SCA B

INSTITUTE

SCI INSTITUTE
TEGCHNIGAL REPORT

Parallel Visualization on Large Clusters using
MapReduce

Huy T. Vo*, Jonathan Bronson*, Brian Summa*, Joao L. D. CombaT, Juliana Freire*, Bill

Howei, Valerio Pascuccz'*, Cldudio T. Silva
“scr Institute, University of Utah
Tlnstituto de Informtica, Universidade Federal do Rio Grande do Sul, Brasil
ieScience Institute, University of Washington, USA

UUSCI-2011-002

Scientific Computing and Imaging Institute
University of Utah
Salt Lake City, UT 84112 USA

March 2, 2011

Abstract:

Large-scale visualization systems are typically designed to efficiently push datasets through the
graphics hardware. However, exploratory visualization systems are increasingly expected to
support scalable data manipulation, restructuring, and querying capabilities in addition to core
visualization algorithms. We posit that new, emerging abstractions for parallel data processing,
in particular computing clouds, can be leveraged to support large-scale data exploration through
visualization. In this paper, we take a first step in evaluating the suitability of the MapReduce
framework to implement large-scale visualization techniques. MapReduce is a lightweight, scalable,
general-purpose parallel data processing framework increasingly popular in the context of cloud
computing. Specifically, we implement and evaluate a representative suite of visualization tasks
(isosurface extraction, mesh simplification, and polygon rasterization) as MapReduce programs,
and report quantitative performance results applying these algorithms to realistic datasets.
For example, we perform isosurface extraction of up to 16 isovalues for volumes composed of 8
billion voxels, simplification of meshes with 18 GBs of data and subsequent rendering with image
resolutions up to 800002 pixels. Our results indicate that the parallel scalability, ease of use, ease
of access to computing resources, and fault-tolerance of MapReduce offer a promising foundation
for a combined data manipulation and data visualization system deployed in a public cloud or a
local commodity cluster

THEU

UNIVERSITY
OFUTAH

Parallel Visualization on Large Clusters using MapReduce

Huy T. Vol, Jonathan Bronsonl, Brian Summa!, Jodo L. D. Combaz, Juliana Freire!, Bill Howe?, Valerio Pascucci!, and Cldudio T. Silva!

ISCI Institute, University of Utah, USA
2Instituto de Informatica, Universidade Federal do Rio Grande do Sul, Brasil
3eScience Institute, University of Washington, USA

Abstract

Large-scale visualization systems are typically designed to efficiently “push” datasets through the graphics hard-
ware. However, exploratory visualization systems are increasingly expected to support scalable data manipula-
tion, restructuring, and querying capabilities in addition to core visualization algorithms. We posit that new,
emerging abstractions for parallel data processing, in particular computing clouds, can be leveraged to support
large-scale data exploration through visualization. In this paper, we take a first step in evaluating the suitability of
the MapReduce framework to implement large-scale visualization techniques. MapReduce is a lightweight, scal-
able, general-purpose parallel data processing framework increasingly popular in the context of cloud computing.
Specifically, we implement and evaluate a representative suite of visualization tasks (isosurface extraction, mesh
simplification, and polygon rasterization) as MapReduce programs, and report quantitative performance results
applying these algorithms to realistic datasets. For example, we perform isosurface extraction of up to 16 isovalues
for volumes composed of 8 billion voxels, simplification of meshes with 18GBs of data and subsequent rendering
with image resolutions up to 80000% pixels. Our results indicate that the parallel scalability, ease of use, ease
of access to computing resources, and fault-tolerance of MapReduce offer a promising foundation for a combined
data manipulation and data visualization system deployed in a public cloud or a local commodity cluster.

Categories and Subject Descriptors (according to ACM CCS):
Generation—Line and curve generation

1.3.3 [Computer Graphics]: Picture/Image

1. Introduction ing a sequence of (key, value) pairs, while the Reduce func-
tion processes a set of values associated with a single key.
The framework itself is responsible for “shuffling” the out-
put of the Map tasks to the appropriate Reduce task using
a distributed sort. The model is sufficiently expressive to
capture a variety of algorithms and high-level programming
models, while allowing programmers to largely ignore the
challenges of distributed computing and focus instead on the
semantics of their task. Additionally, as implemented in the
open-source platform Hadoop [had], the MapReduce model

Cloud computing has emerged as a viable, low-cost al-
ternative for large-scale computing and has recently moti-
vated both industry and academia to design new general-
purpose parallel programming frameworks that work well
with this new paradigm [DG04, ORS*08, YIF*08, CJL*08].
In contrast, large-scale visualization has traditionally bene-
fited from specialized couplings between hardware and algo-
rithms, suggesting that migration to a general-purpose cloud

platform might incur in development costs or scalability.

The MapReduce framework [DG04, DGOS] provides a
simple programming model for expressing loosely-coupled
parallel programs using two serial functions, Map and Re-
duce. The Map function processes a block of input produc-

f Scalability refers to the relative performance increase by allocat-
ing additional resources.

has been shown to scale to hundreds or thousands of nodes
[DG04, PPR*09]. MapReduce clusters can be constructed
inexpensively from commodity computers connected in a
shared-nothing configuration (i.e., neither memory nor stor-
age are shared across nodes). Such advantages have moti-
vated cloud providers to host Hadoop and similar frame-
works for processing data at scale [clu, yahb, aws].

These platforms have been largely unexplored by the vi-
sualization community, even though these trends make it ap-

2 Vo, Bronson, Summa, Comba, Freire, Howe, Pascucci, Silva / Parallel Visualization on Large Clusters using MapReduce

PPM Richtmyer-Meshkov instability (7.6GB)
#lsovalues| CLUE time | Cluster time [File Written
256M/256R | 480M/480R

| 2min 55s 57s 1.78MB
2 2min 00s 57s 1.8IMB
4 9min 35s 2min38S 35.26GB
8 10min 26s 2min37s| 103.92GB

6 28min 29s 5min27s| 252.38GB

SKULL (256MB)
#lsovalues| CLUE time | Cluster time | File Written
256M/256R | 480M/480R
| 2min 22s 54s 1.94MB
2 2min 00s 56s 15.83MB
4 2min 02s 56s 31.22MB
8 2min | s 58s 3.35GB
16 6min 06s Imin27s 18.74GB

Figure 1: Isosurface results using the MapReduce framework for the PPM Richtmyer-Meshkov instability and Skull datasets.
Performance results illustrate computation for varying isovalues using a cloud environment (CLuE) and a local cluster. Number
of maps (M) and reduces (R) informed for each configuration, as well as the size of the output file written.

parent that our community must inquire into their viability
for use in large-scale visualization tasks. The conventional
modus operandi of “throwing datasets” through a (parallel)
graphics pipeline relegates data manipulation, conditioning,
and restructuring tasks to an offline system and ignores their
cost. As data volumes grow, these costs — especially the
cost of transferring data between a storage cluster and a vi-
sualization cluster — begin to dominate. Cloud computing
platforms thus open new opportunities in that they afford
both general-purpose data processing as well as large-scale
visualization.

