Interactive Isosurface Ray Tracing of Time-Varying Tetrahedral Volumes
Ingo Wald, Heiko Friedrich, Aaron Knoll, and Charles D. Hansen, Senior Member, IEEE

Abstract — We describe a system for interactively rendering isosurfaces of tetrahedral nite-element scalar elds using cohere nt ray tracing tech-
niques on the CPU. By employing state-of-the art methods in polygonal ray tracing, namely aggressive packet/frustum traversal of a bounding volume
hierarchy, we can accomodate large and time-varying unstructured data. In conjunction with this ef ciency structure, we introduce a novel technique
for intersecting ray packets with tetrahedral primitives. Ray tracing is exible, allowing for dynamic changes in isov alue and time step, visualiza-
tion of multiple isosurfaces, shadows, and depth-peeling transparency effects. The resulting system offers the intuitive simplicity of isosurfacing,
guaranteed-correct visual results, and ultimately a scalable, dynamic and consistently interactive solution for visualizing unstructured volumes.

Index Terms —Ray Tracing, Isosurfaces, Unstructured meshes, Tetrahedra, Scalar Fields, Time-varying data.

<+

1 INTRODUCTION

Visualization of large unstructured volumes is a persistent challengeceleration structure traversal and primitive intersection across multi-
in data analysis. Due to its adaptive nature and simplicity, nite eple rays. Unstructured tetrahedral volumes encourage adaptiek acc
ement (FE) analysis has experienced widespread adoption in sirgtation structures, such as bounding volume hierarchies (BVHSs), that
lations for numerous computational scienti ¢ and engineering disditave proven ef cient for dynamic triangle mesh ray tracing. Isosur-
plines such as CFD, meteorology, geology, and astronomy. With ifaces for rst-order FE are inherently polygonal, allowing for fast ra
creasingly sophisticated simulation techniques and powerful parallesicing via simple geometric intersection tests.
computing environments, the effective size of nite element elds is In this paper, we propose a new approach to directly ray-trace iso-
quickly outpacing the memory capacity of commodity graphics preurfaces de ned over tetrahedral domains by combining recent ad-
cessors (GPUs). Nonetheless, scientists generally desire accurateaficements in polygonal ray tracing with existing techniques for un-
sualization of these data sets in their entirety, with few, if any, constructured isosurface extraction. We detail a novel packet-tetramedro
promises. Ideally, the visualization system should allow for dynamiotersection algorithm inspired by marching tetrahedra, and its inte-
changes in camera, lighting, isovalue and time step, without sacri ggation with a coherent implicit BVH traversal. We extend this tech-
in interactivity. nique to practical shading and visualization features such as multiple
A conventional method of rendering isosurfaces of volume data hignsparent isosurfaces and dynamic shadows. Ultimately, we nd that
been extraction via marching cubes or marching tetrahedra, followgy tracing unstructured data on the CPU allows for interactive perfor-
by Z-buffer rasterization on GPU hardware. While more than adequar@nce on current laptop hardware, exible and correct visualization o
for small data, this approach faces dif culties for large, high-fregnye isosurfaces, and the ability to render large time-varying unstructured
volumes, where signi cant amounts of geometry must be extracteddata, limited only by the size of CPU main memory.
faithfully reproduce a surface. View-dependent and multiresolution
extraction methods can reduce the amount of geometry, but ultimatély RELATED WORK
extraction is bound by geometric complexity. 21
Recent techniques for rendering unstructured data have leveraged . . .
the power of GPU hardware, applying direct volume rendering (DV arching cu_bes was rst applied to |sosurfa_ce extraction of s'gructured
techniques to depth-sorted tetrahedra. Large data has been addre&d@ by Wyvill etal. [41], and Lorensen & Cline [21]. Doi & Koide [8]
through multiresolution and progressive rendering techniques, as wigveloped a similar and arguably simpler algorithm based on march-
as out-of-core mechanisms. While powerful, these methods incur lifR9 tetrahedrq for |sosurfacmg unstructured scalar elds. .None'd;n,eles
itations, as interactivity is realized through simpli cation or temporarj)@ive extraction of surfaces is bound by data complexity, and often
omission of the full data set. Conversely, ray tracing methods on CFpW- Recent works have accelerated marching tet extraction on the
workstations can directly address large memory, and are inhererfg§fU- Pascucci [25] showed that the vertex processor can be utilized
scalable to multiple processors and large data. to'create appropriate quadrilaterals fqr the isosurface within a tetrghe-
Multi-core CPU's are increasingly prevalent. Large-scale multdron: Similarly, Klein et al.[15] exploit fragment programs for their
core architectures, such as Terascale [14], are clearly on the horiguadnlateral computation. These GPU approaches yield overall ren-

Isosurface Extraction

Current cc-NUMA workstations support 16 to 32 cores, and can lering frame rates from 1 fps for million-tet data to 60 fps for smaller

rectly address nearly two orders of magnitude more memory tharfi@@ Sets. Though not implemented for dynamic unstructured extrac-
GPU. Algorithmic_exibility and SIMD instructions on the CPU en- UON, techniques exist to improve performance on complex geometry,

courage coherent ray tracing techniques, which amortize the costsZB?h as view-dependent frustum culling [20], adaptive extractioh [38

nd implicit occlusion culling [26].

Ingo Wald is with the SCI Institute, University of Utah, adlas with 22 Unstructured Volume Rendering

Intel Corp, Santa Clara, CA; E-mail: wald@sci.utah.edu. Garrity [9] rst applied ray casting to unstructured meshes, by com-
Heiko Friedrich is with the Computer Graphics Group at Saad puting the entry and exit points of each ray with a face of the tet mesh,
University, Saarbriicken, Germany; E-mail: heiko@gragtis.uni-sb.de. and accumulating opacity as in volume ray casting. Shirley & Tuch-
Aaron Knoll is with the SCI Institute, University of Utah;r&ail: man [29] presented an approach similar to splatting, based on rasteri-
knolla@sci.utah.edu. zation of depth-sorted projected tetrahedra (PT). Due to the power of
Charles D. Hansen is with the SCI Institute, University cittE-mail: rasterization hardware, methods involving projection and sorting have
hansen@cs.utah.edu. become popular, such as vertex shader methods for performing PT
Manuscript received 31 March 2007; accepted 1 August 2003tezi online 2 €lassi cation [40]. Callahan et al. [5] proposed an extremely ef cient
November 2007. GPU method of partially ordering projected tet fragments by depth in
For information on obtaining reprints of this article, plsa send e-mail to: both image and object space. The HAVS method has been extended
tvcg@computer.org. to handle large data using LOD [4], progressive rendering, andfeut-o

core streaming [3]. Their system allows for direct volume rendering

3 COHERENT RAY TRACING OF TETRAHEDRAL ISOSURFACES

Our core approach to ray tracing unstructured scalar elds is an im-
plicit dynamic bounding volume hierarchy in the spirit of implicit kd-
trees [33], combined with aggressive large-packet coherentaagrtr

sal; and a specially designed packet-isopolygon intersection technique
inspired by fast packet-triangle intersectors and the Marching Tetrahe-
dra algorithm.

