave interactions in
the nearshore zone [4]. All Boussinesq-type equation systems are derived by integrating the
higher dimensional �uid �ow equations through the depth. This produces a simpli�ed vertical
velocity distribution which restricts the validity of the mathematical model to a shallow-
water environment. The original system of Boussinesq equations proposed by Peregrine [5] is
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limited to very shallow water; however, in recent years, many extended Boussinesq systems
have been proposed for which the dispersion relationship is valid up to the deep water limit,
increasing the useful range of these models for many applications [6–8]. In this work an
extended Boussinesq system due to Nwogu [6] is used, derived from the full �uid equations
by choosing the velocity at an arbitrary depth as one of the variables. Many of the extended
equation systems can be shown to have equivalent linearized dispersion characteristics [7],
but the proposed �nite element method is easier to apply to this form of the equations for
reasons given in Section 2.
The depth integration of the governing equations reduces the spatial dimension of the equa-

tions by one and makes them relatively e�cient to solve numerically. Numerical schemes for
one-dimensional Boussinesq equation systems were reviewed in a previous work [9] and
here the attention is focused on schemes for the two-dimensional equations. Many numerical
schemes for the Boussinesq equations are based on �nite di�erence methods. Abbot et al.
[2; 10] pioneered the �nite di�erence solution of the original Boussinesq system. This scheme
was probably the �rst Boussinesq model to be used as an engineering tool and an appli-
cation to a real harbour geometry was reported in their work. Hauguel [11] and Smallman
and Cooper [12] have also described �nite di�erence schemes applied to harbour geometries.
Nwogu applied a �nite di�erence method to his extended Boussinesq system and has used it
to model multi-directional wave interactions in the nearshore zone [4]. Wei and Kirby [13]
described a di�erent �nite di�erence model of Nwogu’s equations and this method has sub-
sequently been used by Zang et al. [14] and Skotner and Apelt [15] for prototype harbour
geometries. Schr�oter et al. [16] applied a �nite di�erence method, similar in principle to that
of Abbot et al., to a di�erent set of extended Boussinesq equations and this model was used to
simulate the wave disturbances in a real harbour geometry, reported in a separate publication
[3]. The �nite di�erence methods are simple to formulate, but di�culties in modelling irreg-
ular geometries in two space dimensions with structured grids can lead to a loss of accuracy
[3]. More recent work has investigated the use of boundary-�tted grids which go some way
to addressing this problem [17; 18]; however, the accuracy can be limited by the need for an
orthogonal grid, and considerable work may be needed to generate such a grid for an arbi-
trary geometry. Unstructured �nite element methods are straightforward to apply on complex
domains but their application in this area has mainly been limited to the original Boussinesq
system and structured grids [19; 20]. Kawahara et al. [21; 22] have applied a linear �nite el-
ement method to the equations, including the use of a fully unstructured mesh to analyse the
wave elevations in a real bay. Ambrosi et al. [23] applied a linear triangular Taylor–Galerkin
�nite element method to simulate the wave elevation past a cylindrical obstacle. Langtangen
et al. [24] described linear and quadratic �nite element methods within the framework of the
DIFFPACK software and applied them to model problems on unstructured meshes. There is
little published material on the application of �nite element methods to extended Boussinesq
equations. The authors’ previous work [9] described a �nite element method for Nwogu’s one-
dimensional extended Boussinesq equations and more recently Li et al. [25] have described a
linear quadrilateral �nite element method for a di�erent set of extended Boussinesq equations,
due to Beji and Nadaoka [7]. Woo and Liu [26] have recently described a Petrov–Galerkin
�nite element method for one-dimensional fully non-linear, weakly dispersive wave equations
which are structurally very similar to the equations considered here. These methods have
some similarities with that presented here and the approaches are compared and contrasted
throughout this work.
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In this work, a method of lines approach is adopted. A complete spatial discretization
is performed producing a system of ordinary di�erential equations in time, and boundary
conditions in either algebraic or di�erential form. This di�erential–algebraic equation
system is solved using DASPK [27]; a general purpose time integration package using
adaptive order, adaptive time stepping methods driven by state-of-the-art local error
control strategies. The aim of this work is to investigate the application of the �nite
element method to geometrically complex two-dimensional problems using unstructured tri-
angular meshes. However, the linear Galerkin �nite element method cannot be
applied directly to the system due to the presence of third-order spatial derivatives. Here,
the equations are rewritten in a lower order form suitable for a linear �nite element ap-
proximation by introducing auxiliary algebraic equations. The additional computational ex-
pense of solving these equations is reduced by approximating them in an explicit
form.
The remainder of this paper is structured as follows. Section 2 describes the chosen math-