In this paper, we take a first step at investigating the suit-
ability of cloud-based infrastructure for large-scale visual-
ization. We have designed a set of MapReduce-based algo-
rithms for memory-intensive visualization techniques, and
performed an extensive experimental evaluation. Our results
indicate that MapReduce offers a potential foundation for
a combined storage, processing, analysis, and visualization
system that is capable of keeping pace with growth in data
volume (attributable to scalability and fault-tolerance) as
well as growth in application diversity (attributable to ex-
tensibility and ease of use). We also found that common vi-
sualization algorithms can be naturally expressed using the
MapReduce abstraction. Even simple implementations of
these algorithms are highly scalable. For example, Figure 1
shows the results for isosurface extraction run on a shared
cloud environment and a local cluster running Hadoop, i.e.,
a private cloud environment. For our largest dataset, com-
prising a volume of 7.6GB, we extracted 16 isosurfaces in 5
mins and 27s.

In summary, the main contributions of the paper are:

e We have designed scalable MapReduce-based algorithms
for three core, memory-intensive visualization tech-
niques: isosurface extraction, mesh simplification, and
polygon rasterization;

e We have performed an experimental evaluation of these

algorithms using both a multi-tenant cloud environment
and a local cluster;

e We discuss the benefits and challenges of developing vi-
sualization algorithms for the MapReduce model, as well
as the lessons we learned in this process.

2. Related Work

Recently, a new generation of systems have been introduced
for data management in cloud computing environments. Ex-
amples include file systems [Bor07, Kos07], storage sys-
tems [amaa, CDG*06, DHJ*07], and hosted DBMSs [amab,
goo, mic, Yaha]. MapReduce [DG04, YDHPO7] and sim-
ilar massively parallel data processing systems (e.g.,,
Clustera [DPR*08], Dryad [IBY*07], and Hadoop [had])
along with their specialized languages [CJL*08, ORS*08,
PDGQOS5, YIF*08]) are having a great impact on data pro-
cessing in the cloud. Despite the benefits these systems have
given to other fields, they have not yet been evaluated in the
context of visualization.

One of the first remote visualization applications is de-
scribed in [SMEOQ2]. In this system, the X Window Sys-
tem’s transport mechanism is used in combination with Vir-
tual Network Computing (VNC) [RSFWHOS] to allow re-
mote visualization across different platforms. IBM’s Deep
Computing Visualization (DCV) system [IBMO05], SGI’s
OpenGL Vizserver [Sil] and the Chromium Renderserver
(CRRS) [PAB*08] perform hardware accelerated rendering
for OpenGL applications. A data management and visualiza-
tion system for managing finite element simulations in ma-
terials science, which uses Microsoft’s SQL Server database
product coupled to IBM’s OpenDX visualization platform is
described in [HGOS]. Indexes provide efficient access to data
subsets, and OpenDX renders the results into a manipulable
scene allowing inspection of non-trivial simulation features
such as crack propagation. However, this architecture is un-

Vo, Bronson, Summa, Comba, Freire, Howe, Pascucci, Silva / Parallel Visualization on Large Clusters using MapReduce 3

likely to scale beyond a few nodes due to its dependency on
a conventional database system.

A different approach to distributed visualization is to
provide access to the virtual desktop on a remote com-
puting system [Law, IBMOS5, Sil, PAB*08], such that the
data remains on the server and only images or graphics
primitives are transmitted to the client. Other applications,
such as Vislt [Law] and ParaView [par], provide a scal-
able visualization and rendering back-end that sends im-
ages to a remote client. Many scientific communities are
creating shared repositories with increasingly large, curated
datasets [iri, Iss, slo]. To give an idea of the scale consid-
ered by these projects, the LSST [lIss] is predicted to gen-
erate thirty terabytes of raw data per night for a total of six
petabytes per year. Existing systems associated with these
repositories support only simple retrieval queries, leaving
the user to perform analysis and visualization independently.

3. MapReduce Overview

MapReduce is a framework to process massive data on large
distributed systems. It provides an abstraction inspired by
functional programming languages such as Lisp, relying on
two basic operations:

e Map: Given input, emit one or more (key, value) pairs.
e Reduce: Process all values of a given key and emit one or
more (key, value) pairs.

A MapReduce job is comprised of three phases: map, shuffle
and reduce. Each dataset to be processed is partitioned into
fixed-size blocks. In the map phase, each task processes a
single block and emits zero or more (key, value) pairs. In the
shuffle phase, the system sorts the output of the map phase in
parallel, grouping all values associated with a particular key.
In Hadoop, the shuffle phase occurs as the data is processed
by the mapper (i.e., the two phases overlap). During execu-
tion, each mapper hashes the key of each key/value pair into
bins, where each bin is associated with a reducer task and
each mapper writes its output to disk to ensure fault toler-
ance. In the reduce phase, each reducer processes all val-
ues associated with a given key and emits one or more new
key/value pairs. Since Hadoop assumes that any mapper is
equally likely to produce any key, each reducer may poten-
tially receive data from any mapper. Figure 2 illustrates a
typical MapReduce job.

MapReduce offers an abstraction that allows developers to
ignore the complications of distributed programming — data
partitioning and distribution, load balancing, fault-recovery
and interprocess communication. Hadoop is primarily run
on a distributed file system, and the Hadoop File System
(HDFS) is the default choice for deployment. Hadoop has
become a popular runtime environment for higher-level lan-
guages for expressing workflows, SQL queries, and more
[ORS*08,Hiv]. These systems are becoming viable options
for general purpose large-scale data processing, and lever-
aging their computational power to new fields can be a very
promising prospect. For example, MapReduce systems are

DATA ON HDFS

I N [[T, T4

[
INPUT PARTITION OOOO O0O0OO 0000 0OOooo

4 N Y /

EEOE EEOE EEOE EEOE
SHUFFLING
DEEEEEEE OEOEOEOE
DEEE ooEE
SORT IN PARALLEL EEEE EEEE
REDUCE REDUCE

OO00000oo o o o o

' '
[T T] [T T]

DATA ON HDFS

OUTPUT PARTITION

Figure 2: Data transfer and communication of a typical
MapReduce job in Hadoop. Data blocks are assigned to sev-
eral Maps, which emit key/value pairs that are shuffled and
sorted in parallel. The reduce step emits one or more pairs.

well-suited for in situ visualization, which means that data
visualization happens while the simulation is running, thus
avoiding costly storage and post-processing computation.
There are several issues in implementing in situ visualiza-
tion systems as discussed in [Ma09] We posit that the sim-
plicity of the implementation, inherent fault-tolerance, and
scalability of MapReduce systems make it a very appealing
solution.

4. Visualization Algorithms using MapReduce

In this section we describe MapReduce algorithms for three
widely-used and memory-intensive visualization techniques:
isosurface extraction, rendering of large unstructured grids,
and large model simplification.

