
Interactive Ray Tracing for Isosurface Rendering
To appear at Visualization 98

Steven Parker Peter Shirley Yarden Livnat Charles Hansen Peter-Pike Sloan

Computer Science Department
University of Utah

� sparker j shirley j ylivnat j hansen j ppsloan � @cs.utah.edu

Abstract

We show that it is feasible to perform interactive isosurfacing of
very large rectilinear datasets with brute-force ray tracing on a
conventional (distributed) shared-memory multiprocessor machine.
Rather than generate geometry representing the isosurface and ren-
der with a z-buffer, for each pixel we trace a ray through a volume
and do an analytic isosurface intersection computation. Although
this method has a high intrinsic computational cost, its simplicity
and scalability make it ideal for large datasets on current high-end
systems. Incorporating simple optimizations, such as volume brick-
ing and a shallow hierarchy, enables interactive rendering (i.e. 10
frames per second) of the 1GByte full resolution Visible Woman
dataset on an SGI Reality Monster. The graphics capabilities of the
reality monster are used only for display of the final color image.

1 Introduction

Many applications generate scalar fields ��x� y� z� which can be
viewed by displaying isosurfaceswhere ��x� y� z� � �iso. Ideally,
the value for �iso is interactively controlled by the user. When the
scalar field is stored as a structured set of point samples, the most
common technique for generating a given isosurface is to create
an explicit polygonal representation for the surface using a tech-
nique such as Marching Cubes[4, 10]. This surface is subsequently
rendered with attached graphics hardware accelerators such as the
SGI Infinite Reality. Marching Cubes can generate an extraordinary
number of polygons, which take time to construct and to render. For
very large (i.e., greater than several million polygons) surfaces the
isosurface extraction and rendering times limit the interactivity. In
this paper, we generate images of isosurfaces directly with no inter-
mediate surface representation through the use of ray tracing. Ray
tracing for isosurfaces has been used in the past (e.g. [7, 11, 14]),
but we apply it to very large datasets in an interactive setting for the
first time. In the appendices, we provide details that are new to the
literature that are necessary to implement this algorithm.

The basic ray-isosurface intersection method used in this paper
is shown in Figure 1. Conventional wisdom holds that ray tracing
is too slow to be competitive with hardware z-buffers. However,
when rendering a surface from a sufficiently large dataset, ray trac-
ing should become competitive as its low time complexity over-
comes its large time constant [6]. The same arguments apply to
the isosurfacing problem. Suppose we have an n� n� n rectilin-
ear volume which for a given isosurface value has O�n�� polygons
generated using Marching Cubes. Given intelligent preprocessing,
the rendering time will be O�n��. Since it is hard to improve per-
formance using multiple graphics engines, this seems a hard limit
when using commercially available graphics accelerators unless a
large fraction of the polygons are not visible [8]. If a ray tracing
algorithm is used to traverse the volume until a surface is reached,
we would expect each ray to do O�n� work. If the rays are traced
on p processors, then we expect the runtime for an isosurface image

isosurfacescreen

eye

Figure 1: A ray is intersected directly with the isosurface. No
explicit surface is computed.

to be O�n�p�, albeit with a very large time constant and a limit that
p is significantly lower than the number of pixels. For sufficiently
large n, ray tracing will be faster than a z-buffer algorithm for gen-
erating and rendering isosurfaces. The question is whether it can
occur on an n that occurs in practice (e.g., n � ��� to n � ����)
with a p that exists on a real machine (e.g., p � � to p � ���).
This paper demonstrates that with a few optimizations, ray tracing
is alreadyattractive for at least some isosurface applications.