ematical model for shallow water �ow and shows the derivation of the modi�ed form of
the equations used in this work. Section 3 describes the numerical method; a linear triangu-
lar �nite element method for the spatial approximation coupled with a sophisticated adaptive
time integration strategy. Particular attention is paid to the boundary conditions, and a new
formulation of the wall boundary condition is presented here. Initial conditions are presented
that allow e�cient use of the adaptive time integration strategy. In Section 4, numerical ex-
periments are presented comparing the proposed method with experimental data and applying
the method to a prototype harbour geometry. Issues concerned with the speci�cation of the
incident wave are considered and a method is proposed and demonstrated numerically. Section
5 discusses the results and considers the issues involved in using the model as an engineering
design tool.

2. THE BOUSSINESQ EQUATION SYSTEM

The physical system can be characterized by a typical water depth H , a typical wavelength
� and a typical wave amplitude a. The non-linearity and dispersion present in the system
are parameterized by the ratios � and �, respectively. Ursell [28] discovered a correlation
between these two parameters that predicts which wave theory will be applicable. This is
known as the Ursell Number, U . In terms of H , � and a the values of �, � and U are
given by

�=
a
H

; �=
H
�
; U =

�
�2
=

a�2

H 3 (1)

The Boussinesq wave theory requires ��1, ��1 and U to be O(1). The equation system can
then be consistently derived from the inviscid, incompressible, irrotational �uid �ow equations
by suitably scaling and non-dimensionalizing the equations, integrating through the depth and
then expanding in terms of the small parameters � and � [6]. Terms up to and including
O(�; �2) are retained.
Nwogu’s extended Boussinesq equation system is given below in terms of the free

surface elevation �(x; y; t), horizontal velocity �eld u(x; y; t) = (u(x; y; t); v(x; y; t)) at depth
z= �h and spatially varying depth h(x; y) with respect to a horizontal co-ordinate
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system (x; y).

@�
@t
+∇·((h+ �)u) +∇·(A1h3∇(∇·u) + A2h2∇(∇·(hu))) = 0 (2)

@u
@t
+ g∇�+ (u·∇)u+ B1h2∇

(
∇· @u

@t

)
+ B2h∇

(
∇·

(
h
@u
@t

))
=0 (3)

where

A1 =
�2

2
− 1
6
; A2 = �+ 1

2 ; B1 =
�2

2
; B2 = � (4)

and ∇ represents the two-dimensional vector di�erential operator with respect to the horizontal
co-ordinates (x; y). The free parameter �= z=h is chosen to minimize the di�erence between
the equations’ linearized dispersion characteristics and the full linear dispersion relation. A
more detailed discussion of this choice is given in References [6; 13]. The value �= −0:531,
suggested by Nwogu [6], is used throughout this work.
Equation (2) contains third spatial derivatives and, if a standard linear triangular �nite

element method is to be applied to this system, must be modi�ed into a form containing at
most second spatial derivatives. In one dimension the authors introduced one auxiliary equation
into the system to remove the third spatial derivatives [9] and this approach is extended here
to the two-dimensional system. The structure of Equation (2) suggests the de�nition of a
vector w;

w = A1h3∇(∇·u) + A2h2∇(∇·(hu)) (5)

This will introduce two additional di�erential equations into the system, but admits a linear
triangular spatial approximation. Note that Li et al. [25] modify the extended equation system
of Beji and Nadaoka in a similar way by de�ning the gradient of the free surface elevation
as an auxiliary variable. The Petrov–Galerkin �nite element method of Woo and Liu [26] has
no such restriction: C2 cubic spline weight functions are used allowing a direct approximation
of the third space derivatives. However, while possible on mildly unstructured quadrilateral
grids in two dimensions, this method may prove too complicated to apply on arbitrary grids
and geometries.
The equation system is further modi�ed by approximating the convection terms in

momentum equation (3)

(u·∇)u+ g∇�=∇( 12 |u|2 + g�) + O(�2) (6)

which is an acceptable approximation within the Boussinesq framework [29].
Using these results in equation system (2)–(3) gives the system of equations to be solved

here:

@�
@t
+∇·p+∇·w=0 (7)

@u
@t
+∇f + B1h2∇

(
∇·@u

@t

)
+ B2h∇

(
∇·

(
h
@u
@t

))
=0 (8)

w− A1h3∇(∇·u)− A2h2∇(∇·(hu)) = 0 (9)
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where
p=(h+ �)u; f= 1

2 |u|2 + g� (10)

3. THE NUMERICAL METHOD

3.1. Spatial discretization
The two-dimensional �nite element method is developed by partitioning the spatial domain
� into a set of ne non-overlapping triangular elements that completely cover the domain. A
piecewise linear interpolation can be de�ned over this set of triangular elements by using the
common vertices to de�ne a set of np nodes. A set of np linear global basis functions �i(x; y)
are then de�ned on the set of nodes

�i(xj; yj)= �ij (11)

where �ij is the Dirac delta function.
For simplicity of presentation a constant depth H is assumed initially. The extension to a

variable depth h(x; y) is considered afterwards. Discretizing equation system (7)–(9), with  ̇ j
denoting the time derivative of  j,

Mij �̇j +C
m
ij p

m
j +C

m
ijw

m
j =0 (12)

Mij u̇
m
j +C

m
ijfj − (B1 + B2)H 2Kmn

ij u̇n
j =−(B1 + B2)H 2

∫
�
�i∇· u̇ n̂m d� (13)

Mijwm
j + (A1 + A2)H 3Kmn

ij un
j = (A1 + A2)H 3

∫
�
�i∇·u n̂m d� (14)

where � denoted the boundary of �, n̂=( n̂1; n̂2) is the unit outward normal on the boundary,
and

Mij=
∫
�
�i�j d�; Cm

ij =
∫
�
�i

@�j

@xm
d�; Kmn

ij =
∫
�

@�i

@xm

@�j

@xn
d� (15)

with (x1; x2)≡ (x; y). Summation over the repeated indices is implied.
The non-linear terms p and f are approximated in a compact form by direct interpola-

tion with the basis functions. In one dimension this was found to lead to a more accurate
discretization [9].
The extension to the variable depth system (7)–(9) is shown by considering a single term

from Equation (9), with the other dispersive terms discretized in a similar manner.

∫
�
�iA2h2∇(∇·(hu)) d�=−A2

∫
�
∇(�ih2)∇·(hu) d� + A2

∫
�
�ih2∇·(hu) n̂ d�

=−A2
∫
�
(�i∇(h2) + h2∇�i)∇·(hu) d�

+A2
∫
�
�ih2∇·(hu) n̂ d�: (16)
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The h2 and hu terms are approximated by direct linear interpolation of the products, a strat-
egy that proved e�ective in the one-dimensional scheme [9]. The other dispersive terms in
Equations (13) and (14) are approximated in a similar manner. Li et al. [25] neglect certain
terms from the variable depth equations and hence, their underlying mathematical model may
be slightly less accurate at this point.
Here, the auxiliary equation (14) is approximated in an explicit form by lumping [30]

the mass matrix, Mij, which allows direct calculation of the wj. In one dimension, it was
shown that this did not decrease the accuracy of the discretization signi�cantly [9] and the
computational cost is signi�cantly reduced in this case since Mij will be a sparse matrix
in general. The wj coe�cients are computed prior to the assembly of the time-di�erential
equations which reduces the number of unknowns at a node from 5 to 3 in the �nal assembled
system. This will make the scheme competitive with existing �nite di�erence schemes which
can directly approximate the third spatial derivatives without the introduction of auxiliary
equations.
For the numerical examples considered here three boundary conditions are required; in�ow,