In unstructured grids, the scalar eld is de ned through linear inter-
polation over tetrahedral primitives; each such isotetrahedron can then
contain one or more more isosurfaces given user-speci ed isosalue
As with implicit kd-trees [33], we build a hierarchical data structure
over these primitives such that each node in the hierarchy contains the
minimum and maximum of the scalar eld below that node's subtree;
these isoranges can then be used during traversal to discard subtrees
that cannot contain the isovalue. Instead of kd-trees, we opt fordsoun
ing volume hierarchies. In practice, they are at least as fast, equally
ef cient for time-varying data, and better suited to the irregular, over-
lapping geometry of unstructured volumes.

The implicit bounding volume hierarchy encourages a variation of
the aggressive packet-frustum BVH traversal that was recently pro-
posed for polygonal ray tracing [32]. This operates on much larger
packets (typically 8x8 or 16x16 rays) than the 4-ray SIMD traversal
proposed for implicit kd-trees, and uses frustum culling and spec-
ulative descent to minimize the number of ray-node traversal steps.
Larger packets also imply better amortization of per-packet costs, and
thus help in hiding the overhead induced through implicit culling.
Since the implicit BVH is built over the space of all isovalues, the
isovalue(s) of interest can be changed interactively any time, and even
shadows, and transparency. With a 1024 1024frame buffer, these examples m”'?'p'e |sovglues can be trivially supported. A BVH also allows for
render at 2.0, 3.1 5.4, and 0.8 fps, respectively, on an Intel Core 1 Duo 2.33 easily u_p_datlng the data structure once the scalar eld or (_even_ ver-
GHz laptop with 1 GB RAM: and and 11, 18, 52, and 10 fps, respectively, ona (€X Positions change, and thus allows for naturally supporting time-

16-core 3.0 GHz Opteron workstation with 64 GB RAM. varying data. . .
When a packet reaches a leaf of the BVH, we intersect the isote-

trahedra contained in that leaf using a new technique inspired both by
: e i arching tetrahedra [8] and fast packet-polygon tests. In both inter-
delayed fuI_I V|SL_JaI|z_at|on of large data. Bemardon et al. [1] modi e.%ection e?nd traversal,[V\}e will makg heavypusyegof large-packet/frustum
HAVS 1o visualize isosurfaces. GPU fragment-program ray CaStII?gchniques recently developed in polygonal ray tracing. Unless other-

approaches, as rst proposed by Weiler et al. [37] have also prove : : :
feasible. Georgii & Westermann [10] perform ray-casting through pr%ss a?:ii%%?’ltg)tlrélp gggsectlon and traversal are assumed to operate

jected cells on the GPU, and demonstrate performance gains over flor]
However, for all rasterization-based GPU techniques, interactivity dg-
grades signi cantly for larger datasets over 1 million tets.

d
Fig. 1. Several samples of our interactive system running(a)t 1024 1024pixels:
a) tjet (Im tets) with shadows, transparent depth-peeling, and multiple isosur-
faces b) SF1 (14m tets) with four isosurfaces. c) buckyball with two a clip-box,
multiple isosurfaces and shadows, d) Time step 60 of the time-varying fusion
data set (3m tets, 116 time steps), rendered with four isosurfaces, clip box,

of unstructured data at real-time rates, albeit with minor artifacts a

ISOSURFACE INTERSECTION

An isosurface is the implicit surfacgx) = vwhere a scalar eldf ()
2.3 Interactive Ray Tracing on the CPU takes on a given isovalue For conventional rst-order nite ele-
. o . . ments, the scalar eld is given as a tetrahedral mesh in which the scalar
Instead of using rasterization techniques, our system builds on fast {@y,es are speci ed at the verticAsB, C, andD; the scalar eld inside

tracing. Interactive ray tracing was rst proven feasible on commodsachisotetrahedronor isotet is de ned by linear interpolation
ity CPU's by Wald et al. [36], using SIMD instructions on coherent

ray packets in a kd-tree. More aggressive coherent methods involve f(x) = f(a;b;gd)= aA+ bB+ ¢C+ dD;

culling geometry outside the packet bounding frustum (e.g. Dim-

itriev et al. [7]), or frustum traversal of wide packets (e.g. Reshetov wherea;b; g d are the barycentric coordinatessof

al. [27], or Wald et al. .[32]), both. qf which ideas we will employ. Ray Tq intersect a ray(t) = o+ td with any isosurfacef (x) = v one
tracing today can easily trace millions of rays on desktop PCs, and @B immediately substitute the ray equation into the linear interpola-
imated scenes (the counterpart to time-varying data) have successfy§y solve a linear system foyand check that the solution lies within
been addressed [32, 34, 19, 35]. Of particular interest to our appro the jsotet. However, we can also observe that for linear interpolation

is thedynamic BVH traversaproposed by Wald et al. [32]. the isosurface must be planar. This plane is bounded by line segments
)) along the edges of the isotet in which it exists, forming either a triangu-
2.4 Interactive Isosurface Ray Tracing lar or quadrilateral polygon as shown in the various cases of Marching

Isosurface ray tracing on the CPU has been explored before, parti¢atrahedra, and illustrated in Figure 3. We denote this polygon an
larly for large data applications. Parker et al. [24] employed a hieisopolygon(or isopoly), as it represents the base geometric primitive
archical grid to ray trace isosurfaces on a small supercomputer; Dee seek to ray-trace. Unlike solving the ray-parametrized implicit,
Marle et al. [6] extended this implementation to clusters. Knoll ghis isopolygon must only be computed once per isotet traversed; that
al. [16] proposed losslessly compressed octree volumes for iagdercost is amortized over all rays in the packet, and the full array of fast
larger data. Wald et al. [33] showed how coherent optimizations couialy-polygon techniques can be applied.

be applied to ray trace isosurfaces interactively on small workstations)

using implicit min-max kd-trees; our method is heavily inspired bg-1 Extracting the Isopolygon

this work. Marmitt & Slusallek [22] proposed a new ray marching alfo compute the plane equation and bounding edges of the isopoly-
gorithm for directly traversing tet meshes using Plucker coordinategon, we turn to the Marching Tetrahedra algorithm [8]. Vertices of the
Optimized coherent ray tracing has not yet been applied to unstrisepolygon lie on edges of the isotet, and isopolygon edges lie on the
tured isosurfacing. tet faces. Polygon vertices will lie only on those tet edges for which