4.1. Isosurface extraction

Isosurfaces are instrumental in visual data exploration, al-
lowing scientists to study function behavior in static or time-
varying scenarios. Giving an input scalar volume, the core
of extraction is the computation of the isosurface as a collec-
tion of simplicial primitives that can be rendered using com-
mon graphical methods. Our MapReduce-based algorithm
for isosurface extraction is based on the Marching Cubes al-
gorithm [LC87], which is the de-facto standard for isosur-
face extraction due to its efficiency and robustness.

As Figure 3 illustrates, partitioning relies on the natu-
ral representation of a scalar volume as a collection of 2D
slices. The Hadoop distributed file system uses this strategy
to partition data into blocks for each mapper, but imposes
some constraints. First, each partition must contain complete

4 Vo, Bronson, Summa, Comba, Freire, Howe, Pascucci, Silva / Parallel Visualization on Large Clusters using MapReduce

Map

For input block, for each Isovalue, V:
Isosurface(V)
For each triangle, T, in surface:
Emit(V,T)
A4~ D>

Reduce

Collect Isosurface:

AIPDALSD AIFDAID> :::::1:::1:::1::
AWALDALDALDA VAP VAP V4 D V4w D>
A N AA N AN A A N RS o ek o
IPVIPVLIPVLPY APALDALDALSDA
CRPALRDALDALDA AIFDALSD ALFDALSD
DR SvIyaTrTay

d |, |, ol
VAP VLD VAP Vasp> VAP VLD V4P VasD

Input Blocks

Output Isosurfaces
as Triangle Soup

Figure 3: MapReduce isosurface extraction. The map phase generates an isovalue as key and triangle data as value. The reduce

phase simply outputs the isosurface as a triangle soup to file.

Map

For Each Triangle, T:

h 2
A

Rasterize(T): _
‘ - m For each pixel:

Emit(x, y, z, color)

Reduce

Foreach key (x,y):
‘ Find minimum z ‘

Emit (x, y, color)

Input Triangle Soup

Output Image

Figure 4: MapReduce rasterization. The map phase rasterize each triangle and emits the pixel coordinates as value, and its
color and depth as value. The reducer emits the smallest depth value for each location.

slices. Second, it allows the overlap by one slice in only
one direction to account for triangles spanning across par-
titions. Although it may result in duplication of input data,
there is no duplication of output triangles since this overlap
only occurs in one dimension. In practice, the duplication of
input data is small and has no significant effect on the per-
formance of the system. Each mapper computes the triangles
of several isosurfaces using the Marching Cubes algorithm
as implemented in the Contour Library [Cam99] and emits
a (key,value) pair for each isovalue. The key is the isovalue
and the value is the triangle data for the each cube in binary
format. The reducer receives the data sorted and binned by
isovalue, thus, the reduce stage only needs to act as a pass-
through, writing the isosurface as a triangle soup to file.

4.2. Rendering

Out-of-core methods have been developed to render datasets
that are too large to fit in memory. These methods are based
in a streaming paradigm [FSO1], and for this purpose the
rasterization technique is preferred due to its robustness,
high parallelism and graphics hardware implementation. We
have designed a MapReduce algorithm for a rasterization
renderer for massive triangular and tetrahedral meshes. The
algorithm exploits the inherent properties of the Hadoop
framework and allows the rasterization of meshes several gi-
gabytes in size and images with billions of pixels.

Hadoop partitions the input “triangle soup” among map-
pers with the constraint that each partition must be a multi-
ple of 36 bytes, thus avoiding the block boundary splitting a
triangle. For each triangle, the mapper computes its projec-
tion onto the image plane and its corresponding pixels. For
each pixel, the mapper outputs a (key,value) pair, with the
key being the pixel location in the image plane (x,y), and the
value being the depth and color of the pixel. The MapReduce
framework sorts pixels into the proper order (row-major) to
construct the final image. Pixel colors emitted by the map-

per that share the same image plane location are grouped by
this sorting. The reducer emits the smallest depth value for
each pixel location, therefore accomplishing the z-buffering
algorithm automatically. In Figure 4, we give an overview of
this algorithm. Mappers and reducers are viewed as geom-
etry and multi-fragment shaders respectively in two distinct
phases. Note that this parallels a graphics hardware pipeline
and can be similarly extended to handle more advanced vi-
sualizations by custom “geometry shaders” and “fragment
shaders.” For example, in a volume renderer, each reducer
just needs to sorts its fragments and composite them instead
of a selection based on depth.

4.3. Mesh simplification

Despite advances in out-of-core methods for rendering struc-
tured or unstructured meshes, it may still not feasible to use
the full resolution mesh. Several mesh simplification tech-
niques have been proposed [GH97,YSZ04,SZL92]. Memory
usage is a key aspect of this problem, since techniques often
require storage proportional to the size of the input or output
mesh. An alternative is given by the OoCSx (improved Out-
of-Core Simplification) algorithm [LSO1], which decouples
this relationship and allows the simplification of meshes of
arbitrary sizes. This is accomplished by superimposing a
regular grid over the underlying mesh with associations be-
tween grid cells and vertices: every grid cell that contains a
vertex of the input mesh must also contain a vertex on the
output mesh, and every cell must have only one representa-
tive vertex. The problem is broken into finding all triangles
that span three unique cells, and then finding an optimum
representative vertex for each cell. Only a linear pass through
the triangle mesh to hash each vertex is needed to find its
representative bin before the output of all triangle indices.

The linear pass of OoCSx is not suitable for a parallel
implementation. However, if we do not use the minimal er-
ror criteria for optimal representative vertices, we are able

Vo, Bronson, Summa, Comba, Freire, Howe, Pascucci, Silva / Parallel Visualization on Large Clusters using MapReduce 5

Map

Red

aunanr Reduce e S e

APAL>A Map For each key T:
VaAsDVasp Q.81,82, Use AllQ Read(‘% i) 4=»A
LAY Emite2.Q.51,82,89 - Collect Triangles for Bin to compute For each triangle, T: For ea;:‘(‘T(TV\)/) Read(T,V2) ‘ varp
AIPDAIID AP DAISD Representative Emit (T, V) . Read(T,V3) <}4>V
4opVLIPY Vertex,V Emit (V1,V2,V3)
\A oA \ad Output Surface as
Input Surface as B Triange Soup

Triange Soup

Figure 5: MapReduce mesh simplification. The first map phase generates the bin coordinate of a vertex as key and a quadric
error measure along the three triangle indices as value. The first reduce emits the representative vertex for each triangle. A
second map and reduce is applied since multiple current reduce phases are not currently supported.

to implement the algorithm using only the Map phase of
Hadoop. This not only avoids the expensive sorting and
merging phases of MapReduce but also allows the simpli-
fication performance to scale directly with the number of
mappers at our disposal. We use two MapReduce jobs to
implement the full algorithm since it requires two sorting
phases (see Figure 5). The first Map phase bins each vertex
into a regular grid to ensure that all triangles contributing
vertices to a particular bin arrive on the same node in the
Reduce phase. It also computes the quadric measure vector
associated with the contributing triangle. For each triangle,
three (key, value) pairs are emitted, one for each vertex. The
key is the the bin coordinate that contains the vertex, and the
value is a concatenation of the quadric measure vector with
the three indices of the triangle.