out�ow and solid wall conditions. In�ow boundary conditions are imposed in Dirichlet form
from a given distribution, in this case a sinusoidal form for the free surface �in(t). The ve-
locity uin(t) and the auxiliary variable win(t) are computed from a linearized approximation
to the equation system [29] which is accurate if the depth at the in�ow boundary is su�-
ciently large, i.e. ��1. This condition will generally be appropriate for the type of problem
considered here, where waves are propagated from deep water towards a structure near the
shore. If non-linearity is signi�cant, corrections can be derived which include the �rst-order
e�ects of non-linearity on the sinusoidal distribution [29]. Out�ow boundary conditions are
required to remove waves from the simulation that approach open boundaries. Here the stan-
dard technique of viscous damping is used, termed sponge layers [31]. A viscous term is
added to the free surface equation, the coe�cient zero in most of the domain and increasing
exponentially as it approaches the out�ow boundary. The precise choice is determined by ex-
periment; here the coe�cient is chosen so as to be non-zero for a distance of approximately
two wavelengths. In one dimension, this approach is e�ective at removing waves without
signi�cant non-physical re�ection [29]; however, in two dimensions it can be less e�ective,
particularly for waves approaching at oblique angles. Solid walls are treated as impermeable
in the problems considered here and the starting point is the condition

u·n=0 (17)

on the velocity. Additional boundary conditions are required to close the system at the bound-
ary, the �rst of which is derived from a conservation of mass argument. Integrating the free
surface equation (7) over the domain and applying the divergence theorem

@
@t

∫
�
� d� +

∫
�
(p+ w)·n d�=0: (18)

At the solid wall there is no loss of mass, hence the �rst term is zero, and condition (17) and
the de�nition of p (10) imply p·n=0. Condition (18) is, therefore, satis�ed by the additional
constraint

w·n=0 (19)
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The system is closed by deriving tangential evolution equations for the velocity and auxiliary
variable, formed by taking the dot product of the vector equations (8) and (9) with the tangent
vector at the wall, noting that the boundary integrals produced during the spatial discretization
process vanish in both cases [29]. This approach is similar, in principle, to that presented by
Engelman et al. [32] for incompressible �ow. In previous work, the wall boundary condition
(17) has been supplemented with heuristic conditions on the velocity gradient [13; 25], at
the expense of evolutionary equations for the variables there; however, the formulation here
requires no such assumptions.
In the numerical results presented in the following section, there is some evidence of high-

frequency oscillations over the mesh. Similar e�ects have been noted by some �nite di�erence
practitioners. Kirby et al. [33] report using numerical �ltering (averaging) every four wave
periods to remove high-frequency errors. Schr�oter et al. [3] remove high-frequency ‘noise’
by either local or global ‘spatial smoothing’. In an attempt to remedy this, here a small
amount of fourth-order viscosity is added to the free surface equation (12). It is hoped that
this fourth-order derivative term will not corrupt the physical dispersion present in the system
which has at most third-order spatial derivatives. The fourth-order derivative is calculated by
�rst recovering a second derivative at the nodes of the mesh and then repeating the recovery
process with these nodal values. The amount of viscosity added is manually tuned and is kept
to the minimum possible, and the results indicate that this can control the oscillations without
signi�cantly damping the global solution.

3.2. Time integration

Truncation errors from a low-order time integration scheme will produce non-physical dis-
persion and contaminate the mathematical model. In previous work, the time integration has
usually been with a high-order accuracy predictor–corrector method [13; 14], or with a lower-
order method corrected for the dispersive truncation errors [6; 10]. In this work, we achieve
the necessary accuracy by making use of variable order, variable time step software based on
backward di�erentiation formulae (BDF) as implemented in the DASPK software [27].
The spatial discretization described in Section 3.1 results in a 3np-dimensional linear system

of di�erential equations in the form

Aijẏj − fi=0 (20)

where

y=(�1; u1; v1; �2; u2; v2; : : : ; �np; unp; vnp)t ; f=f(t; y) (21)

The software controls the local error in y over each time step by varying both the order
of the BDF method and the time step, so that a uniformly high accuracy in time can be
achieved [34]. The user controls the local error by supplying relative and absolute tolerances,
rtol and atol, respectively, which can be vector quantities in general. Here, rtol and atol are
scalar values determined by experiment; lowering their values until solution independency
is established. This will ensure that the error in the solution is dominated by the spatial
discretization error. In this work, rtol= atol=10−6 was chosen after repeated experiments,
re�ecting the high accuracy required in the time integration.
The �nite element method described in the previous system will typically produce a sparse

matrix system. The matrix Aij in system (20) will, in general, also be non-positive de�nite,
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due to the form of the dispersive terms in Equation (13), and non-symmetric, due to the
imposition of the boundary conditions. Within the time integration software the non-linear
system

Jij(y)�yj= − ��t ri(y) (22)

is solved at each time step, where

ri=fi −Aijẏj; Jij(y)= ��t
dfi

dyj
−Aij (23)