Fig. 2. From left to right: ell32P (149k tets), bucky ball (177k tets), blunt n (225k tets, two isosurfaces), tiet (1m tets), timestep 50 of the fusion data (3m tets), and
the sfl seismic data (14m tets). With simple shading, these examples run at 14.2, 13.3, 18.9, 10.1, 4.0 and 3.3 frames per second (1024 1024pixels) on an Intel
Core 1 Duo 2.33 GHz laptop with 1GB RAM, and at 116, 112, 95, 66, 57, and 32 frames per second on a 16-core 3.0 GHz Opteron workstation.

one vertex is greater and one is smaller than the isovalue. Having fdinus, intersection tests for individual rays are only required when the
vertices, there are only 16 cases for which a given vertex is either largeistum neither fully misses nor fully hits.
or smaller than the isovalue. For each of these cases, we can store hoWwhe ef ciency of frustum culling depends on the relative areas of
many vertices the resulting polygon will have, and the indices of thiee frustum and isopolygon within the plane. For complex scenes,
two tet vertices that span the edge on which that polygon vertex mtsts are too small to have full hits, and frustum culling rarely suc-
lie. In SSE, this lookup is particularly simple: after loading the fouceeds. However, full misses are quite common due to the loose nature
vertices' isovalues into a SIMD register, an SSE comparison followef the implicit BVH, making this test highly effective overall. Typ-
by amovemask operation will return the desired case. The result igally, frustum culling can reject 40-60% of the packet-isopolygon
conveniently returned in a 4-bit integer (one bit for each comparisotgsts, though this ratio declines for larger models. Every time SIMD
that can be directly used to index into the aforementioned table of frféistum culling rejects a packet test, all individual ray-isopolygon tests
cases. Once we know which tet edges contain isopolygon verticase avoided, e.g. 256 for a 1616 ray packet.
each isopoly vertex can be computed by linear interpolation along the)
two vertices of the corresponding tet edge. 4.4 Isopolygon Pre-Computation

Isopolygon computation can be executed in three ways:

4.2 Ray-Isopolygon Intersection . . .
] 1. Full pre-computation.Pre-compute all isopolys every time the
Once the vertices of our polygon are known, we can use an extension yser changes the isovalue(s) of interest.

of Wald's triangle test [31] to intersect it. As shown in Figure 3 (left),

ray-isopolygon intersection rst computes the distance to the precom-2. On-the- y computatiorfrom scratch on demand.

puted plane, then projects the ray hit point onto a suitable 2D coordi-]]))

nate plane. Here, each of the edges de nes a (2D) half-space, whicB- On-the-y computation with cachingCompute isopolys only

we orient to point towards the inside of the isopolygon. Since the When needed, but keep a cache of already computed isotets; clear
isopolygon must be convex, we can then take the projected hit point the cache every time the user changes the isovalue(s) or time step.

and perform a 2D half-space test with each of the edges, rejecting

hit point as soon as any of these tests fails. This test can be perforrE] precomputatiqn maximizes performancg for na_/igation with static
ef ciently for four rays in SSE for both triangle and quad cases. Isovalues, but requires larger memory footprint and incurs delayesjwh_
the user changes isovalue or time step. On-the-y computation is

) slower during rendering, but offers greater exibility with scene in-
4.3 SIMD Frustum Culing teraction. Caching in theory offers a compromise, but in practice is
In addition to fast SIMD intersection, we also apply conservative “fulfjuite complicated in a multi-core environment, as it requires the reso-
miss” and “full hit” tests for the entire packet, using packet frusturtution of cache con icts in a thread-safe manner, requiring signi cant
culling, e.g. [7, 2]. These tests require computation of the four corngynchronization overhead. We therefore opt for pure on-the-y-co
rays bounding the packet frustum in SSE. For a given isopolygon, wetation by default. Due to the use of large packets — which allow for
can forgo individual ray intersections when all four bounding rajls faamortizing the on-the- y computations over all rays in the packet —
for the same2D half-space test (Figure 3, right). Similarly, if all four the overhead is in the range of 5-8%, which we believe is a tolerable
rays pass all half-space tests, the entire packet passes throughrthe trieice for the ability to arbitrarily change the time step or isovalue.

gle, and we must only perform a distance test for our component rags
THE IMPLICIT BOUNDING VOLUME HIERARCHY

The concept of the implicit BVH is similar to that of the implicit kd-
tree [33] in that the acceleration structure is not built for a single iso-
value, but rather as a tree of min-max isovalue ranges (e.g. Wilhelms
& Van Gelder [39]). Each node stores the minimum and maximum
of all scalar eld values contained within that subtree. During traver-
sal, we can consequently cull all BVH nodes that do not contain our
desired isovalue. Once built, the implicit BVH structure is valid for
all isovalues, and thus allows for simultaneously rendering multiple
isosurfaces from the entire range of isovalues. As subtrees that do
not contain the isovalue are never traversed, the only effective €ost o
supporting arbitrary isovalues is a slightly looser- tting BVH.

5.1 Building the BVH

Fig. 3. Ray-Isopolygon Intersection in an Isotetrahedron. Knowing that the iso- Building an implicit BVH for tets in fact is similar to building a BVH
surface inside the tetrahedron is a plane, we rst extract an isopolygon. We for triangle meshes. Most mesh-BVH builds rely on bounding boxes
then compute the point where the ray pierces that polygon's supporting plane, or centroids of their primitives as construction metrics [32, 30], and
and project both the polygon and that hit point to a 2D coordinate plane. In 2D, tets behave similarly to triangles in this regard.

we then perform a point in (convex) polygon test by considering if the point is Traditional bottom-up BVH builds (e.g. [11]) generally result in
on each of the edges' positive half-spaces. The test can trivially be extended inef cient BVHs [13]. Recent BVH literature has favored top-down

to support frustum culling: If all corner rays of the bounding frustum fail at the builds, which recursively partition primitives into two subgroups. Two
same edge, all the rays inside the frustum must fail. ’

partitioning strategies are of particular interest: Wald et al.'s swec 1
surface area heuristic (SAH) build [32], and Wéachter et al's fast sp x‘“‘--...__,_‘_v_

tial median build as proposed in his bounding interval hierarchy (BIF |

paper [30]. The SAH build employssurface area heuristifl1, 13] |

to select a partition with lowest expected cost, but is costly to buils '

The BIH-style build is closer in spirit to spatial median builds and - - | ——

as it requires no cost function evaluation, it builds signi cantly faste. - - - - -

than SAH methods. In both constructions, nodes are partitioned UIII:fH 6. First-active descent, frustum test, and active ray tracking. Given a BVH

leaves contain 12 or fewer tet primitives. Empirically, we have foun?JOde’ we speculatively test the rst “active” ray in the pack et against the bound-
this xed value to work best ’ ' ing box, and immediately descend if it hits (left). If this test fails, we perform a

frustum test to reject nodes completely outside the frustum (center). If neither of
BVH Structure. Our BVH node employs the same structure as [32]hese tests prove successful, we test all rays sequentially in a packet until one
with a crucial modi cation: we interpret the isovalwes a 4th dimen- hits; rays that missed are deactivated for future traversal steps (right).
sion of the bounding volume, leading to 4D bourdsy; z vg. This
can then be stored and processed as SSE vectors. Integers faidhe élie also active, this strategy allows many ray-box tests to be skipped
node index and traversal bookkeeping follow, padded to ensure SS#en numerous consecutive rays are active.