2 The Algorithm

Our algorithm has three phases: traversing a ray through cells
which do not contain an isosurface, analytically computing the iso-
surface when intersecting a voxel containing the isosurface, shading
the resulting intersection point. This process is repeated for each
pixel on the screen. Since each ray is independent, parallelization
is straightforward. An additional benefit is that adding incremental
features to the rendering has only incremental cost. For example, if
one is visualizing multiple isosurfaces with some of them rendered
transparently, the correct compositing order is guaranteed since we
traverse the volume in a front-to-back order along the rays. Addi-
tional shading techniques, such as shadows and specular reflection,
can easily be incorporated for enhanced visual cues. Another bene-
fit is the ability to exploit texture maps which are much larger than
texture memory (typically up to 64 MBytes).

In the following subsections, we describe the details of our tech-
nique. We first address the ray-isosurface intersection followed by a
description of various optimizations we have performed to achieve
the interactive rates.

2.1 Ray-Isosurface Intersection

If we assume a regular volume with even grid point spacing ar-
ranged in a rectilinear array, then the ray-isosurface intersection is

ρ(x, y, z)=ρiso

x = xa + t xb
y = ya + t yb
z = za + t zb

ray equation:

Figure 2: The ray traverses each cell (left), and when a cell is
encountered that has an isosurface in it (right), an analytic ray-
isosurface intersection computation is performed.

straightforward. Analagous simple schemes exist for intersection
of tetrahedral cells, but the traversal of such grids is left for future
work. This work will focus on rectilinear data.

To find an intersection (Figure 2), the ray �a 	 t�b traverses cells
in the volume checking each cell to see if its data range bounds an
isovalue. If it does, an analytic computation is performed to solve
for the ray parameter t at the intersection with the isosurface:

��xa 	 txb� ya 	 tyb� za 	 tzb�� �iso � ��

When approximating � with a trilinear interpolation between dis-
crete grid points, this equation will expand to a cubic polynomial
in t. This cubic can then be solved in closed form to find the inter-
sections of the ray with the isosurface in that cell. Only the roots
of the polynomial which are contained in the cell are examined.
There may be multiple roots, corresponding to multiple intersec-
tion points. In this case, the smallest t (closest to the eye) is used.
There may also be no roots of the polynomial, in which case the
ray misses the isosurface in the cell. The details of this intersection
computation are given in Appendix A.

2.2 Optimizations

For the traversal of rays through the data, we use the incremen-
tal method described by Amanatides and Woo [1]. We found
that traversing the cells is the computational bottleneck for large
datasets, so we include optimizations to accelerate performance.

The first optimization is to improve data cache locality by orga-
nizing the volume into “bricks” that are analogous to the use of im-
age tiles in image-processing software and other volume rendering
programs [3] (Figure 3). The details of our method for efficiently
indexing cells is discussed in Appendix B.

The second is to use a multi-level spatial hierarchy to acceler-
ate the traversal of empty cells as is shown in Figure 4. Cells are
grouped divided into equal portions, and then a “macrocell” is cre-
ated which contains the minimum and maximum data value for it’s
children cells. This is a common variant of standard ray-grid tech-
niques [2] and the use of minimum/maximum caching has been
shown to be useful [5, 16, 17]. The ray-isosurface traversal algo-
rithm examines the min and max at each macrocell before deciding
whether to recursively examine a deeper level or to proceed to the
next cell. The average complexity of this search will be O� �

p
n�

for a three level hierarchy. While the worst case complexity is still
O�n�, it is difficult to imagine an isosurface occuring in practice
approaching this worst case. Using a deeper hierarchy can theo-
retically reduce the average case complexity slightly, but also dra-
matically increases the storage cost of intermediate levels. We have
experimented with modifying the number of levels in the hierarchy
and empirically determined that a tri-level hierarchy (one top-level
cell, two intermediate macrocell levels, and the data cells) is highly
efficient. This optimum may be data dependent and is modifiable at

1 3

4 5

10 119

6

0 2

7

8

Figure 3: Cells can be organized into “tiles” or “bricks” in mem-
ory to improve locality. The numbers in the first brick represent
layout in memory. Neither the number of atomic voxels nor the
number of bricks need be a power of two.