The first Reduce phase receives the same (key, value) pair
from the Map phase, but sorted and grouped by key. It reads
each unique key (bin), and uses the quadric measures of all
triangles falling into that bin to compute the representative
vertex. If the indices of all vertices of a triangle contribut-
ing to a representative vertex are unique, the Reduce phase
emits the indexed triangle as key, and the current grid cell
and vertex. Thus, across all reducers, there will be exactly
three (key,value) pairs with the same key (triangle), each
storing a different representative vertex and corresponding
bin as its value. Since multiple Reduce phases are currently
not supported, we use a second MapReduce job to complete
the dereference. This second Map phase merely reads and
emits the data output from the first Reduce job. Keyed on
triangle index, the second Reduce phase receives the exact
three bin-vertex pairs, and emit as final output the simplified
mesh.

5. Experimental Analysis

We have performed an in-depth analysis of the algorithms
presented in the previous section. We designed our experi-
ments to evaluate, for each algorithm, its ability to scale up
and down, as well as the overhead introduced by Hadoop.
The first series of tests shows the cost of data transfer
through a MapReduce job without any computation, fol-
lowed by a detailed evaluation of each individual algorithm.
By default, the number of mappers that Hadoop launches
for a job is a multiple of the number of data blocks, taking
care to not exceed the actual number of blocks on its HDFS
(counting all replications). On the other hand, the number of

reduce tasks can be specified. To simplify comparison, in our
tests we maximize the number of reducers to the system ca-
pacity while keeping its ratio to the number of mappers equal
to 1. The number of mappers and reducers always equal in
our experiments whenever the number of input data blocks
permits.

Tests were performed on two Hadoop-based systems: a lo-
cal cluster and the NSF CLuE cluster managed by IBM [clu].
The local cluster consists of 60 nodes, each with two quad-
core Intel Xeon Nehalem 2.6GHz processors, 24GB of
memory and a 320GB disk. The CLuE cluster consists of
410 nodes each with two single-core Intel Xeon 2.8GHz pro-
cessors, 4GB of memory and a 400GB disk. While still a
valuable resource for research, the CLuE hardware is out-
dated if compared to modern clusters, since it was originally
built in 2004 with both low-speed processors and limited
memory. Thus, we mostly utilize the performance numbers
from the CLuE cluster as a way to validate and/or compare
with our results on the local cluster. Since the CLuE clus-
ter is a shared resource among multiple universities, there is
currently no way to run experiments in isolation. We made
sure to run all of our experiments at dead hours to minimize
the interference from other jobs. HDES files were stored in
64MB blocks with 3 replications.

5.1. MapReduce Baseline

To evaluate the cost incurred solely from streaming data
through the system, several baseline tests were performed.
For our scaling tests, we have evaluated our algorithms’ per-
formance only for weak-scaling. (i.e., scaling the number of
processors with a fixed data size per processor). This was
chosen over strong scaling (i.e., scaling the number of pro-
cessors with a fixed total data size) since the latter would
require changing a data blocksize to adjust the number of
mappers appropriately. The Hadoop/HDEFS is known for de-
graded performance for data with too large or small block-
sizes depending on job complexity [Tec], therefore strong
scaling is currently not a good indicator of performance
in Hadoop. The weak-scaling experiments vary data size
against task capacity and proportionally change the number
of mappers and reducers. An algorithm or system that has
proper weak scaling should maintain a constant runtime. To
avoid biasing results by our optimization schemes, we use
the default MapReduce job, with a trivial record reader and

WEAK-SCALING OF DATASIZE VS.THE NUMBER OF TASKS (on Cluster)
Datasize | #Maps Map Time | Shuffle Time | Reduce Time | Total Time| I/O Rate |Data Rate

IGB 3 | 7s 185’ 27s 63s) 84 MB/s| 16 MB/s
2GB| 32 2 8s 18s 27s 66s| 161 MB/s| 31 MB/s
4GB 64 4 9s 24s’ 30s 75s| 283 MB/s| 55 MB/s
8GB] 128 8 10s 265! 29s 78s| 545 MB/s| 105 MB/s
16GB 256 16 10s) 32s 29s 90s| 944 MB/s| 182 MB/s
32GB 512 32 12s) 56s 32s 130s| 1308 MB/s| 252 MB/s
64GB 1024 64, Ils) 69s 30s 153s| 2222 MB/s| 428 MB/s
128GB} 2048 128 135 146s 57s 320s| 2125 MB/s| 410 MB/s
HADOOP OVERHEAD TIME (on Cluster) WEAK-SCALING (on CLUE)
#Maps | #Reduces|Map Only| Total Datasize | Total Time| /O Rate |Data Rate
16 | 155, 30s IGB 971s 5 MB/s | MB/s
32 2 155, 30s 2GB 9465 11 MB/s 2 MB/s
64 4 155, 30s 4GB 986s| 22 MB/s| 4 MB/s
128 8 155, 30s 8GB 976s| 44 MBIs, 8 MB/s
256 13 155, 30s 16GB 1059s| 80 MB/s| 15 MB/s
512 32 155, 33s
1024 64 155, 35s
2048 128 15s) 36s

Hadoop Task Breakdown
160s
140s
120s

£ 1005
£
% s0s
< 60s

405

205 | B—— —

0s

1GB 2GB 4GB 8GB 16GB 32GB 64GB 128GB
Datasize
~~MapTime ~®-Shuffle Time ~-Reduce Time

Figure 6: Hadoop baseline test evaluates data transfer
costs. In the local cluster we achieve rates up to 428MB/s

writer. Data is stored in binary format and split into 64-bytes
record, with 16 bytes reserved for the key. Map and reduce
functions pass the input directly to the output, and are the
simplest possible jobs such that the performance is disk I/O
and network transfer bounded.

The top table in Figure 6 shows the average cost for map,
shuffle and reduce tasks respectively in the local cluster. The
last two columns depict the overall disk I/O throughput and
data throughput for a particular job. I/O rates were computed
by dividing the total number of disk reads and writes includ-
ing temporary files over the total time, while data rates repre-
sent how much input data pass through the job in a second.
For map tasks, Hadoop was able to keep the runtime con-
stant, since input files are read in sequence on each node and
directed to appropriate mappers. In the reducing step, even
though the amount of data is the same as to the map phase
and each node write data to its local disk, there is also a local
external sorting that incurs in overhead. Nevertheless, both
runtimes are still considerably constant, except for the jump
from 64GB to 128GB. At this point, the number of reducers
guarantees each node has to host at least two reduce tasks
if distributed properly, therefore each disk now has double
the I/O and seek operations. This can be seen in the disk
I/O rates, where the throughput is optimal at 64 tasks on the
local cluster with 60 disks and drops while maintaining a
relatively high speed for the larger number of tasks.