friendly 16-byte alignment. Storing isovalues alongside geometric &y g sium test.. If the rst active test fails, we know that the packet
tents allow all dimensions to be processed simultaneously in SSE. ;¢ |aast partially misses the box, and can perform a frustum test to

conservatively determine if the entire packet misses. Technically we
) o employ an interval arithmetic (e.g. [27, 2]) test instead of a geometric
Having constructed the implicit BVH, we now proceed to traversafrystum test, but the effect is similar in behavior. If the full packet

As previously mentioned, we employ the coherent traversal algorithifjssed, we reject the current node and go to the next node on the stack
of Wald et al. [32], and extend it to implicit iso range culling. In gen(ﬁ,ee Figure 6(b)).
th a

eral, this algorithm operates on large packets of rays, and tracks bo

bounding frustum and the rst “active” ray in the packet that intersecty/) First-active ray tracking.. If both the speculative descent and

a current BVH node. Instead of intersecting each traversed node wi#stum tests fail, we test all remaining rays untilwe ndthe rstactive

all the rays in the packet, it employs optimizations such as speculatfe that hits the current node. Those rays that failed the test arednarke

descent and frustum culling of nodes. With the implicit BVH, node#active by tracking the index of the rst active ray in the packet (all

not containing an isovalue in their min-max range are culled. rays with a smaller index are known to be inactive). If no active ray
. i o) could be found, we reject the node and pop the next subtree from the

1) Implicit culling.. At the heart of implicit BVH traversal lies the giack. Rays with indices higher than the rst active one we found are

concept of culling subtrees that are known tartgetive—those whose ot tested, and are speculatively descended into the subtree as well.
isorange does not contain an isovalue. As this test is very cheap, we

naturally performit rst. In addition, we observe that each active nod¥) Leaf traversal.. When encountering a leaf, we rst perform a frus-
must have at least one active child, and if the rst child is inactive, wiim test as for all other nodes. If that test passes, we iterate over all the
can proceed to its active sibling. Only ifurcation nodes where tets referenced in that node, therj determine that tet's isorange (which
both children are active - do we actually revert to the geometric te$Bly be smaller than the node's isorange), test that range, and nally
outlined below. In the worst case, this behavior causes us to desc€HBer reject the tet or intersect it as described above.

several times into a subtree that is not actually visible. Since these

speculative descents are fast, however, this is still quicker than testtig TIME-VARYING DATA

all the nodes for visibility; and eveifi the fast descent led to a sub-
tree that is outside the packet's bounding frustum, this node would
immediately rejected by the frustum test outlined below.

5.2 Implicit BVH Traversal

Time-varying data is extremely common in FE simulations. In the
ﬁ‘nplest time-varying tet meshes, geometry remains constant and only

scalar values change. More complex scenarios include changing ge-

Il) Speculative rst-active descent..For our rst geometric traversal ometry and topology, and potentially dynamic addition and removal of

test, we examine the rsictiveray in the packet. If that hits the currentelements from one time step to the next. To address these possibilities,

node, we can immediately descend without performing any more raye propose two schema for BVH construction, balancing performance

box tests, as illustrated in Figure 6(a). Since we never test whether @mgd memory footprint. Results are analyzed in Sec. 8.6.

of the other rays actually hit the current node, this test is speculative.

Though it may cause modest extra work when few rays in the packgl Schema I: Unique BVH Per-Step

The naive way of accommodating time-varying data is to compute a
/O\ unique BVH for each time step. No render-time computation is neces-
sary to progress from one time step to the next, regardless of changes in
/ \ geometry or scalar element values. As we operate completely in host
memory, this approach is in fact very ef cient. However, for largeada
sets with many time steps such as the fusion data set in Figure 4, this
\ approach may entail a considerable memory footprint.

6.2 Schema II: Dynamic Re tting
Fully computing a new BVH on-the- y during rendering is too costly

f v for large data, even using the fast BIH-style build. However, we ob-
serve that when tet mesh vertices change position but connectivity re-
Q @ @ Q Q Q mains constant, the BVH structure will not change between time steps.
Thus, simply re tting the nodes' bounding extents will yield a correct
Fig. 5. Implicit Culling. The implicit BVH is a min-max tree containing only a ~ BVH. This technique has been successfully applied to ray tracing dy-
subset of BVH nodes containing our desired isovalue(s). We can speculatively —namic triangle meshes [32, 19]. The main drawback is that, particu-
descend the min-max tree until we reach a leaf, or an intersection test fails. larly in cases of extreme geometric deformation, the re t BVH may
Only at bifurcation nodes (dark blue) must we resort immediately to geometric ~ perform worse than a BVH built from scratch for that particular time
packet-BVH traversal computation. Thus, geometric tests are performed as if ~ step. Fortunately, for tet meshes and our BVH, this method works ex-

the BVH had only been built over active nodes for a single isovalue. tremely well due to the continuous nature of tet deformations in FE

Fig. 4. Two examples of time-varying data sets, rendered at 1024 1024 pixels, using a 16-core 3.0 GHz Opteron workstation. Top: An arti cially created
deforming bucky ball that shows severe deformation of its 226K tets, running at 50+ frames per second including shadows from a point light source. Bottom: The
fusion data set with a time-varying scalar eld (3m tets, 116 time steps), rendered with four layers of isosurfaces, a crop box, shadows, and transparency, running
at 7 to 15 frames per second. Camera and light positions, time step, and number and parameters of the isosurfaces can be changed interactively.

simulation, particularly for rigid bodies. Moreover, when vertices rea node's subtree is completely enclosed in the crop box, we skip the

main constant but the scalar eld changes, the BVH is identical for adubtree just as if it was out of the isorange. In SIMD, a box-in-box test

time steps, as only the min-max isovalues must be updated. is very cheap and can be amortized per packet, incurring negligible
As previously mentioned, minimum and maximum geometricost. An example of this feature is shown in Figure 7.

bounds and isovalues are stored adjacently in 4D SSE vectors. Re-

tting the 4D extents can thus be accomplished with one SSE min aﬁﬁansparent Depth Peeling. Rendering transparent isosurfaces also

one SSE max per BVH node. Tet vertices and scalars are also std?é?j\’ides better understanding Of. the dataset. Thoygh straightf_orward
Implement, transparency multiplies the complexity of rendering an

as 4D points; thus computing the 4D bounds of a tet is also extrem . ! g
ef cient, requiring only 3 SSE min and max operations each per tefhage by the number of transparent hits required. Though it is pos-

It is straightforward to parallelize the update process. After the initig2/€ © implement by recording multiple hits per ray, in our packet
BVH has been built we nd all the subtrees for a given level in th rchitecture it is more elegant to implement as a shader via secondary

BVH hierarchy, and store their indices. During a re t, we can then uﬂf"ys' By simply specifying a minimum hit distance for each trans-

date these subtrees in parallel. Once all subtrees are updated, a siﬂﬁﬁgncy ray, we can re-use the origin, corner rays and frUSt“T"EOf th
thread re ts the remaining few nodes close to the root node. original ray packet. Rays that do not require a transparency rajisre
abled, sometimes leading to partially- lled packets, but incurring no

additional traversal steps or isopolygon intersections. As shading is
performed front-to-back, shadows and transparency are aleays
Having leveraged these algorithms for ef cient unstructured volumguted accurately (Figure 7).

ray tracing, we describe several visualization modalities that can assist

in understanding our data sets.