Jij is the Jacobian matrix, � is a constant dependent on the BDF method used and �t is
the time step length. In practice, a direct solution of equation system (22) is too compu-
tationally expensive and an iterative method is employed. DASPK has been combined with
the SPARSKIT software [27] and the preconditioned GMRES iterative method is used here.
It is found here that simple preconditioners, such as diagonal scaling or graph-based incom-
plete factorizations, are ine�cient and that a relatively expensive preconditioner must be used
based on an incomplete lower–upper factorization of the matrix with a numerical drop tol-
erance strategy [35], denoted here as ILU(tol). A reverse Cuthill–McKee (RCM) algorithm
[36] is also employed to reorder the nodes so as to minimize the mesh, and hence matrix,
bandwidth. This is found to greatly improve the e�ciency of the ILU(tol) strategy since it
constrains the factorized matrix to lie within a narrower bandwidth and hence the incomplete
factorization is generally more accurate for a prespeci�ed amount of storage. Recent work by
Benzi et al. [37] also concluded that the use of RCM was advantageous for non-symmetric
matrix problems.
Consistent initial conditions are calculated automatically by the software. Given an initial

solution, y(t0), initial time derivatives, ẏ(t0), are computed such that system (20) is satis�ed
[38]. Here, it is common to begin the computation with an undisturbed free surface and
introduce waves gradually from the in�ow boundaries in which case the initialization problem
is trivially satis�ed. To ensure a smooth start-up at the in�ow boundary the initial wave
form is modi�ed by multiplication with a damping factor that increases from 0 to 1 over
a prespeci�ed time period [29]. This removes numerical oscillations that can occur if an
undamped wave is introduced into a previously undisturbed region. A similar procedure was
described by Li et al. [25].

3.3. Mesh generation

Unstructured triangular meshes are generally required for problems with an irregular boundary
shape. Here, such meshes are produced with the Delaunay mesh generation software Triangle
[39]. Problems with simple domain geometry, such as the examples considered in Sections 4.1
and 4.2, can be meshed with structured rectangular grids. This allows a �xed resolution of
the expected wavelength in the model.
When unstructured triangular meshes are used it has proved bene�cial to require a very

smooth variation in the mesh size. In one dimension, it was shown that a variation in mesh
size produced non-physical dispersion, but that this could be limited by constraining the local
change in the mesh size [9]. In two dimensions, a similar procedure is possible when using
structured meshes. For unstructured meshes, nodal smoothing and edge swapping operations
are used to post-process the mesh and reduce the local variation in the mesh size [29]. The
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application of these techniques to a harbour geometry is described in Section 4.3. It is also
found that the model can be sensitive to the orientation of the diagonal edges in a structured
triangular mesh, and that the best results are obtained if diagonals alternate, producing a
symmetric nodal stencil at each mesh point [29].

4. NUMERICAL EXPERIMENTS

In this section two model problems and a more realistic harbour problem are used to illustrate
the performance of the method.

4.1. Wave focusing by a topographic lens

This variable depth case is a standard test for dispersive wave models [7; 8; 14; 25]. The
semicircular ramp focuses the waves behind the slope causing a large increase in wave height
in the centre of the channel and a corresponding decrease at the edges. An accurate model
of wave refraction is required to predict the correct position of the peak wave height.
The domain is (x; y)∈ [0; 6:096]× [0; 35] with an in�ow boundary at y=0 and solid walls

at x=0 and 6.096. The out�ow boundary at y=35 has an absorbing sponge layer, active for
y∈ [32; 35]. The depth variation within the domain is given by

gx = (6:096x − x2)1=2

h(x; y) =



0:4572 y6 10:67− gx

0:4572 + 0:04(10:67− gx − y) 10:67− gx¡y¡18:29− gx

0:1524 y¿ 18:29− gx

and is shown in Figure 1.
The in�ow wave is of the form

�in = sin
(
2	

(
yin
�

− t



))
(24)

where the wave amplitude a, period 
 and wavelength � are

a=0:0195 m; 
=1:0 s; �=1:488 m (25)

A mesh resolution of 0:1 m, approximately 15 points per wavelength, is used throughout the
domain.
Figure 2 shows the free surface elevation pro�le on three lengthwise sections of the channel,

x= {1:016; 2:032; 3:048 m}, at time t=40 s by which time a steady periodic �ow has been
established. The maximum and minimum wave elevations obtained visually match those taken
from the wave envelope and centreline plots of Madsen and SHrensen [8].