The shuffle phase of Hadoop is where weak scaling is not
linear. This accounts for the data transfer between the map
and reduce phase of a job along with sorting. In Hadoop each
mapper is likely to contribute a portion of data required by
each reducer and therefore is not expected to scale well. The
plot in Figure 6 illustrates the breakdown of the three phases.

Vo, Bronson, Summa, Comba, Freire, Howe, Pascucci, Silva / Parallel Visualization on Large Clusters using MapReduce

WEAK SCALING (RESOLUTION)
St. MATTHEW (13 GB) ATLAS (18 GB)

Resolution #M/R | CLuE | Cluster [File #M/R CLUE | Cluster| File
time time | Written time time | Written
1250x1250 |[256/256| Imin 54s 46s 33MB|| 273/273 | Imin 55s; 46s 41MB|
2500x2500 |[256/256| Imin 42s 46s| 147MB| | 273/273 | 2min | Is| 46s| 104MB
5000x5000 |[256/256| Imin 47s 46s| 583MB||273/273 | 2min |2s| 46s| 412MB
10000x 10000 ||256/256 | Imin 40s 46s 2.3GB| | 273/273 | 2min |25 46s 1.6GB
20000%x20000 || 256/256 | 2min 04s 46s| 10.9GB| | 273/273 | 2min 27s| 47s 5.5GB
40000x40000 | (256/256 | 3min 12s| Imin08s| 53.14GB| | 273/273 | 3min 55s| 55s| 37.8GB
80000x80000 | [256/256| 9min 50s| 2min55s| 213GB|| 273/273 ||Omin 30s|Imin58s| 151.8GB

WEAK SCALING (RESOLUTION AND REDUCE)

St MATTHEW (13 GB) ATLAS (18 GB)
Resolution CLuE 256M | Cluster 480M CLuE 256M | Cluster 480M
#R time #R time #R time #R time
1250x1250 4 Imin I3s 8 46s 4 Imin I18s| 8 46s
2500x2500 8 Imin 18s 15 46s 8 Imin 19s| IS 45s
5000x5000 16 Imin 18s| 30 46s 16 Imin 51s| 30 46s
10000x 10000 32 |2min 04s| 60 47s 32 Imin 52s| 60 47s
20000x20000 64 [2min 04s| 120 49s 64 2min 34s| 120 46s
40000x40000 128 |4min 45s| 240 Imin06s 128 | 5min 06s| 240 55s

80000x80000 256 |9min 50s| 480 | 2minl4s 256 |Omin 30s| 480 Imin4ls

Figure 7: Rendering results for the St. Matthew (left) and
Atlas (right). Performance tables show results for different
resolutions. An 80000 x 80000 image of the Atlas (18GB)
was generated in Imin and 58s in the local cluster.

The Hadoop Overhead Time table shows (only) the overhead
of communication across the map and reduce phases. Note
that each phase takes about 15 seconds to start on our local
cluster. We also include weak-scaling results for the CLUE
cluster for comparison. The I/O rates are considerably lower
than the local performance, and, as expected, this is likely
due to age of the system and the shared usage. From the
weak scaling tests we conclude that the MapReduce model
can be robust when the number of nodes scales with the data
size. Little cost is incurred for using more input data, and the
effective transfer rates scale proportionally to the input data
size. However, in order to ensure fault tolerance, disk I/O is
heavily involved and could bound the overall performance.

Vo, Bronson, Summa, Comba, Freire, Howe, Pascucci, Silva / Parallel Visualization on Large Clusters using MapReduce 7

5.2. Isosurface Extraction

We tested the isosurface MapReduce algorithm on two
datasets: a small skull volume (256MB) and a larger ppm
Richtmyer-Meshkov instability simulation volume (7.6GB).
Since our baseline testing has shown that the amount data
produced can effect Hadoop’s performance, we performed
tests that varied the number of isosurfaces generated in a sin-
gle job, since this can have a drastic effect on the amount of
data being produced. For few isosurfaces, we expect a small
number of triangles to be produced. Conversely, for many
isosurfaces, more data will be output to disk than was used
for input. We keep the number of maps constant at 256, as
this is the largest power-of-two we can use without pigeon
holing more than 1 mapper to a node of the CLuE cluster.

We observed that in the extraction of dozens of isosur-
faces (as part of parameter exploration) data output increases
proportionally to runtime. Jobs are relatively fast for the
standard case of fewer isosurfaces, since input and output
data are partitioned evenly to mappers and reducers, thus
the amount of disk I/O for input and output is relatively
small (e.g., approximately 32MB per Mapper). The runtime
of this algorithm is mostly affected by the shuffling phase,
where triangles emitted from mappers exceed the available
buffer and are sorted out-of-core before being transferred to
the reducers. The performance of this phase depends on the
amount of temporary disk I/O used when the mapper runs
out of in-core buffer space.

In the tables of Figure 1, the File Written column denotes
the amount of temporary data produced (not the HDFS out-
put). For the skull data set, the algorithm runs quite fast up
to 8 isosurfaces, close to Hadoop’s overhead. When mov-
ing to 16 isosurfaces, the disk I/O starts to increase abruptly
causing the algorithm to slow down. This increase denotes
the amount of temporary disk storage needed for the Map-
pers to sort the data. Nevertheless, while the data increases
quadratically, the run-time only triples. For the PPM dataset,
we also see similar behavior in the disk usage. The run-time
increases from 10 minutes to 28 minutes and 2 minutes to 5
minutes when the disk I/O increases from 104GB to 252GB
for the CLuE and the local cluster, respectively. Figure 1
also shows the isosurfaces for this dataset. The rendering for
the combustion PPM dataset is achieved by chaining the map
task of our isosurface extraction with the map and reduce job
of our surface rendering described in Section 5.3.

5.3. Rendering

Performance of the rasterization algorithm is dependent on
the output resolution, camera parameters and geometry size.
The impact of geometry and resolution is proportional to the
number of triangles to be rasterized and fragments gener-
ated, while the impact of camera parameters is more diffi-
cult to estimate. For instance, depending on a camera po-
sition, pixels may receive no or multiple fragments. Hence,
reducers may receive no data or several fragments to com-

TETRAHEDRAL MESHES VOLUME RENDERING (on Cluster,

Model |#Tetrahedra| #Triangles | Time |#Fragments| Bytes Read |Bytes Write
Spx 0.8 millions| 1.6 millions| 3min 29s| 9.8 billions 320GB 473 GB!
Fighter | 1.4 millions| 2.8 millions| 2min 20s| 5.3 billions 172 GB 254 GB
Sfl 14 millions| 28 millions| émin 53s| 16.8 billions 545 GB 807 GB.
Bullet 36 millions| 73 millions| 4min 19s| 12.7 billions 412 GB 610 GB

Figure 8: Volume rendering of the earthquake dataset (SF1)
using a 100MP image. Table shows volume rendering statis-
tics for other tetrahedral meshes. The Bullet dataset with 36
million tetrahedra is rendered in 4min and 19s.

pute depth ordering. Figure 7 shows rendering results and
weak scaling tests with run times and temporary disk us-
age. For the CLuE cluster, the cost for rendering images of
100MP or less is insignificant compared to the Hadoop over-
head. For our local cluster, this threshold is more than 1GP.
For images of this size, the cluster is stretched to its limit
and performance is limited by the amount of data written to
disk. There is a significant increase in the data size due to
the large amount of temporary caching by the system due to
insufficient buffer space for the shuffling phase.