7 SHADING AND INTERACTION MODALITIES

Shadows.Shadows add important visual cues in understanding shape
(see Figure 7). In casting shadow packets, rays are generallyecher
and share a common origin in the case of point lights. Unlike pri-
mary rays, shadow rays do not inherently form a regular beam, and
thus have no concept of “corner rays” for SIMD frustum culling.-For
tunately, shadow packets may still employ the Reshetov et al. [27]
frustum-culling technique at traversal, as this requires no actual geo-
metric frustum. The overall speed impact of shadow rays variess but
typically lower than 2 (see Figure 7a-b).

Multiple Isosurfaces. Supporting multiple isosurfaces in an implicit
BVH is straightforward, by simply testing whether a BVH subtree
overlapsany of the isovalues before descending it. To follow the
SIMD paradigm, we currently support up to four different isosuefac
though it would be trivial to add more. Keeping the four isovalues in
a SIMD vector, we can test when a BVH node's or isotetrahedron's
iso range contains any of these four isovalues in parallel. These are
in turn intersected with all the rays that actually hit the leaf node.
Though rendering multiple surfaces can require tracing more rays per
image, particularly when transparency is enabled, it causes no signi -
cant computation penalty in and of itself.

- o . R (© (d)
Clipping Planes and Boxes.While isosurfaces provide an intuitive Fig. 7. impact of adding additional shading effects: a) A bucky ball rendered

way of visualizing a data set, one of their drawbacks is that the surfagg a single isosurface, and diffuse shading. b) After turning on diffuse shading
often occludes the data set's interior. For that reason, visualizati@rh shadows. c) With a second isosurface and an interactive clip-box to expose
systems often employ clipping planes (or boxes) that allow for cropre interior. d) Adding transparency as well. At 1024 1024 pixels on a Intel
ping certain parts of the model to expose its interior. We currentiSore 1 duo laptop, these screenshots render at 15.6, 10.2, 5.4, and 2.6 frames
allow for a single box that may or may not extend to in nity (to sim-per second, respectively. On our 16-core Opteron 3.0 GHz workstation, they
ulate a plane), and use this to clip BVH sub-trees. During traversalfé¢hder at 90, 70, 42, and 19 frames per second, respectively.

8 RESULTS AND DISCUSSION

In this section, we evaluate the system as a whole, and the overall
success of coherent BVH ray tracing for tet-volume isosurfaces. Fo
our benchmarks, we consider three representative machines: p lapto
equipped with an Intel Core (1) Duo 2.33 GHz and 1 GB RAM; a
4-core dual Intel Xeon 2.33 GHz desktop with 4 GB RAM; and a 8-
CPU dual-core (16 cores total) Opteron 3.0 GHz workstation with 64
GB RAM. Unless otherwise stated, all examples run at 102024
pixels, and use packets of 1616 rays. The data sets and scenes we
used for our comparisons are depicted in Figures 2 and 4.

8.1 Build Time and Performance Fig. 8. Left: 43 replicated buckyballs with 11.3m tets. Right: STP dataset with
Because a tetrahedral mesh has far less geometric variation th&ﬁr&tets. With simple shading, these datasets perform at 27.8 and and 26.9 fps
p0|ygona| model (i.e.' tets form a partition of space, and never ové?spectively on a 16-core 3.0 GHz Opteron workstation with 64 GB RAM.

lap or self-intersect), the qualitative difference between a SAH and

a BIH build is virtually nonexistent (Table 1). Because of the lowe8.4 Traversal Ef ciency

build imes, we default to the BIH-style build. With the fast BIH-stylery,q ey 1o this interactive performance lies in the aggressive large-
build, most of the smaller data sets could in fact be rebuilt from scrat cket traversal scheme, as seen in Table 4. Speculative desdent a

per frame. frustum culling greatly reduce the number of individual ray-box tests
eli32p bucky blunt tiet fusion (t=50) sfl during traversal by roughly a factor of 18-51 compared to tracin@ 2
#ets | 148,995 176,856 224,874 1.0m 3mx116 14m packets (the smallest an SSE-based system can trace). Using packets
render performance (frames per second) allows for traversal and intersection code in SSE, which is crucial to
ELHH 22'3 gg'g 23? ;33 Eg 121 realizing the performance potential of modern CPU's. Because we
buid e (ms‘dual e Xeon 233 GHZ) : : : have transformed the.ray-lsote.t intersection to a polygona] prpblem,
BIH 32 0 61 607 1402 4908 the same frustum culling techniques can also be used to signi cantly
SAH | 1647 1794 2710 20886 70119 311267 reduce the number of individual ray-isopolygon tests, by about 2—-3

though for the most complex scene the number of ray-isopolygon tests
actually increases (see Table 4). Finally, larger packets allow for amor-
tizing per-packet operations like isorange culling and isotet extraction

over the entire packet, thus reducing the total number of these oper-
ations per frame. As evident in Table 4, this reduces the number of

Table 1. BIH-style build vs SAH for building the implicit BVH. Because the
tetrahedra are distributed over space more evenly than triangles in a polygo-
nal model, the render performance for between BIH-style build and SAH build is
very similar, but executing the BIH-style build is much faster.