Figure 4: With a two-level hierarchy, rays can skip empty space
by traversing larger cells. A three-level hierarchy is used for the
Visible Woman example.

program startup. Using a tri-level hierarchy, the storage overhead
is negligible (� ���% of the data size). The cell sizes used in the
hierarchy are independent of the brick sizes used for cache locality
in the first optimization.

Since one cannot predict a priori the complexity of extracting
an isosurface from a particular screen pixel, we employ a dynamic
load balancing scheme to ensure high processor utilization over a
wide range of views. The screen space is first split into tiles in the
image space. In our implementation, tiles are 32 pixels wide by 4
pixels high. The width of the tile (128 bytes) ensures that tiles will
not share a cache line with neighboring tiles. At the beginning of a
frame, each tile becomes an assignment in a queue. Each processor
pulls a range of assignments from the queue, performs the assigned
work, and then returns to the queue for more work. The assign-
ments, which are initially doled out in large chunks, get smaller
and smaller as the frame nears completion. The large granularity in
the beginning reduces contention for a large portion of the image,
and the smaller granularity near the end helps to balance the load
efficiently [15].

3 Results

We applied the ray tracing isosurface extraction to interactively vi-
sualize the Visible Woman dataset. The Visible Woman dataset is
available through the National Library of Medicine as part of its
Visible Human Project [12]. We used the computed tomography
(CT) data which was acquired in 1mm slices with varying in-slice
resolution. This data is composed of 1734 slices of 512x512 im-
ages at 16 bits. The complete dataset is 910MBytes. Rather than
down-sample the data with a loss of resolution, we utilize the full
resolution data in our experiments. As previously described, our
algorithm has three phases: traversing a ray through cells which
do not contain an isosurface, analytically computing the isosurface

Figure 5: Ray tracings of the skin and bone isosurfaces of the
Visible Woman (see color page).

Isosurface Traversal Intersec. Shading FPS
Skin �� �
����� 55% 22% 23% 7-15

Bone �� � ������� 66% 21% 13% 6-15

Table 1: Data From Ray Tracing the Visible Woman. The frames-
per-second (FPS) gives the observed range for the interactively
generated viewpoints on 64 CPUs.

when intersecting a voxel containing the isosurface, and shading
the resulting intersection point.

Figure 5 shows a ray tracing for two isosurface values. Figure 6
illustrates how shadows can improve our the accuracy of our ge-
ometric perception. Table 1 shows the percentages of time spent
in each of these phases, as obtained through the cycle hardware
counter in SGI’s speedshop. As can be seen, we achieve about 10
frames per second (FPS) interactive rates while rendering the full,
nearly 1GByte, dataset.

Table 2 shows the scalability of the algorithm from 1 to 64 pro-
cessors. View 2 is simpler than view 1, and thus achieves higher
frame rates. Of course, maximum interaction is obtained with 128
processors, but reasonable interaction can be achieved with fewer
processors. If a smaller number of processors were available, one
could reduce the image size in order to restore the interactive rates.
Efficiencies are 91% and 80% for view 1 and 2 respectively on 128
processors. The reduced efficiency with larger numbers of proces-
sors (�
�) can be explained by load imbalances and the time re-
quired to synchronize processors at the required frame rate. These
efficiencies would be higher for a larger image.

Table 3 shows the improvements which were obtained through
the data bricking and spatial hierarchy optimizations.

4 Discussion

We contrast applying our algorithm to the Visible Woman data with
previous work done by GE Corporate Research and Development

Figure 6: A ray tracing with and without shadows (see color page).

View 1 View 2
of processors FPS speedup FPS speedup

1 0.18 1.0 0.39 1.0
2 0.36 2.0 0.79 2.0
4 0.72 4.0 1.58 4.1
8 1.44 8.0 3.16 8.1

12 2.17 12.1 4.73 12.1
16 2.89 16.1 6.31 16.2
24 4.33 24.1 9.47 24.3
32 5.55 30.8 11.34 29.1
48 8.50 47.2 16.96 43.5
64 10.40 57.8 22.14 56.8
96 16.10 89.4 33.34 85.5

128 20.49 113.8 39.98 102.5

Table 2: Scalability results for ray tracing the bone isosurface in
the visible human. A 512x512 image was generated using a single
view of the bone isosurface.