Figure 8 illustrates a volume rendering pipeline modified
from our surface rendering pipeline. Tetrahedral meshes are
broken down into a triangle soup, with each tetrahedron face
split into a separate triangle. The reduce phase is modified to
perform color, opacity mapping and compositing of the frag-
ments. The accompanying table shows results for a variety
of additional meshes. As also shown in the table, the most
time-consuming image to render at 100MP is not the largest
dataset (Bullet) but the earthquake dataset (SF1). This is due
to the many large (and flat) tetrahedra that define empty re-
gions at the bottom of the model. Scalar values of these trian-
gles rarely contribute to the final image, but generate a large
number of fragments which causes a more expensive shuftle
phase.

8 Vo, Bronson, Summa, Comba, Freire, Howe, Pascucci, Silva / Parallel Visualization on Large Clusters using MapReduce

(a) 83 (b) 16 (c) 323 (d) 643

(e) 1283.

(f) 256°

(g) 5123 (h) 10243

Figure 10: Simplified meshes using volumes from 8 to 10243 using decimation rates under 5%.

CLUE time ATLAS (18 GB) St MATTHEW (13 GB)
A #Maps/ Job | Job 2 Output | Job | Job2 Output
el #Reduces Time Time Size Time Time Size
8’ 256/256 5min 45s 52s| 22 KB| 5min 45s’ 52s| 23KB
16° 256/256 3min 54s 49s| 98 KB| 3min 54s. 49s| 105 KB
32° 256/256 3min 5ls 49s| 392 KB| 3min 5ls 49s| 450 KB
64° 256/256 3min 40s 49s| 1.6 MB| 3min 40s. 49s| 1.9MB
128° 256/256 4min 12s 49s| 6.4 MB| 4min I2s 49s| 75MB
256° 256/256 3min 50s 49s| 26 MB| 3min 50s! 49s| 30 MB!
Cluster time ATLAS (18 GB) St MATTHEW (13 GB)
P #Maps/ ob | ob2 | Output ob | ob2 | Output
LAEREEED #Redfces !I'ime !I'ime SizPe !I'ime !I'ime Siz':
8’ 3771377 58s 56s| 22KB 54s 55s| 23KB
16° 3771377 58s 55s| 98KB 54s 54s| 105 KB
32° 3771377 55s 54s| 392 KB 5ls 52s| 450 KB
64° 3771377 57s 54s| 1.6 MB 55s 55s| 1.9MB
128° 3771377 55s 58s| 6.4 MB 52s 52s| 7.5MB
256° 3771377 55s 55s| 26 MB 55s 55s| 30MB
512° 3771377 55s 55s| 102 MB 55s 52s| 119 MB
1024° 3771377 55s 57s| 399 MB 55s 53s| 461 MB

Figure 9: Simplification results. The algorithm requires two
map-reduce jobs (jobs 1 and 2 in the table). The local cluster
process both datasets in roughly 555 per job.

5.4. Mesh Simplification

To analyze the out-of-core simplification algorithm in the
MapReduce model, we use two large triangle meshes as
input: the Atlas statue (18GB) and the St Matthew statue
(13GB) from the Digital Michelangelo Project at Stanford
University. In these tests, we are interested in seeing the
effects of scaling the simplifying grid size. The amount of
work done in the Map phase should be very consistent, as
each triangle must always compute a quadric measure vec-
tor and bin its three vertices. Smaller grid sizes force more
vertices to coincide in any particular bin, thus changing the

grouping and potentially reducing the parallelism in the Re-
duce phase.

However, the decrease in performance from this should be
amortized by the decreased output of the Reduce phase, as
fewer triangles will be generated. In the tables of Figure 9 we
observe that this is exactly what occurs. Since our method
must be a two pass algorithm in Hadoop ,we have included
the run times for both jobs (Job 1 and Job 2). Rendered im-
ages of simplified models of the Atlas and the St Matthew
statue are also shown in Figure 10 with the grid sizes vary-
ing from 83 to 10243, Decimation rates for these results are
all under 5% and they were all rendered using the renderer
proposed in Section 5.3.

6. Discussion

In this section, we discuss some of the “lessons learned"
from our experience with MapReduce and Hadoop. For
users of visualization techniques, it is difficult to know when
the results or workload will push beyond the cluster limits
and severely increase runtimes. It was clear from our exper-
iments that keeping the number of maps and reduces below
the maximum task capacity is the first step towards avoiding
such pathological cases. While nodes can run multiple tasks,
we find that increasing the number of nodes in proportion to
the data size provides the most reliable and consistent scal-
ability, suggesting that the overhead to manage additional
nodes is not prohibitively expensive.

Additional tasks may improve performance in certain

Vo, Bronson, Summa, Comba, Freire, Howe, Pascucci, Silva / Parallel Visualization on Large Clusters using MapReduce 9

cases, but should not be a default assumption. The results
from our exploratory implementations are encouraging and
match the scalability we expected, up to a limit. When the
size of the output data is unpredictable, as in the case of
isosurface extraction, memory requirements can quickly ex-
haust available resources, leading to disk buffering and ul-
timately increasing runtime. Scalability, in our experience,
is only achieved for data reductive tasks — tasks for which
the output is smaller than the input. Most visualization tasks
satisfy this property, since they typically render (or generate)
data that is smaller than the input mesh or volume. It should
also be pointed out that this cost is insignificant when com-
pared to today’s standard practice of transferring data to a
client, and running a local serial or parallel algorithm. In-
deed, the cost of transferring the data to a local server alone
dwarfs the cost of any such MapReduce job.

For those interested in developing visualization algo-
rithms for MapReduce systems, our experience has shown
that even naive implementations can lead acceptable re-
sults. Implementing the MapReduce algorithms was rela-
tively simple. However, as with any highly-parallel system,
optimization can be painstaking. In the case of MapReduce,
we found that the setup and tuning of the cluster itself was
just as important, if not more important, than using the right
data format, compressor, or splitting scheme. To analyze the
suitability of existing algorithms to the MapReduce model,
attention should be paid to where and how often sorting is re-
quired. As the model only allows a single sort phase per job,
multi-pass algorithms can incur significant overhead when
translated naively into MapReduce. Specifically, a MapRe-
duce implementation will rarely be competitive with state-
of-the-art methods in terms of raw performance, but the sim-
plicity and generality of the programming model is what
delivers scalability and extensibility. Further, the degree of
parallelism in the Reduce phase is determined by both the
intended output of the algorithm, as well as the distribution
of data coming from the Map phase. Careful consideration
of the hashing method may or may not have a dramatic effect
on the algorithm performance.