8.2 Rendering Performance isopolygon generations by about 6—40and the number of culling
As seen in Table 1 and Figure 2, all of the static examples can fests by 22-55.) o

rendered at multiple frames per second even on the dual-core laptop? S°en€| eI32P __ bucky bluntn fiet _fusion (t=50) sfl
For static scenes, performance is typically linear in the number of CPUnumber of individual packet-box tests

cores. Empirically, we found our application scales roughly linearly 2%2 56.75 9384 4805 4467 17583 3321

16x16 1.11 1.8 0.94 1.20 4.32 1.69

with respect to the number of pixels per frame. Thus, a frame buffer atio = 5 5 37 . 20

of 512 512 generally renders four times faster than at 102424,

X L . . number of individual ray-isopolygon tests
enabling interactive rates for dif cult scenes on the laptop. 252 80 1352 8.90 6.8 29.35 937
[ell32p bucky blunt tiet fusion (t=50) sfl 16x16 3.39 4.42 3.19 3.95 16.47 7.64
render performance (frames per second) ratio 2:4 3:0 2:4 1.7 1:8 1:22
laptop 14.2 13.3 18.9 10.1 4.0 3.3 number of total packet isorange tests
desktop 48.0 39.4 53.8 28.5 11.8 13.1 2x2 99.89 152.31 76.75 135.32 279.75 77.10
workstation 116 112 95 66 57 32 16x16 1.88 2.84 1.45 3.00 6.48 2.72
ratio 53 54 51 45 43 28

Table 2. Performance in frames per second for various data sets and platforms. _ -
Laptop is an Intel Core Duo 2.33 GHz, 1 GB RAM. Desktop is a 4-core dual number of total isopolygon extractions 1000)

Intel Xeon 2.33 GHz, 4 GB RAM. Workstation is a 16-core cc-NUMA 3.0 GHz %216]&OB 31551 226196 1111504 722%5 373:];‘9;73
. : . X
Opteron, with 64 GB RAM. Refer to Figure 2 for images. ratio 29 a4 3 103 25 5.2
o) Table 4. Traversal statistics of using our aggressive packet-frustum traversal
8.3 Scalability in model size scheme (using 16 16rays) vs. standard 2 2 packet traversal.

Performance degrades gracefully when increasing model sizp; dro

ping only by 4x from from the smallest model (feok, 121k tets) to the Isopolygon caching vs on-the-y recomputation. Because the
most complex one (sfl, 14M tets). This is largely due to the logdarge packets reduce the number of isopolygon extractions, caching
rithmic complexity of ray tracing ef ciency structures, and the packethe isopolygons has a relatively low impact. Even when using only a
amortized cost of memory access. To further evaluate scalabilitysmgle CPU and a large enough cache (so no con icts occur, and all
large models, we have synthetically replicated a buckyfalh n synchronization can be disabled), caching only increases total frame
times without instancing As evident in Tab. 3, performance dropsrate by 5-8% over on-the- y recomputation, thus we opt for the on-
moderately even for hugely complex models of up to nearly a billiothe- y recomputation by default.

tets. Though they require workstation-class memory capacity, large

unstructured data such as the STP bullet simulation (36m tets) ren8&r Multiple Isosurfaces, Shadows, and Transparency

equally ef ciently (Fig. 8). Rendering multiple isosurfaces in itself does not signi cantly raise the
replications ‘ 1 23 43 g3 163 cost of an image, due to the ray tracer's implicit occlusion culling —
tets total 177k 1.4m 11.3m 90.4m 724m the 2 drop in framerate in Figure 7 is due to the higher projected
frames per seconcL 43 16.7 6.2 2.0 0.80 area of the model after adding the outer isosurface. However, as men

Table 3. Performance in frames per second on four Opteron 3.0GHz cores, for tlone_d in Section 7, advanced Shadmg bears a Slgr_“ cant cost due to
varying numbers of replication of the bucky ball scene (no instancing is used). the higher number of rays traced. Shadows usually 'ncr_ease the rende
cost by about 2x if the rendered object covers the entire screen, and

somewhat less, otherwise (also see Figure 7). Transparency simil&y Comparison to Existing GPU based Approaches
increases to the total number of rays traced per-frame, and thus @by hardware is continually changing, so comparing to previously
creases the render cost. We typically limit the number of transpare

.) ; blished results would be an unfair comparison to already-outdated
rays to a user-speci ed maximum (2 by default), which can be changgd qare, For that reason, we have decided to base our comparison
interactively. All these effects can be supported simultaneously,

- ; : EVRTAinly on HAVS [4] and its isosurface extension [1], running on a
for large time-varying data sets (see Figures 4 and 7). state-of-the-art nVidia 8800 GTX. HAVS is well-known and freely
available, thus an appropriate system for benchmarking GPU perfor-
: o) mance. As seen in Table 6, when isosurfacing small and moderate-
Precomputing a BVH and replicating vertex arrays for each timestefized datasets (less than 1M), ray tracing achieves roughly equivalent
as in Sec. 6.1, is only practical for small data or workstations wit§erformance on a 4-core Xeon as rasterization on the nVidia 8800
copious memory. For the fusion dataset this requires over 22 GB@TX in the same desktop. For larger data sets, however, our method
memory footprint. Nevertheless, this scheme remains desirable,ca$ outperform HAVS signi cantly, even for models that t comfort-
moving across timesteps incurs no noticeable penalty in frame rag@ly in GPU memory.

Conversely, by employing a single BVH and re tting it per-frame For small data such as the blunt n, isosurfacing via the GPU ray-
(Sec. 6.2), the BVH and all 116 time steps of the fusion data occup¥sting method of Georgii & Westermann [10] reports 175 fps at
only 538 MB, allowing us to render that model on the laptop. HOws12 512 on an nVidia 7900 GTX; our system achieves 160 fps on
ever, re tting requires updating the vertex array, all the BVH nodeshe 4-core Xeon desktop at the same resolution. However, their per-
and some precomputed shading data (e.g., per-tet gradientsymex. fr formance degrades signi cantly for larger datasets over 1M tets. We
This update is fully parallelized, but scales poorly due to intensive apgkrain from absolute comparison, but our system achieves similar
asymmetrical memory access on our workstation's cc-NUMA archirerformance for small data, and is substantially faster for large data.
tecture. Effectively, re tting adds a signi cant per-frame cost that-lim Again, it should be noted these GPU methods are designed for object-
its maximum performance to 3.5 fps on the workstation. Moreovesrder volume rendering without acceleration structures, whereas our
precomputation and re tting offer a classical trade-off between pefechnique relies on logarithmic-order BVH traversal and is restricted
formance and memory consumption. to isosurface visualization. Nonetheless, these results suggest that
CPU ray tracing is roughly competitive in performance with GPU
methods for isosurface visualization of unstructured grids, and exhibits
The bounding volume hierarchy structure occupies a signi cant foolbetter overall scalability.

print in main memory. In our implementation, the BVH requires two

8.6 Time-Varying Data Sets

8.7 Memory Overhead

arrays: one for BVH nodes, at 32 bytes per node, and anothetoier s scene ell32P bucky bluntn tet fusion SF1
ing the lists of tet IDs that the leaf nodes refer to. The tetID list uses a _#Tetrahedra] 149k 177k 225k 1m 3m 14m
constant amount of memory, requiring exactly 4 bytes per tet. The size BYH 48 394 538 285 118 131
of the node array depends on how many nodes are allocated, which in AVS 50 50 30 3.0 15 03

turn depends on the data and bu”d strategy In the worst case, a BW'G 6. GPU Performance Comparison, in frames per second, with HAVS [4, l],
would always split until each tet is contained in exactly one leaf, ifnning on an nVidia 8800 GTX, and our method on a 4-core Intel Xeon 2.33
which case atotal ofi@ 1 nodes, (i.e., roughly 64 N bytes) would ~GHz at 1024 1024resolution.
be allocated for the node array. In practice, the optimal BVH is much
shallower, and uses only a fraction of that memdi, {'—1=¢th). 9 CoONCLUSION