View Initial Bricking Hierarchy+Bricking
skin: front 1.41 1.27 0.53
bone: front 2.35 2.07 0.52
bone: close 3.61 3.52 0.76

bone: from feet 26.1 5.8 0.62

Table 3: Times in seconds for optimizations for ray tracing the visi-
ble human. A 512x512 image was generated on 16 processors using
a single view of an isosurface.

Data Res. Isosurface No. of Triangles Time in Secs.
Full Skin 6,650,596 1335
Full Bone 9,914,122 1218

4x4x4 Skin 503,064 10.04
4x4x4 Bone 494,802 10.06

Table 4: Data From GE Work on the Visible Human.

Center [9]. Table 4 shows the time required by their algorithm.
There are two data resolutions reported: the full resolution and the
data strided by 4 in all dimensions. In that work, the isosurfaces
from the Visible Woman data were extracted using the Marching
Cubes algorithm. When the data was strided by 4 in all dimen-
sions, a total of 494,802 polygons make up the bone surface. If
the Marching Cubes was applied to the full resolution data, the iso-
surface requires almost 10 million polygons. On a MIPS R10000
running at 190Mhz, the isosurface extraction for the down-sampled
data took a full 10.07 seconds. This does not include rendering
time. Thus, the time to generate an isosurface is dominated by
the geometry extraction algorithm. Our algorithm can render 64
times more data (the Visible Woman at full resolution) at roughly
10 frames per second. For the full resolution isosurfaces, one might
expect a straightforward implementation on the SGI Infinite Reality
graphics accelerator to render the 10M polygons in about ten sec-
onds. With heavily optimized code it might be possible to reduce
this time to one second at best. Note that we gain efficiency for
both the extraction and rendering components by not explicitly ex-
tracting the geometry. Our algorithm is therefore not well-suited for
applications that will use the geometry for non-graphics purposes.

The interactivity of our system allows exploration of both the
data by interactively changing the isovalue or viewpoint. For ex-
ample, one could view the entire skeleton and interactively zoom
in and modify the isovalue to examine the detail in the toes all at
about 10 FPS.

The architecture of the parallel machine plays an important role
in the success of this technique. Since any processor can randomly
access the entire dataset, the dataset must be available to each pro-
cessor. Nonetheless, there is fairly high locality in the dataset for
any particular processor. As a result, a shared memory or dis-
tributed shared memory machine, such as the SGI Origin 2000, is
ideally suited for this application. The load balancing mechanism
also requires a fine-grained low-latency communication mechanism
for synchronizing work assignments and returning completed im-
age tiles. With an attached Infinite Reality graphics engine, we can
display images at high frame rates without network bottlenecks. We
feel that implementing a similar technique on a distributed memory
machine would be extraordinarily challenging, and would probably
not achieve the same rates without duplicating the dataset on each
processor.

5 Future Work and Conclusions

Since all computation is performed in software, there are many
avenues which deserve exploration. Ray tracers have a relatively
clean software architecture, in which techniques can be added with-
out interfering with existing techniques, without re-unrolling large
loops, and without complicated state management as are character-
istic of a typical polygon renderer.

We believe the following possibilities are worth investigating:

� Using an associated color volume as a 3D texture map for an
isosurface.

� Exploration of other hierarchical methods in addition to the
multilevel hierarchy described above.

ρ000

(x0,y0,z0)
(0,0,0)

ρ100

(x1,y0,z0)
(1,0,0)

ρ110

(x1,y1,z0)
(1,1,0)

ρ111

(x1,y1,z1)
(1,1,1)

ρ001

(x0,y0,z1)
(0,0,1)

ρ011

(x0,y1,z1)
(0,1,1)

ρ101

(x1,y0,z1)
(1,0,1)

x

y
z

ρ010

(x0,y1,z0)
(0,1,0)

Figure 7: The geometry for a cell. The bottom coordinates are the
�u� v� w� values for the intermediate point.