4.2. Wave propagation over an elliptical shoal

This test problem has been reported in several studies of extended Boussinesq equations
[13; 14] and experimental data is available in the form of wave height coe�cient
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(a) Depth contours on the mesh
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Figure 1. Spatial depth pro�le for the wave focusing experiment.

measurements, which represent the maximum wave height at a point, taken over several
wave periods, normalized with the in�ow wave height. A complex periodic wave �eld is
established over the domain due to interactions produced by waves refracted by the varying
slope.
The domain is (x; y)∈ [−10; 10]× [−15; 10] with an in�ow boundary at y= −15 and solid

walls at x=10 and −10. The out�ow boundary at y=10 has an absorbing sponge layer,
active for y∈ [7; 10].
The depth variation within the domain is given by a combination of a 1 : 50 slope at an

angle of 20◦ to the y-axis

xr = cos(20) x − sin(20)y; yr = sin(20) x + cos(20)y;

h(x; y)=

{
0:45 yr6 − 5:82;
0:45− 0:02(5:82 + yr) yr¿− 5:82;
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Figure 2. Wave focusing experiment: lengthwise free surface elevations at t=40 s.

up to a minimum depth of 0:1m, and an elliptical bump centred on the origin. For the region(xr
4

)2
+

(yr
3

)2
¡1
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The depth pro�le is shown in Figure 3.
The in�ow wave is of the form (24) with parameters

a=0:0232 m; 
=1:0 s; �=1:485 m (26)

and a mesh resolution of 0:1 m, approximately 15 points per wavelength, is used throughout
the domain.
Experimental data is available in the form of wave height coe�cient measurements on the

following co-ordinate sections:

{(x; ym); ym =1:0; 3:0; 5:0; 7:0; 9:0}; {(xm; y); xm = − 2:0; 0:0; 2:0} (27)

The measurements are taken over the time period [42, 44] by which time the waves are
progressing steadily across the domain.
Figure 4 shows the plots of wave height coe�cient for the numerical scheme and also for

the experimental data from the original laboratory experiment. Comparison of these results
with those previously published shows a much better agreement with the experimental data.
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Figure 3. Spatial depth pro�le for the elliptical shoal experiment.

Wei and Kirby’s �nite di�erence method [13] predicts a wider central focusing region in
Figures 4(c)–4(e) and does not capture the secondary peaks very accurately. Their results for
the sections shown in Figures 4(f) and 4(h) show large di�erences near y=10 and also a
large deviation from the experimental data on the section shown in Figure 4(g) in a region
just behind the elliptical bump. The results of Zang et al. [14] produced with a similar
�nite di�erence scheme show an improved model of the central focusing regions in Figures
4(c)–4(e) but a relatively poor representation of the secondary peaks on those sections. Their
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Figure 4. Wave height coe�cient sections for the elliptical shoal experiment.
(line—numerical. data points—experimental).
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results for the section shown in Figure 4(g) appear more accurate than Wei and Kirby’s
although the two other lengthwise sections are not shown in that work. The mesh resolutions
used in these two works are not, however, speci�ed. In a more recent publication, Wei et al.
[40] have solved this problem again using the same �nite di�erence scheme with an internal
wave-generation method for the incident wave. A mesh resolution of 0:05 m, approximately
30 points per wavelength, is used here. These results are very similar to those presented here
although they do not appear to have any oscillations in their data. However, they note that
the results are calculated by averaging the results over four wave periods which may remove
such high-frequency noise.

4.3. A prototype harbour geometry

The motivation for this work was to model the wave disturbance inside and around harbours.
Previously published studies using �nite di�erence models were reviewed in Section 1. To
the author’s knowledge there have been no �nite element Boussinesq models applied to such
problems.
The model considered here is based on a HR Wallingford case study of a real harbour