For that worst-case assumption, however, table 5 shows that forthis paper we have shown it is possible to ray trace isosurfaces of
static scenes, memory overhead is aroundthat of the raw input tetrahedral scalar elds at interactive to real-time frame rates, purely
data. For the time-varying deformed bucky and fusion data sets, tbis the CPU. In doing so, we are able to correctly visualize large
overhead increases to a signi cant 1&nd 20 if a separate BVH unstructured volumes, interactively manipulate isovalues and shader
is stored per time step. If the BVH is shared over time, the overheatbdalities, and handle time-varying data with hundreds of steps.
drops to 92% for the deformed bucky while for the fusion data set the The main algorithmic contributions of this paper are the fast packet-
overhead is only 18%. In general, more time steps reduce the relatisetetrahedron intersection test and extension of the coherent BVH
overhead, as they amortize input tet data footprint. to an implicit min-max tree over the tetrahedral volume. Our im-
plementation naturally supports multiple isosurfaces, on-the-y clip-

scene number of raw BVH per step| shared BVH
tets verts stepd mem || mem ratio] mem ratio PN, Semi-transparent depth peeling, and shadows. Accommodation
ell32p a9k 33k 11 28MB | 9.6MB 41 E— of large data is limited only by host memory capacity, though the over-
blunt n 225k 41k 1| 41mB 18MB 42 _ head of the BVH must be taken into consideration. Time-varying data
SF1 139m 25m 1| 25IMB || 906MB 26 - - can be handled by either precomputing an implicit BVH per time step,
TJet im 163k 1| 17.7MB || 64.9MB 36 - - or by building a single BVH that is updated on the .
bucky 4°|11.3m 21m 1| 205MB || 734MB 42 - - Compared to existing GPU methods, our system exhibits better
STP 36m 63m 1) 17GB] 7.2GB 42 - - scalability to large data, and is not limited by the GPU memory capac-
bucky.def.| 176k 32k 20| 127MB| 234MB 18 | 11.7MB Q92 ity. However, our current system is limited to isosurfacing, whereas
fusion 3.0m 622k 116| 1.1GB| 22GB 20 | 194MB 018

Table 5. Memory usage and BVH overhead
upper bound on BVH memory (2 N 1 nodes for N tets), as this is what our
system actually pre-allocates memory for. In practice, only about one fourth to
one sixth of that pre-allocated memory is actually used (i.e., memory overhead
could be reduced rather easily should that ever become an issue).

8.8 Comparison to Existing CPU based Approaches

. Note that we report a worst-case

existing GPU methods support direct volume rendering. Moreover,
multi-core CPUs are increasingly mainstream, and future GPUs will
likely evolve to run a ray-tracing system similar ours. Ultimately, the
question is not one of GPU vs CPU, but rather which rendering algo-
rithm is used.

Our approach opens several avenues for future work. We could
extend BVH traversal to direct volume rendering methods, such as
maximum intensity projection (MIP) or full transfer-function meth-

Our results compare favorably to the performance achieved by Mads. Though the latter suffer from high traversal complexity, the BVH
mitt et al.'s Plicker-based tet marching algorithm [22], which reportezbuld still be useful for space-skipping when the transfer function is
1.67 and 0.92 fps at 512512 on a dual-Opteron for isosurfaces orsuf ciently sparse, as in [17]. Another intriguing extension would
the blunt n and buckyball, respectively. On comparable hardware am@ support for higher-order nite elements in the spirit of Nelson &
frame buffer size, our system performs around 40 times faster.- HolGirby [23] or Rossl et al. [28]. This would require a completely dif-
ever, itis important to note that the Marmitt et al. method also suppoftrent intersection routine, but the BVH traversal would remain un-
semi-transparent volume ray-casting, which ours does not.

changed. Also of interest would be more advanced lighting effects

such as soft shadows, ambient occlusion, or global illumination, whigtg] C. Lauterbach, S.-E. Yoon, D. Tuft, and D. Manocha. READRM:
can signi cantly improve understanding of data sets [12]. Finally, in- Interactive Ray Tracing of Dynamic Scenes using BVHsPtaceedings
vestigating scalable build algorithms could allow for rendering even of the 2006 IEEE Symposium on Interactive Ray Tracpeges 39-45,
complex data with arbitrary deformations without precomputation. 2006.
[20] Y. Livnat and C. D. Hansen. View Dependent Isosurfaceg&ttion. In
Proceedings of IEEE Visualization '9fages 175-180, 1998.
ACKNOWLEDGEMENTS [21] W. E. Lorensen and H. E. Cline. Marching Cubes: A High ®etion

This work was supported by the U.S. Department of Energy through 3? Surface Construction AIgontthomputer Graphics (Proceedings
the Center for the Simulation of Accidental Fires and Explosions, up:, g ’?/ICM S_tItGG(I?ng)Zl(ﬁl).k16S—1t6§, 19T87' | of Tetchhl and H
der grant W-7405-ENG-48, and by the National Science Foundati&%] anm and . slsater fast ray [raversal o ant e
ahedral Meshes for Direct Volume Rendering. Harographics/IEEE-
under CISE grants number CRI-0513212, CCF-0541113, and SEll VGTC S : Visualizati o
. ymposium on Visualization (EuroV/I&ges 235-242, 2006.
05_132_12. It was _also supported by the Director, Of ce of Advance 3] B. Nelson and R. M. Kirby. Ray-tracing polymorphic muttbmain spec-
Scienti c Computing Research, Of ce of Science, of the U.S. Depart- tral/hp elements for isosurface renderingEE Transactions on Visual-
ment of Energy under Contract No. DE-FC02-06ER25781 through th ization and Computer Graphic42(1):114—125, 2005.
SciDAC Visualization and Analytics Center for Enabling Technolopa) s. parker, P. Shirley, Y. Livnat, C. Hansen, and P.-BaS! Interactive
gies (VACET), as well as through a visiting professorship by Intel * Ray Tracing for Isosurface Rendering. IEEE Visualization '98 pages
Corp. The fusion simulation was originally performed by Kruger et 233-238, October 1998.
al. [18]; the data set was made available to us by Allen Sanderson fr@@8] V. Pascucci. Isosurface Computation Made Simple: Hardwacelera-
the SCI Institute. We would like to thank Steve Callahan for his as- tion, Adaptive Re nement and Tetrahedral Stripping. Barographics -
sistance in comparing performance with GPU rendering using HAVS, |EE TCVG Symposium on Visualization (200#8ges 293-300, 2004.
and the anonymous reviewers for their constructive comments. [26] S. Pesco, P. Lindstrom, V. Pascucci, and C. T. Silva. lotpDccluders.
In IEEE/SIGGRAPH Symposium on Volume Visualizatpayes 47-54,