� Isosurfacing of tetrahedral and hexahedral element grids.

� Combination with other scalar and vector visualization tools,
such as cutting planes, surface maps, streamlines, etc.

� Using higher-order interpolants. Although numerical root
finding would be necessary, the images might be better [11]
and the intersection routine is not the bottleneck so the degra-
dation in performance could be acceptable.

We have shown that ray tracing can be a practical alternative to
explicit isosurface extraction for very large datasets. As data sets
get larger, and as general purpose processing hardware becomes
more powerful, we expect this to become a very attractive method
for visualizing large scale scalar data both in terms of speed and
rendering accuracy.

6 Acknowledgements

Thanks to Matthew Bane and Michelle Miller for comments on the
paper. Thanks to Chris Johnson for providing the open collabora-
tive research environment that allowed this work to happen. Special
thanks to Steve Modica and Robert Cummins at SGI for crucial bug
fixes in support code. This work was supported by the SGI Visual
Supercomputing Center, the Utah State Centers of Excellence, the
Department of Energy and the National Science Foundation. Spe-
cial thanks to Jamie Painter and the Advanced Computing Labora-
tory at Los Alamos National Laboratory for access to a 128 proces-
sor machine for final benchmarks.

A Ray-Isosurface Intersection

A rectilinear volume is composed of a three dimensional array of
point samples that are aligned to the Cartesian axes and are equally
spaced in a given dimension. A single cell from such a volume
is shown in Figure 7. Other cells can be generated by exchanging
indices �i� j� k� for the zeros and ones in the figure.

The density at a point within the cell is found using trilinear
interpolation:

��u� v� w� � ��� u���� v����w����� 	 (1)

��� u���� v��w����� 	

��� u��v���� w����� 	

�u���� v���� w����� 	

�u���� v��w����� 	

(x0, y0)

(x
1
, y1)

a

b

a0

b0

a1

b1

u0

v0

v1

u1

(0, 0)

(1, 1)

(1, 1)

(0, 0)

Figure 8: Various coordinate systems used for interpolation and
intersection.

��� u��v��w����� 	

�u��v���� w����� 	

�u��v��w�����

where

u �
x� x�
x� � x�

(2)

v �
y � y�
y� � y�

w �
z � z�
z� � z�

Note that

�� u �
x� � x

x� � x�
(3)

�� v �
y� � y

y� � y�

�� w �
z� � z

z� � z�

If we redefine u� � �� u and u� � u, and similar definitions for
v�� v�� w�� w�, then we get:

� �
X

i�j�k����

uivjwk�ijk

For a given point �x� y� z� in the cell, the surface normal is given
by the gradient with respect to �x� y� z�:

�N � �r� �
�
��

�x
�
��

�y
�
��

�z

�

So the normal vector of �Nx� NY � Nz� � �r� is

Nx �
X

i�j�k����

����i��vjwk

x� � x�
�ijk

Ny �
X

i�j�k����

����j��uiwk

y� � y�
�ijk

Nz �
X

i�j�k����

����k��uivj
z� � z�

�ijk

Lin and Ching [7] described a method for intersecting a ray with
a trilinear cell. We derive a similar result that is more tailored to
our implementation.

See figure 8. Given a ray �p � �a 	 t�b, the intersection with the
isosurface occurs where ���p� � �iso. We can convert this ray into

coordinates defined by �u�� v�� w��: �p� � �a�	t�b� and a second ray

defined by �p� � �a� 	 t�b�. Here the rays are in the two coordinate
systems (Figure 8):

�a� � �ua� � v
a
� � w

a
� � �

�
x� � xa
x� � x�

�
y� � ya
y� � y�

�
z� � za
z� � z�

�
�

and

�b� � �ub�� v
b
�� w

b
�� �

�
xb

x� � x�
�

yb
y� � y�

�
zb

z� � z�

�
�

These equations are different because �a� is a location and �b� is a
direction. The equations are similar for �a� and�b�:

�a� � �ua� � v
a
� � w

a
� � �

�
xa � x�
x� � x�

�
ya � y�
y� � y�

�
za � z�
z� � z�

�
�

and

�b� � �ub�� v
b
�� w

b
�� �

�
�xb

x� � x�
�
�yb

y� � y�
�
�zb

z� � z�

�
�

Note that t is the same for all three rays. This point can be found by
traversing the cells and doing a brute-force algebraic solution for t.
The intersection with the isosurface ���p� � �iso occurs where:

�iso �
X

i�j�k����

�
uai 	 tubi

� �
vai 	 tvbi

� �
wa
i 	 twb

i

�
�ijk

This can be simplified to a cubic polynomial in t:

At� 	Bt� 	 Ct	D � �

where
A �

X
i�j�k����

ubiv
b
iw

b
i�ijk

B �
X

i�j�k����

�
uai v

b
iw

b
i 	 ubiv

a
i w

b
i 	 ubiv

b
iw

a
i

�
�ijk

C �
X

i�j�k����

�
ubiv

a
i w

a
i 	 uai v

b
iw

a
i 	 uai v

a
i w

b
i

�
�ijk

D � ��iso 	
X

i�j�k����

uai v
a
i w

a
i �ijk

The solution to a cubic polynomial is discussed the article by
Schwarze [13]. We used his code (available on the web in several
Graphics Gemsarchive sites) with two modifications: special cases
for quadratic or linear solutions (his code assumes A is non-zero),
and the EQN EPS parameter was set to 1.e-30 which provided for
maximum stability for large coefficients.

B Address Management For Bricks

Effectively utilizing the cache hierarchy is a crucial task in design-
ing algorithms for modern architectures. Bricking or 3D tiling has
been a popular method for increasing locality for ray cast volume
rendering. The dataset is reordered into n�n�n cells which then
fill the entire volume. On a machine with 128 byte cache lines, and
using 16 bit data values, n is exactly 4. However, using float (32
bit) datasets, n is closer to 3.

Effective TLB utilization is also becoming a crucial factor in al-
gorithm performance. The same technique can be used to improve
TLB hit rates by creating m �m �m bricks of n � n � n cells.

For example, a �� � �� � �� volume could be decomposed into
�� �� � macrobricks of �� �� � bricks of �� �� � cells. This
corresponds to m � � and n � �. Because 19 cannot be factored
by mn � ��, one level of padding is needed. We use m � � for 16
bit datasets, and m �
 for float datasets.

The resulting offset q into the data array can be computed for any
x� y� z triple with the expression:

q � ��x� n��m�n�m���Nz � n��m���Ny � n��m� �

��y � n��m�n�m���Nz � n��m� �

��z � n��m�n�m� �

��x� n� mod m�n�m� �

��y � n� mod m�n
�
m�

��z � n� mod m�n� �

�x mod n� n�n� �

�y mod n�� n�

�z mod n�

where Nx, Ny and Nz are the respective sizes of the dataset.
This expression contains many integer multiplication, divide and

modulus operations. On modern processors, these operations are
extremely costly (32+ cycles for the MIPS R10000). For n and m
which are powers of two, these operations can be converted to bit-
shifts and bitwise logical operations. However, as noted above the
ideal size is not a power of two. Some of the multiplications can
be converted to shift/add operations, but the divide and modulus
operations are more problematic. The indices could be computed
incrementally, but this would require tracking 9 counters, with nu-
merous comparisons and poor branch prediction performance.

