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Abstract. In this work we investigate the use of anisotropic mesh refinement algorithms
for the adaptive finite element solution of three-dimensional convection-dominated flow
problems. The first task is to consider the question of how to quantify whether or not
a given mesh is appropriate for representing a particular solution, which may be highly
anisotropic. Secondly, we consider how such measures of quality can be used to anisotrop-
tcally adapt a mesh to produce one that is more appropriate: thus increasing the accuracy
of a series of computed solutions at a faster rate than through the use of more conven-
tional techniques such as local h-refinement alone. Throughout the paper we restrict our
attention to meshes of tetrahedra and use piecewise linear SUPG finite elements.

Early work on mesh quality considered grids purely in terms of the geometry of their
elements (e.g. [2]) however such an approach is too restrictive for the class of problem
being considered here. We allow meshes to breach the typical angle conditions that are
appropriate for isotropic solutions and consider alternative measures of mesh quality which
are solution dependent. Such measures either explicitly quantify how well the mesh and
solution are aligned (e.g. using the Hessian of the computed solution, [11], or by defining
a matching function, [9]) or else this is implicit, as in the case of interpolation error
estimates (e.g. [3]) or conventional a posteriori error estimates (e.g. [17]) for example.

The approach adopted here is to make use of a mesh alignment strateqy based upon
the convection direction (as in [7]) plus the simple interpolation error estimates of [3]
in order to generate anisotropic meshes through a combination of h-refinement and node
movement. This is then contrasted with techniques reported elsewhere (e.g. [11] or [17]).
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1 INTRODUCTION

It is well-known that convection-dominated flow problems frequently yield solutions
which contain regions of relatively fine-scale activity such as sharp layers or shocks. A
feature of the solution in such regions is that it is generally highly anisotropic in that the
fine-scale variations only occur in some directions and not others. For example, in the
region of a planar shock components of the solution change very rapidly in the direction
perpendicular to the shock but may be very smooth in the directions parallel to the shock.
It is not surprising therefore that conventional isotropic mesh refinement algorithms, such
as standard h-refinement (e.g. [15]), tend to result in an unnecessary level of resolution
parallel to this type of flow feature in order to deliver the required resolution across the
feature. This in turn leads to a computational grid that, in some qualitative sense, is not
optimal and hence the efficiency of the entire solution process is likely to be adversely
affected.

Unfortunately the problems associated with assessing quantitatively how well a given
mesh is suited to the solution of a particular problem is far from straightforward. As
outlined in [5], early work on mesh quality was based upon purely geometric consider-
ations such as the minimal angle condition for triangles of [19], or the maximum angle
condition of [2] (later extended to tetrahedra in [8]). However, as we have seen, strong
local variations in solution component values make it difficult to assess the quality of a
mesh without somehow incorporating solution behaviour.

One way of incorporating solution information into the assessment of mesh quality is
to make use of a posteriori error estimates such as described in [6, 16] for example. Such
estimates allow a the approximate error to be computed as a function and from this it may
be feasible to extract directional information about the current mesh (as explored in [1] for
example). This is not as trouble-free as it may at first seem however since the theoretical
error analysis upon which these, and similar, estimates are based typically assume a bound
on the aspect ratio of the elements in the mesh. This clearly cannot be relied upon in
the cases where we are seeking to produce grids which accurately and efficiently represent
highly directional solutions. Recently therefore, Kunert [9] has considered some of the
issues associate with a posteriori error estimation on anisotropic triangular or tetrahedral
grids. For certain problems he is able to prove error bounds which are independent of the
element aspect ratios through the use of a matching function which describes how well an
anisotropic finite element mesh is aligned with the true solution. When this alignment is
good the matching function is close to unity and the error estimates are reliable but when
the alignment is poor the matching function is large and the error estimates are poor. It
may well be possible to approximate this matching function using a computed solution
in order to estimate mesh quality but, as yet, no published evidence of the reliability of
such a strategy is known to the authors.