[41]. The exact geometry data supplied with the case study is shown as the solid boundary
on Figure 5(a). The computational domain used is fully speci�ed by introducing additional
seaward boundaries as shown in the �gure. These are chosen to be suitably far from the region
of interest, but are constrained by the expected size of the �nite element grid which must not
be too large for practical computations. The mesh generation procedure adopted is to generate
a coarse unstructured grid, suitable for representing the geometry, and then to post-process
the mesh by successively applying coordinate smoothing and edge swapping to produce a
reasonably smooth variation in the mesh size. The mesh is then uniformly subdivided to
produce a �ner grid and that grid is then post-processed with the same procedures. This
is repeated until a suitable mesh size is reached; in this case, a resolution of the expected
in�ow wave of approximately 20 nodes per wavelength. Figure 5(b) shows an intermediate
mesh produced by the post-processing after three levels of uniform re�nement. Note that
the boundary de�nition shown in Figure 5(a), taken from the report, is modi�ed slightly
by prescribing a �nite thickness to the boundary regions. A similar procedure is carried out
for the HR Wallingford case study although the exact dimensions will not be identical. In
the computational model used here all physical boundaries are assumed to be vertical and
perfectly re�ecting, although this was not the case in reality [41]. The �nal mesh produced
contained 167 936 elements and 85 057 nodes with a resolution at the in�ow boundary of
approximately 24 points per wavelength. The mesh bandwidth was reduced to 350 by the
Reverse Cuthill–McKee algorithm.
A constant depth is assumed over the whole region and a simple monochromatic waveform

is input as the lower boundary. The �ow parameters are

hin = 7:0 m; a=1:0 m; 
=5:3 s; �=36:5 m (28)

where the wavelength � has been calculated to be consistent with the linear dispersion relation
at the in�ow boundary. The in�ow wave is speci�ed at y=0 for x∈ [220; 420]. Sponge
layers are used to remove any outgoing waves at the sides of the domain x∈ [140; 220] and
x∈ [420; 490]. The in�ow wave is speci�ed so as not to be active inside the sponge layer
regions by smoothly decreasing the wave amplitude to zero as it approaches either layer.
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Figure 5. Unstructured triangular meshes for the harbour geometry.
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Figure 6. Perspective view of the free surface.

Figure 6 shows views of the free surface at t=30 and 50 s. The waves can be seen ap-
proaching the structure and di�racting round the breakwaters and entering the harbour. How-
ever, the simulation cannot be run far enough for a steady state to be established due to the
restrictions of the in�ow boundary conditions. Waves re�ected from the primary breakwater
impinge on the in�ow boundary region and since these boundaries are subject to Dirichlet
conditions, they cannot leave and re�ect back into the computational domain. This leads to
spurious waveforms at the in�ow boundary which are eventually transported into the harbour
region.

4.4. Non-re�ecting in�ow boundary conditions

The simulation of realistic problems requires long-time calculations in order to allow the
initial transient e�ects to be removed. If wave generation is implemented by prescribing the
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waveform at the boundary, as described in the previous section, then a wave that is re�ected
back to that boundary will not be able to pass through that region and leave the domain. In
geometrically complicated regions, interactions with solid boundaries will generally produce a
multidirectional wave �eld and problems at such in�ow boundaries will become increasingly
likely.
An alternative approach is to prescribe the required wave �eld internally to the domain

and then treat all open boundaries as out�ow, which can then be bounded with sponge layers
that can absorb all outgoing waves. The only requirement is that the wave generation regions
be transparent to outgoing waves. Larsen and Dancy [42] were the �rst to describe such an
approach for a two-dimensional �nite di�erence model of the original Boussinesq equation
system. They introduced an increment to the free surface along a generation line which
varied periodically to produce a wave motion. They showed that this approach could be
used on fairly general geometries, within the restrictions of the Cartesian �nite di�erence
grid. Skotner and Apelt [15] have described an alternative internal wave generation method
for a two-dimensional �nite di�erence model of Nwogu’s extended Boussinesq equations. The
method is relatively complex, involving a modi�ed stencil in the wave generation region and
explicit removal of the wave in the region behind the wave generator to prevent re�ection.
More recently, Wei et al. [40] have rigorously derived a source function that can be added to
the free surface equation to generate regular or irregular wave �elds inside the domain. This
was implemented as part of their �nite di�erence model for Nwogu’s extended Boussinesq
equations.
In one dimension, a method of generating waves internally to the domain by simulating an

oscillation of the sea bed has been developed and combined with the author’s one-dimensional
Boussinesq model [29]. An analogy is drawn with a time-varying sea bed, and a term is added
to the free surface equation that simulates the lowest order e�ects of a time varying depth
pro�le. In the free surface equation (7) this takes the form