2004.
REFERENCES [27] A. Reshetov, A. Soupikov, and J. Hurley. Multi-LevelyR@racing Al-
[1] F. F. Bernardon, S. P. Callahan, J. L. D. Comba, and C. TaSilAn gorithm. ACM Transaction on Graphi¢c24(3):1176-1185, 2005. (Pro-
adaptive framework for visualizing unstructured grids withe-varying ceedings of ACM SIGGRAPH 2005).
scalar elds. Parallel Computing2007. to appear. [28] C. Rossl, F. Zeilfelder, G. Nirnberger, and H.-P. SkidReconstruction
[2] S. Boulos, I. Wald, and P. Shirley. Geometric and Arithmegiulling of Volume Data with Quadratic Super Splinet£EE Transactions on
Methods for Entire Ray Packets. Technical Report UUCS-DB-GCl Visualization and Computer Graphics0(4):397-409, 2004.
Institute, University of Utah, 2006. [29] P. Shirley and A. Tuchman. A polygonal approximation toedt scalar
[3] S.P.Callahan, L. Bavoil, V. Pascucci, and C. T. Silvad?essive volume volume rendering. ACM Computer Graphics (Proceedings San Diego
rendering of large unstructured gridEEE Transactions on Visualization Workshop on Viume Visualization 199%(5):63-70, 1990.
and Computer Graphicg.2(5):1307-1314, Sept/Oct 2006. [30] C. Wachter and A. Keller. Instant Ray Tracing: The Boumdinter-
[4] S. P. Callahan, J. L. D. Comba, P. Shirley, and C. T. Silvateractive val Hierarchy. InRendering Techniques 2006 — Proceedings of the 17th
rendering of large unstructured grids using dynamic leValeail. In Eurographics Symposium on Rendetipgges 139-149, 2006.
IEEE Visualization '05 pages 199-206, 2005. [31] I. Wald. Realtime Ray Tracing and Interactive Global llluminatid®PhD
[5] S. P. Callahan, M. Ikits, J. L. D. Comba, and C. T. Silva. tieare- thesis, Saarland University, 2004. _ _
assisted visibility sorting for unstructured volume reriigrEEE Trans- [32] |. Wald, S. Boulos, and P. Shirley. Ray Tracing DeforneaBtenes using
actions on Visualization and Computer Graphit4(3):285-295, 2005. Dynamic Bounding Volume HierarchieBCM Transactions on Graphics
[6] D. DeMarle, S. Parker, M. Hartner, C. Gribble, and C. Hams Dis- 26(1):1-18, 2007. _ ‘
tributed Interactive Ray Tracing for Large Volume Visuatiga. InPro- [33] |. Wald, H. Friedrich, G. Marmitt, P. Slusallek, and H.$®idel. Faster
ceedings of the IEEE PV,@ages 87-94, 2003. Isosurface Ray Tracing using Implicit KD-TreeEEE Transactions on
[7] K. Dmitriev, V. Havran, and H.-P. Seidel. Faster Ray Tragivith SIMD Visualization and Computer Graphick1(5):562-573, 2005. _
Shaft Culling. Research Report MPI-1-2004-4-006, MaxARlalnstitut ~ [34] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. YR@racing
flir Informatik, Saarbriicken, Germany, 2004. Animated Scenes using Coherent Grid TravergglM Transactions on
[8] A. Doi and A. Koide. An ef cient method of triangulating egtvalued Graphics 25(3):485-493, 2006. (Proceedings of ACM SIGGRAPH).
surfaces by using tetrahedral cellEICE Trans Commun. Elec. Inf. Syst [35] I. Wald, W. R. Mark, J. Gunther, S. Boulos, T. Ize, W. HU8t G. Parker,
E-74(1):213-224, 1991. and P. Shirley. State of the Art in Ray Tracing Animated Scenles
[9] M. P. Garrity. Raytracing Irregular Volume Dat&Computer Graphics Eurographics 2007 State of the Art Reports
24(5), 1990. [36] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Int¢rge Rendering
[10] J. Georgii and R. Westermann. A Generic and ScalabldiRépfer GPU with Coherent Ray TracingComputer Graphics Forun20(3):153-164,
Tetrahedral Grid RenderinglEEE Transactions on Visualization and 2001. (Proceedings of Eurographics).
Computer Graphics12(5):1345-1352, 2006. [37] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-badsey casting
[11] J. Goldsmith and J. Salmon. Automatic Creation of Objearatichies for tetrahedral meshes. Rroceedings IEEE Visualization 200Bages
for Ray Tracing|IEEE Computer Graphics and Applicatiqri&5):14—20, 333-340, 2003.
1987. [38] R.Westermann, L. Kobbelt, and T. Ertl. Real-time Exptanaof Regular
[12] C. Gribble.Interactive Methods for Effective Particle Visualizatid?hD Volume Data by Adaptive Reconstruction of Iso-Surfacde Visual
thesis, University of Utah, 2006. Computey 15(2):100-111, 1999. _ _
[13] V. Havran. Heuristic Ray Shooting AlgorithmsPhD thesis, Faculty of [39] J. Wilhelms and A. Van Gelder. Octrees for faster iscaafgeneration.
Electrical Engineering, Czech Technical University indtre, 2001. ACM Transactions on Graphie&1(3):201-227, July 1992.
[14] Intel. http://www.intel.com/go/terascale/, 2006. [40] B.Wylie, K. Moreland, L. A. Fisk, and P. Crossno. Tetealal Projection
[15] T. Klein, S. Stegmaier, and T. Ertl. Hardware-accelesiaReconstruc- using Vertex Shaders. Rroceedings of IEEE Volume Visualization and
tion of Polygonal Isosurface Representations on UnstradtGrids. In Graphics Symposiunpages 7-12, 2002. ‘
Proceedings of Paci ¢ Graphics 'Q4ages 186—195, 2004. [41] G. Wyvill, C. McPheeters, and B. Wyvill. Data structue soft objects.
[16] A.Knoll, I. Wald, S. G. Parker, and C. D. Hansen. Inténaglsosurface The Visual ComputeR:227-234, 1986.

Ray Tracing of Large Octree Volumes. Pioceedings of the 2006 IEEE
Symposium on Interactive Ray Tracjmgges 115-124, 2006.

[17] J. Kriger and R. Westermann. Acceleration Technique§&fU-based
Volume Rendering. IfProceedings IEEE Visualization 2003ages 257—
292, 2003.

[18] S. E. Kruger, D. D. Schnack, and C. R. Sovinec. Dynamidhefmajor
disruption of a DIII-D plasmaPhysics of Plasmad2, 2005.