Note that this expression can be written as:

q � Fx�x� 	 Fy�y� 	 Fz�z�

where

Fx�x� � ��x� n��m�n�m���Nz � n��m���Ny � n��m� �

��x� n� mod m�n�m� �

�x mod n� n�n�

Fy�y� � ��y � n��m�n�m���Nz � n��m� �

��y � n� mod m�n
�
m �

�y mod n�� n

Fz�z� � ��z � n��m�n�m� �

��z � n� mod m�n� �

�z mod n�

We tabulate Fx, Fy , and Fz and use x, y, and z respectively
to find three offsets in the array. These three values are added to
compute the index into the data array. These tables will consist of
Nx, Ny , and Nz elements respectively. The total sizes of the tables
will fit in the primary data cache of the processor even for very
large data set sizes. Using this technique, we note that one could
produce mappings which are much more complex than the two level
bricking described here, although it is not at all obvious which of
these mappings would achieve the highest cache utilization.

For isosurfacing, each iteration through the loop examines the
eight corners of a cell. In order to find these eight values, we need
to only lookup Fx�x�, Fx�x 	 ��, Fy�y�, Fy�y 	 ��, Fz�z�, and
Fz�z 	 ��. This consists of six index table lookups for each eight
data value lookups. Lookups for macrocells can be computed in the
same way. However, in this case there will be three table lookups
for each macrocell. This, combined with the significantly smaller
memory footprint of the macrocells made the effect of bricking the
macrocells negligible.

References

[1] John Amanatides and Andrew Woo. A fast voxel traversal
algorithm for ray tracing. In Eurographics ’87, 1987.

[2] James Arvo and David Kirk. A survey of ray tracing acceler-
ation techniques. In Andrew S. Glassner, editor, An Introduc-
tion to Ray Tracing. Academic Press, San Diego, CA, 1989.

[3] Michael B. Cox and David Ellsworth. Application-controlled
demand paging for Out-of-Core visualization. In Proceedings
of Visualization ’97, pages 235–244, October 1997.

[4] B. Wyvill G. Wyvill, C. McPheeters. Data structures for soft
objects. The Visual Computer, 2:227–234, 1986.

[5] Al Globus. Octree optimization. Technical Report RNR-90-
011, NASA Ames Research Center, July 1990.

[6] James T. Kajiya. An overview and comparison of rendering
methods. A Consumer’s and Developer’s Guide to Image Syn-
thesis, pages 259–263, 1988. ACM Siggraph ’88 Course 12
Notes.

[7] Chyi-Cheng Lin and Yu-Tai Ching. An efficient volume-
rendering algorithm with an analytic approach. The Visual
Computer, 12(10):515–526, 1996.

[8] Yarden Livnat and Charles Hansen. View dependent isosur-
face extraction. In Proceedings of Visualization ’98, October
1998. This proceedings.

[9] Bill Lorensen. Marching through the visible woman.
http://www.crd.ge.com/cgi-bin/vw.pl, 1997.

[10] William E. Lorensen and Harvey E. Cline. Marching cubes:
A high resolution 3d surface construction algorithm. Com-
puter Graphics, 21(4):163–169, July 1987. ACM Siggraph
’87 Conference Proceedings.

[11] Stephen Marschner and Richard Lobb. An evaluation of re-
construction filters for volume rendering. In Proceedings of
Visualization ’94, pages 100–107, October 1994.

[12] National Library of Medicine (U.S.) Board of Regents. Elec-
tronic imaging: Report of the board of regents. u.s. depart-
ment of health and human services, public health service, na-
tional institutes of health. NIH Publication 90-2197, 1990.

[13] Jochen Schwarze. Cubic and quartic roots. In Andrew Glass-
ner, editor, Graphics Gems, pages 404–407. Academic Press,
San Diego, 1990.

[14] Milos Sramek. Fast surface rendering from raster data by
voxel traversal using chessboard distance. In Proceedings of
Visualization ’94, pages 188–195, October 1994.

[15] Scott Whitman. Multiprocessor Methods for Computer
Graphics Rendering. Jones and Bartlett Publishers, 1992.

[16] J. Wilhelms and A. Van Gelder. Octrees for faster isosur-
face generation. Computer Graphics, 24(5):57–62, November
1990.

[17] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface
generation. ACM Transactions on Graphics, 11(3):201–227,
July 1992.