�̇+ ḣI +∇·p+∇·w=0 (29)

where the form of the sea bed variation hI is taken to be

ḣI(x; t)= cIfI(x)a sin(−!t) (30)

and a and ! are the amplitude and frequency of the required wave, respectively, and the
constant cI and spatial function fI(x) are given by,

cI = 2!c; fI(x)=
bI√
	
e−b2I (x−xI)2 (31)

This simulates an undulating Gaussian hill at the position x= xI. The width of this region
[xI− aI; xI + aI] is generally taken to be one or two wavelengths, which is consistent with the
scaling of the equation system which requires variations in the depth to be small over distances
comparable to the wavelength [5]. The coe�cient bI is chosen such that the function fI(x)
is e�ectively zero at x= xI ± aI which is essential for the depth variation to appear smooth
to the time integration software. The function fI(x) is normalized such that its integral is
one over this region. The constant cI includes a factor 2 as the wave generator will produce
both a left- and right-moving wave, the wave speed c to give the expression the correct
physical dimensions, and the wave frequency ! to compensate for di�erentiation with respect
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to time. It was shown that in one dimension, it allowed re�ected waves to pass through the
generation region and leave the domain. The formulation of this method produces a scheme
similar in principle to that of Wei et al. [40] although their wave form is more general
and they rigorously derive the necessary parameters which are empirically tuned in this case.
The time variation of the depth will also a�ect the dispersive terms in the system. However,
since the width of the generating region is proportional to the wavelength and the amplitude
of undulation is proportional to the wave amplitude, it is reasonable to assume that the
perturbation to the dispersive terms can be neglected within the order of approximation of the
Boussinesq system.
For complex problems, it is important that these wave generation regions can be placed

in open regions of water, without necessarily terminating at solid boundaries. In the fol-
lowing example, a wave generator is placed inside an open square region, completely sur-
rounded by damping sponge layers. The spatial domain is (x; y)∈ [−14; 14]× [−14; 14] and
the wave generation function is centred on y=0 with a width of approximately two wave-
lengths, and active for x∈ [−6; 6]. All boundaries are considered to be of out�ow type and
a sponge layer region is speci�ed for x¿10; x¡ − 10, y¿10 and y¡ − 10. The wave
generation function is smoothly reduced to zero in the regions x∈ [−8;−6] and x∈ [6; 8].
This ensures that the wave generation is not active inside the sponge layer boundary
region.
The �ow parameters are

h=0:8 m; a=0:01 m; 
=1:14 s; �=2:0 m

with the period 
 calculated to satisfy the linear dispersion relation. The problem is inte-
grated in time for t ∈ [0; 20]. Figures 7(a) and 7(b) show the computed solution at t=20 s.
The wave fronts in Figure 7(b) show that the generation region produces a periodic wave;
however, the contours in Figure 7(a) show that this primary wave �eld is contaminated
with a secondary �eld that appears to radiate from the ends of the generation region. Var-
ious functions can be used to specify the end regions but it has so far proved to be im-
possible to eliminate these two-dimensional end e�ects from the simulation and the ef-
fective, accurate use of this wave generation method is an unresolved problem at
present.

5. CONCLUSIONS AND FURTHER WORK

A new numerical method for the two-dimensional extended Boussinesq equations has been
presented combining an unstructured triangular �nite element method with an adaptive time
integration package. The equation system has been rewritten in a novel form allowing a linear
spatial approximation and new boundary conditions have been formulated which are consistent
with the di�erential–algebraic nature of the problem. Comparison for the standard test cases
with experimental data considered in Sections 4.1 and 4.2 shows that the model can accurately
represent the physical characteristics of the �ow.
The simulation of a practical problem such as the wave disturbance in a harbour considered

in Section 4.3 reveals limitations in the model. More general boundary conditions are required
if realistic situations are to be modelled, such as non-vertical or porous boundaries or beaches.
In particular, a more general formulation of the in�ow boundary is required which can admit
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Figure 7. Spatial variation of the free surface elevation at t=20 s.

multi-component, multi-directional wave forms, and also allow re�ected waves to leave the
domain without further non-physical re�ection.
The use of non-re�ecting in�ow boundary conditions has been identi�ed as crucial to the

use of the model for realistic problems and work on the development of such a technique has
been described in Section 4.4. This problem is currently unresolved and represents one of the
main challenges in extending this model further.
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