These difficulties with rigorous a posterior: approaches have led many authors to con-
sider less rigorous measures of mesh quality based more directly upon features of the
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solution. A popular quantity to estimate is the Hessian of one or more components of the
solution, u say. In three dimensions this is given by
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When v is approximated by a piecewise linear finite element function, u” say, H must
also be approximated. In [11], for example, this is achieved by first obtaining a Galerkin
approximation to 3“ at each node, 7 say, given by
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where Nj is the usual linear basis function at node i and L; is the i** diagonal of the row
summed lumped mass matrix. From this it is straightforward to calculate a piecewise
constant estimate of (1). The Hessian may then either be used as the basis for a new
metric (with isotropic meshes as measured in this metric corresponding to anisotropic
meshes in the Euclidean metric when the solution is highly directional), as in [11], or
its eigen-decomposition may be used, as in [13, 12] for example. In these latter papers
the Hessian is used to drive a remeshing algorithm based upon the assumption that a
mesh with size inversely proportional to the eigenvalue magnitudes in the directions of
the corresponding eigenvectors is desirable.

Another empirical technique that may be used to assess mesh quality is to construct
an indicator based upon interpolation error estimates. This is the approach followed in
[3, 4] for example, which build upon earlier work in [10], where an indicator is defined
to take into account both geometry and the solution behaviour. The approach used is
to assume that the exact solution can be approximated in a locally quadratic form on
each tetrahedral element and then to consider the difference between this quadratic and
a linear finite element interpolant. After some manipulation this yields an expression of
the form
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for the interpolation error on each element K, of volume VX. Here d, denotes the directed
edge second derivative for an edge s = s(i,j), that connects nodes i and j, and it may
be defined in a similar manner to that used to recover the Hessian of a piecewise linear
approximation described above. In the next section we describe a scheme which uses this
edge information to drive an adaptive strategy which aims to improve mesh quality for
convection-dominated problems.
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2 MESH GENERATION

The adaptive mesh generation algorithm that we outline here is based upon a com-
bination of standard h-refinement, node movement (r-refinement) and a limited amount
of a priori edge swapping. In [7] it is demonstrated that the solution accuracy for a
linear hyperbolic problem can be increased by simple mesh reconnection to better align
the mesh with the convection direction. This involves edge swapping in 2-d or a face
swapping operation in 3-d that is shown in Figure 1.
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(a ) Two initial tetrahedra ) Three aligned tetrahedra

Figure 1: 3-d alignment operation for 2 tetrahedra

Having modified the initial mesh through local face swapping the algorithm proceeds
through a combination of local h- and r-refinement. The SUPG piecewise linear finite
element solution is first obtained and the resulting edge second derivatives are computed.
These derivative values are then used to drive a simple node movement scheme which
aims to locally equidistribute them via a relaxation scheme in which the nodal positions,
z;, are updated by
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where Q; is the set of all edges, s(i, ), connected to node i. Here ~; is a safety factor at each
node ¢ that prevents the mesh from becoming tangled by restricting the node movement
to be within one half of the perpendicular distance to the closest opposing tetrahedral
face. In practice this procedure is implemented in a Jacobi fashion by first assembling all
of the node position increments and then updating the entire mesh, and several sweeps are
performed at each r-refinement stage. Note the similarity of equidistribution of the edge
second derivatives with the Hessian approach, i.e. a tetrahedron with |d,| equidistributed
over the edges should appear isotropic within the Hessian metric space.

Following r-refinement, conventional h-refinement is undertaken. The interpolation
error estimate (3) is used to mark for refinement the 20% (say) of tetrahedra whose
estimated error is the largest. When these elements are refined each edge is bisected and
8 children are produced as described in [15] for example (see Figure 2(a)). Note that this
refinement procedure requires a choice to be made between three possible diagonal edges
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for the central octahedral volume, as illustrated in Figure 2(b). Typically this is selected
based upon some geometric criteria however in this work we generalize the ideas of [7]
and choose the diagonal that is best aligned with the convection direction. Some hanging
nodes are left on edges of unrefined cells that have neighbours which have been refined
and so, to ensure that the new mesh is conforming, temporary transitional refinements
are introduced on such (initially) unrefined elements. Again see [15] for details. The key
feature of these transitional refinements is that they are always removed before further
regular refinement is permitted in these regions.