We summarize below observations and conclusions we
made in our work with the Hadoop system:

e Results from our scaling tests show Hadoop alone scales
well, even without introducing optimization techniques.

e Considerations about the visualization output size are
very important. Visualization techniques should decrease
or keep relatively constant the size of the data in the
pipeline rather than increase it. MapReduce was not de-
signed to handle enormous intermediate datasets, and per-
forms poorly in this context.

e From a qualitative standpoint, we found the MapReduce
model easy to work with and implement our solutions.
Optimization, in terms of compression and data read-
er/writers required thought and experimentation. Config-
uring job parameters and cluster settings for optimal per-
formance was very challenging. We feel that this com-

plexity is always inherent in a large distributed environ-
ment, and therefore is acceptable. Further, this work can
potentially be performed once per cluster, and the cost can
therefore be amortized over many MapReduce jobs.

e The inability to chain jobs makes multi-job algorithms
such as the mesh simplification slightly cumbersome to
execute, and more difficult to analyze. Projects such as
Pig [ORS*08] and Hive [TSJ*09] that offer a high-level
yet extensible language on top of MapReduce are promis-
ing in this regard.

e The Hadoop community could greatly benefit from bet-
ter progress reporting. Uneven distribution of data across
reducers may result in display of near completion (e.g.,
98%) when in fact the bulk of the work remains to be
completed. This is problematic if the user does not know
a priori what a good reducer number should be, and arbi-
trarily chooses a high value.

e While at any particular time, job runtimes are fairly con-
sistent, they vary as a whole from day to day. This is most
likely due to the state of the HDFS and movement of repli-
cated data. Being aware of these effects is important in
order to make meaningful comparisons of performance
results. On that note, all data within any one table was
generated within a short time span.

7. Conclusions and Future Work

The analysis performed in this paper has shown that the
MapReduce model provides is a suitable alternative to sup-
port large-scale exploratory visualization. The fact that data
transfer alone is more expensive than running such a job in-
situ is sufficient justification, and will become more evident
as datasets grow in size. The availability of a core set of vi-
sualization tools for MapReduce systems will allow faster
feedback and learning from new and large datasets. Addi-
tionally, as these systems continue to evolve, it is important
for the visualization community to periodically re-evaluate
their suitability. Here, we provide a baseline for such a com-
parative analysis. We have shown how three visualization
techniques can be adapted to MapReduce. Clearly, many
additional methods can be adapted in similar ways, in par-
ticular memory-insensitive techniques or inherently parallel
techniques. What remains to be investigated is how to com-
bine visualization primitives with conventional data manage-
ment, query, and processing algorithms to construct a com-
prehensive scalable visual analytics platform.

References

[amaa] Amazon Simple Storage Service (Amazon S3). http://
www.amazon.com/gp/browse.html?node=16427261. 2

[amab] Amazon SimpleDB. http://www.amazon.com/
SimpleDB-AWS-Service-Pricing/b?ie=UTF8\&node=
342335011. 2

[aws] Amazon web services - elastic mapreduce. http://aws.
amazon.com/elasticmapreduce/. 1

http://www.amazon.com/gp/browse.html?node=16427261
http://www.amazon.com/SimpleDB-AWS-Service-Pricing/b?ie=UTF8&node=342335011
http://aws.amazon.com/elasticmapreduce/

10 Vo, Bronson, Summa, Comba, Freire, Howe, Pascucci, Silva / Parallel Visualization on Large Clusters using MapReduce

[Bor07] BORTHAKUR D.: The Hadoop distributed file sys-
tem: Architecture and design. http://lucene.apache.org/
hadoop/hdfs_design.pdf, 2007. 2

[Cam99] CAMAHORT E.:, 1999. The Contour Library
http://www.ticam.utexas.edu/ccv/software/libcontour/. 4

[CDG*06] CHANG F., DEAN J., GHEMAWAT S., HSIEH W. C.,
WALLACH D. A., BURROWS M., CHANDRA T., FIKES A.,
GRUBER R. E.: Bigtable: a distributed storage system for struc-
tured data. In Proc. of the 7th USENIX Symp. on Operating Sys-
tems Design & Implementation (OSDI) (2006). 2

[CIL*08] CHAIKEN R., JENKINS B., LARSON P.-A., RAMSEY
B., SHAKIB D., WEAVER S., ZHOU J.: Scope: easy and efficient
parallel processing of massive data sets. In Proc. of the 34th Int.
Conf. on Very Large DataBases (VLDB) (2008), pp. 1265-1276.
1,2

[clu] Nsf cluster exploratory (nsf08560). http://www.nsf.gov/
pubs/2008/nsf08560/nsf08560.htm. 1,5

[DG04] DEAN J., GHEMAWAT S.: MapReduce: simplified data
processing on large clusters. In Proc. of the 6th USENIX Symp.
on Operating Systems Design & Implementation (OSDI) (2004).
1,2

[DGO8] DEAN J., GHEMAWAT S.: MapReduce: simplified data
processing on large clusters. CACM 51, 1 (2008), 107-113. 1

[DHJ*07] DECANDIA G., HASTORUN D., JAMPANI M., KAKU-
LAPATI G., LAKSHMAN A., PILCHIN A., SIVASUBRAMANIAN
S., VOSSHALL P., VOGELS W.: Dynamo: Amazon’s highly
available key-value store. In Proc. of the 21st ACM Symp. on
Operating Systems Principles (SOSP) (2007), pp. 205-220. 2

[DPR*08] DEWITT D. J., PAULSON E., ROBINSON E.,
NAUGHTON J., ROYALTY J., SHANKAR S., KRIOUKOV A.:
Clustera: an integrated computation and data management sys-
tem. In Proc. of the 34th Int. Conf. on Very Large DataBases
(VLDB) (2008), pp. 28-41. 2

[FSO1] FARIAS R., SILVA C. T.: Out-of-core rendering of large,
unstructured grids. [EEE Comput. Graph. Appl. 21, 4 (2001),
42-50. 4

[GH97] GARLAND M., HECKBERT P. S.: Surface simplifi-
cation using quadric error metrics. In SIGGRAPH ’97: Pro-
ceedings of the 24th annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 1997), ACM
Press/Addison-Wesley Publishing Co., pp. 209-216. 4

[goo] Google App Engine Datastore. http://code.google.
com/appengine/docs/datastore/. 2