refi nenent

(a) Isotropic h-refinement (b) Diagonal choices for central volume

Figure 2: Isotropic refinement of a tetrahedron

By looping between h-refinement and a number of sweeps of r-refinement a simple
anisotropic adaptive algorithm is created. Table 1 illustrates the performance of this
algorithm (with two sweeps of r-refinement per loop) against the standard h-refinement
approach for a simple linear hyperbolic model problem. This takes the form

(QZ)U = f inQ=(0,1)3, (5)
u = {(1]—36/6 i;g onTl;, ={z€00:a-n(z) <0}, (6)

where n(z) is the unit outward normal to the boundary 0. Figure 3 illustrates the
nature of the solution of this problem when f(z) =0, a=(2,1,1)" and 0 < § < 1. The
figure shows the isosurface u(z) = 0.5 and the solution changes rapidly from 0 to 1 as one
moves across this isosurface. For the results shown in Table 1 we use 6 = 0.01 and the
above choices of f(z) and a.

3 DISCUSSION

The results in Table 1 show a consistent reduction in error of about 20% over standard
h-refinement when Ar-refinement is used. Whilst these improvements are typical, there
are various parameters in the node movement algorithm that can be tuned, such as the
number of sweeps per loop and the number of times the solution is recomputed, so that
even better results can nearly always be obtained with some experimentation. In practice
the hr-refinement scheme always does better than h-refinement alone although in some
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Np | llefli | Np | flells | Np | lells | Np | [lels
hr-ref. | 729 | 0.092 | 2690 | 0.054 | 11323 | 0.029 | 48930 | 0.020
0.088 0.051 0.028 0.018
0.080 0.048 0.028 0.017
h-ref. | 729 | 0.092 | 2637 | 0.059 | 11182 | 0.035 | 49225 | 0.021

Table 1: a comparison of the performance of the anisotropic and the standard adaptive algorithms for
the linear test problem

y 0

Figure 3: The strongly directional layer that is present in the solution of the model problem

cases the improvement is much greater than in others. It should also be emphasized that
for both sets if results presented in Table 1 the initial mesh alignment procedure has been
undertaken and, as demonstrated in [7, 17], this has a significant improvement on the
quality of the results even with standard h-refinement. The effect of the aligned choice of
diagonal when element subdivision takes place, whilst certainly beneficial, is substantially
less marked than the effect of this a prior: alignment.

In [17] and [18] results for the same test problem that is used here are also presented
using two different node movement and h-refinement strategies, both of which make ex-
plicit use of the equation being solved (unlike the strategy here which depends only upon
the solution computed). The first of these makes use of the residual of the equation once
an approximate solution has been computed (see also [14] for further motivation) whilst
the other makes use of an a posteriori error estimate (see also [6, 16], for example). The
simple algorithm described here is highly competitive with both of these.

Like this simple algorithm, a more sophisticated adaptive procedure recently proposed
in [11] also relies entirely on the computed solution, rather than the underlying equation,
in order to drive refinement. A complex combination of edge collapsing, edge splitting, face
to edge swapping, edge to face swapping, edge swapping and node movement are used to
adapt an initial mesh based upon a local cost function which relies upon a Hessian metric.
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It would be interesting to contrast the performance of these two algorithms in order to
quantify the benefits of the additional complexity of the adaptivity in [11]. In particular,
our empirical evidence suggests that when it is possible to apply the a priori alignment
approach of [7], the subsequent edge and face swapping steps may be of only marginal
benefit for many steady-state problems.

Further work to be undertaken also includes the introduction of a restricted version of
the r-refinement algorithm, so that only nodes at a given level of the mesh’s h-refinement
hierarchy are allowed to move independently, with all nodes at higher levels being dragged
with them in a consistent manner. This idea has been proposed in [18] in the context of a
residual-based adaptive algorithm and solver and may be applied in this work by modifying
(4) accordingly. Once implemented the hr-adaptive solution of time-dependent problems
becomes a simple extension since, by only moving nodes at the lowest level of the mesh
hierarchy, it is still possible to apply both h-refinement and derefinement (necessary for
time-dependent problems, [15]) without disturbing the mesh hierarchy or data structures
within the adaptive hA-refinement code.
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