[had] Hadoop. http://hadoop.apache.org/. 1,2

[HGO5] HEBER G., GRAY J.: Supporting Finite Element Analy-
sis with a Relational Database Backend; Part 1: There is Life Be-
yond Files. Tech. rep., Microsoft MSR-TR-2005-49, April 2005.
2

[Hiv] Hive. http://hadoop.apache.org/hive/. Accessed
March 7, 2010. 3

[IBM05] IBM SYSTEMS AND TECHNOLOGY GROUP: I[IBM
Deep Computing. Tech. rep., IBM, 2005. 2, 3

[IBY*07] ISARD M., BubpiU M., YU Y., BIRRELL A., FET-
TERLY D.: Dryad: Distributed data-parallel programs from se-
quential building blocks. In Proc. of the European Conference
on Computer Systems (EuroSys) (2007), pp. 59-72. 2

[iri] Incorporated Research Institutions for Seismology (IRIS).
http://www.iris.edu/. 3

[KosO07] KosMix CORP.: Kosmos distributed file system (kfs).
http://kosmosfs.sourceforge.net, 2007. 2

[Law] LAWRENCE LIVERMORE NATIONAL LABORATORY:
Vislt: Visualize It in Parallel Visualization Application. https:
//wci.llnl.gov/codes/visit [29 March 2008]. 3

[LC87] LORENSEN W., CLINE H.: Marching cubes: A high res-
olution 3D surface construction algorithm. Computer Graphics
21,4 (1987), 163-169. 3

[LSO1] LINDSTROM P., SILVA C. T.: A memory insensitive tech-
nique for large model simplification. In VIS '01: Proceedings
of the conference on Visualization 01 (Washington, DC, USA,
2001), IEEE Computer Society, pp. 121-126. 4

[Iss] Large Synoptic Survey Telescope. http://www.lsst.
org/.3

[Ma09] MaA K.-L.: In situ visualization at extreme scale: Chal-
lenges and opportunities. Computer Graphics and Applications,
IEEE 29, 6 (nov.-dec. 2009), 14 -19. 3

[mic] Azure Services Platform - SQL Data Services. http://
www.microsoft.com/azure/data.mspx. 2

[ORS*08] OLSTON C., REED B., SRIVASTAVA U., KUMAR R.,
TOMKINS A.: Pig latin: a not-so-foreign language for data pro-
cessing. In SIGMOD’08: Proc. of the ACM SIGMOD Int. Conf.
on Management of Data (2008), pp. 1099-1110. 1,2, 3,9

[PAB*08] PAUL B., AHERN S., BETHEL E. W., BRUGGER E.,
CooK R., DANIEL J., LEWIS K., OWEN J., SOUTHARD D.:
Chromium Renderserver: Scalable and Open Remote Rendering
Infrastructure. IEEE Transactions on Visualization and Com-
puter Graphics 14, 3 (May/June 2008). LBNL-63693. 2, 3

[par] Paraview. http://www.paraview.org [29 March
2008]. 3

[PDGQO5] PIKE R., DORWARD S., GRIESEMER R., QUINLAN
S.: Interpreting the data: Parallel analysis with Sawzall. Scientific
Programming 13, 4 (2005). 2

[PPR*09] PAVLO A., PAULSON E., RASIN A., ABADI D. J.,
DEWITT D. J., MADDEN S. R., STONEBRAKER M.: A com-
parison of approaches to large scale data analysis. In SIGMOD
(Providence, Rhode Island, USA, 2009). 1

[RSFWH98] RICHARDSON T., STAFFORD-FRASER Q., WOOD
K. R., HOPPER A.: Virtual network computing. /[EEE Internet
Computing 2, 1 (1998), 33-38. 2

[Sil] SILICON GRAPHICS INC.: OpenGL vizserver. http://
www.sgl.com/products/software/vizserver. 2,3

[slo] Sloan Digital Sky Survey. http://cas.sdss.org. 3

[SMEQO2] STEGMAIER S., MAGALLON M., ERTL T.: A generic
solution for hardware-accelerated remote visualization. In VIS-
SYM °02: Proceedings of the symposium on Data Visualisation
2002 (Aire-la-Ville, Switzerland, Switzerland, 2002), Eurograph-
ics Association, pp. 87—ff. 2

[SZ1.92] SCHROEDER W. J., ZARGE J. A., LORENSEN W. E.:
Decimation of triangle meshes. In SSIGGRAPH ’92: Proceedings
of the 19th annual conference on Computer graphics and inter-
active techniques (New York, NY, USA, 1992), ACM, pp. 65-70.
4

[Tec] TECHNOLOGIES 1.: Hadoop performance tuning - white
paper. 5

[TSJ*09] THUSOO A., SARMA J. S., JAIN N., SHAO Z.,
CHAKKA P., ANTHONY S., LIU H., WYCKOFF P., MURTHY
R.: Hive - a warehousing solution over a map-reduce framework.
PVLDB 2, 2 (2009), 1626-1629. 9

[Yaha] YAHOO! REASEARCH: PNUTS - Platform for Nimble
Universal Table Storage. http://research.yahoo.com/node/
212.2

http://lucene.apache.org/hadoop/hdfs_design.pdf
http://www.nsf.gov/pubs/2008/nsf08560/nsf08560.htm
http://code.google.com/appengine/docs/datastore/
http://hadoop.apache.org/
http://hadoop.apache.org/hive/
http://www.iris.edu/
http://kosmosfs.sourceforge.net
https://wci.llnl.gov/codes/visit
https://wci.llnl.gov/codes/visit
http://www.lsst.org/
http://www.lsst.org/
http://www.microsoft.com/azure/data.mspx
http://www.paraview.org
http://www.sgi.com/products/software/vizserver
http://www.sgi.com/products/software/vizserver
http://cas.sdss.org
http://research.yahoo.com/node/212

Vo, Bronson, Summa, Comba, Freire, Howe, Pascucci, Silva / Parallel Visualization on Large Clusters using MapReduce

[yahb] Yahoo! expands its m45 cloud computing initiative, adding
top universities to supercomputing research cluster. http://
research.yahoo.com/news/3374. 1

[YDHPO7] YANG H., DASDAN A., HSIAO R.-L., PARKER
D. S.: Map-reduce-merge: simplified relational data processing
on large clusters. In SIGMOD’07: Proc. of the ACM SIGMOD
Int. Conf. on Management of Data (2007), pp. 1029-1040. 2

[YIF*08] YU Y., ISARD M., FETTERLY D., BUDIU M., ER-
LINGSSON U., GUNDA P. K., CURREY J.: DryadLINQ: A sys-
tem for general-purpose distributed data-parallel computing us-
ing a high-level language. In Proc. of the 8th USENIX Symp. on
Operating Systems Design & Implementation (OSDI) (2008). 1,
2

[YSZ04] YANJ., SHI P., ZHANG D.: Mesh simplification with
hierarchical shape analysis and iterative edge contraction. /EEE
Transactions on Visualization and Computer Graphics 10, 2
(2004), 142-151. 4

http://research.yahoo.com/news/3374

