
A Fast and Robust Method for Web Page Template
Detection and Removal

Karane Vieira1 Altigran S. da Silva1 Nick Pinto1

Edleno S. de Moura1 João M. B. Cavalcanti1 Juliana Freire2

1Universidade Federal do Amazonas
Departamento de Ciência da Computação

Manaus, AM, Brazil

{kmv,alti,ndyp,edleno,john}@dcc.ufam.edu.br

School of Computing
2University of Utah

Salt Lake City, UT, USA

juliana@cs.utah.edu

ABSTRACT
The widespread use of templates on the Web is considered
harmful for two main reasons. Not only do they compro-
mise the relevance judgment of many web IR and web min-
ing methods such as clustering and classification, but they
also negatively impact the performance and resource usage
of tools that process web pages. In this paper we present
a new method that efficiently and accurately removes tem-
plates found in collections of web pages. Our method works
in two steps. First,the costly process of template detection
is performed over a small set of sample pages. Then, the
derived template is removed from the remaining pages in
the collection. This leads to substantial performance gains
when compared to previous approaches that combine tem-
plate detection and removal. We show, through an exper-
imental evaluation, that our approach is effective for iden-
tifying terms occurring in templates—obtaining F-measure
values around 0.9, and that it also boosts the accuracy of
web page clustering and classification methods.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms
Algorithms, Experimentation

Keywords
Web template extraction, Web page noise removal

1. INTRODUCTION
The availability of tools that simplify the design and im-

plementation of data-intensive web sites has greatly con-
tributed to the explosive growth of the Web. These tools in-
volve “a combination of templates and design conventions”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’06, November 5–11, 2006, Arlington, Virginia, USA.
Copyright 2006 ACM 1-59593-433-2/06/0011 ...$5.00.

[12], including templates for common types and classes of
pages, as well as sets of templates for common pages in
sub-sites. By automatically populating these templates with
content, web site designers and content producers of large
web portals achieve high levels of productivity and improve
the usability of the sites by enforcing the uniformity of the
pages.

In a recent study, Gibson et al. [10] have found that tem-
plates represent between 40% and 50% of data on the Web
and that this volume has been growing at a rate of approx-
imately 6% per year. In addition, around 30% of the vis-
ible terms and hyperlinks appear in templates. The abun-
dance of templates on the Web is considered harmful to
many web mining and searching methods. Such methods
usually base their judgment of relevance on the frequency
and distribution of terms (words) and hyperlinks on web
pages. Since templates contain a considerable number of
common terms and hyperlinks which are replicated in large
number of pages, a relevance assessment that does not take
templates into account may turn out to be inaccurate, lead-
ing to incorrect results. This has already been demonstrated
in pioneering works on template removal for web searching,
page clustering and page classification [1, 21].

Templates can also negatively impact the performance of
applications that manipulate web pages. Since they cause
content to be replicated in several pages and occur in large
volumes, processing and storing templates and their asso-
ciated information is likely to lead to a waste of resources
such as storage space, bandwidth and processing cycles. As
the Web grows, this aspect must also be taken into consid-
eration. Template detection and removal techniques follow
the trends of recent work which aim to detect unimportant
(or less important) information of web pages and web col-
lections in an attempt to save computational resources and
to speed up processing [8, 15, 2].

In this paper we present new method for detection and
removal of templates that is both fast and accurate. The
proposed method works in two steps. Initially, templates are
detected using a set of sample pages. The patterns identified
in the detection step are then used to remove the templates
present in the other pages in the collection. This separation
leads to an efficient process. Although the detection task
can be costly, it is applied only to a small number of pages.
On the other hand, the template removal, which has to be
applied to a large number of pages, can be done through an
inexpensive procedure.

Our procedures for detecting and removing templates are

258

based on finding a mapping between the underlying tree
structures of web pages. Based on this mapping, we detect
identical nodes in the trees and subtrees that contain these
nodes. Intuitively, when a given subtree that spans from the
document root is detected in both input pages, we regard
this subtree as a template. Once this subtree is found, it can
be easily located and removed from other pages. The use
of page structure for template detection leads to high preci-
sion even when a small number of sample pages is provided.
This is in contrast to previous methods that either rely on
the identification of frequent nodes [1] or consider only a
node and its descendants [21]. These methods usually need
to process a much large number of pages to reliably detect
patterns. As we discuss in Section 6, we are able to obtain
results of quality comparable to [21] using a very small per-
centage (between 5 and 10%) of the number of samples used
in their experiments.

An important contribution of this paper is a new algo-
rithm that finds optimal mappings between the DOM trees
of web pages. This algorithm is based on a restricted for-
mulation of the top-down mapping problem between two
trees, which is particularly suitable for detecting structural
similarities among web pages [7]. As we discuss in our ex-
perimental evaluation, this makes our method efficient and
effective in practice.

To evaluate our approach, we have performed two sets of
experiments. In the first set, we verify the effectiveness our
method for detecting and removing templates. The results
show that F-measure values aroung 0.9 are obtained using as
few as 24 pages. In the second set of experiments, we verify
the impact of our template removal procedure when used
in conjunction with methods for clustering and classifying
web pages. The results obtained are comparable to those
obtained in [21] and show substantial improvement on the
quality of these methods.

The remainder of this paper is organized as follows. In
Section 2, we give an overview of the problem of template
detection and review related work. We present a brief re-
view on the main concepts related to tree mapping in Sec-
tion 3. In Section 4, we introduce the new tree mapping
algorithm, and the process of the template detection and
removal method which uses this algorithm is described in
Section 5. Our experimental evaluation and results are dis-
cussed in Section 6. We conclude in Section 7, where we
outline directions for future research.

2. TEMPLATE DETECTION METHODS
The problems of template detection and web page clean-

ing have received considerable attention in the recent liter-
ature. This may be explained by the pressing demand for
solutions that prevent templates from negatively impacting
techniques for web searching and mining.

In their pioneer work on template detection, Bar-Yossef
et al. [1] have provided a formal definition of the problem
and discussed several shortcomings brought about by the
widespread use of templates on the Web. They have pro-
posed two algorithms which rely on the identification of iden-
tical pagelets [4] (i.e., topically coherent disjoint portions of
web pages) occurring in a densely linked page collection.
Experiments based on the Clever search engine using the
ARC set of queries [3] have shown considerable improve-
ment when one of the proposed algorithms is used, the Local
Template Detection Algorithm. When a query is processed,
this algorithm is combined with a strategy that filters out

pages/pagelets that do not contain query terms in their text.
Since the ranking algorithm used in Clever is based on link
analysis only, this filtering strategy is crucial for obtaining
accurate results.

Instead of pagelets, our approach based on the co-occurrence
of subtrees in the pages. While pagelet identification is
based on fixed heuristics, our approach is adaptive and it
takes advantage of common structures found in the pages of
a given web site. In addition, while our method addresses
the removal of terms or words found in templates, Bar-Yossef
et al. focused on pruning hyperlinks considered as useless
to improve the results of Clever in finding authorities.

Yi et al.[21] proposed an alternative approach whose main
goal is to find common noisy portions in the pages of a given
web site. Their approach is based on a tree structure—the
Site Style Tree (SST), which is similar to a DOM tree. A
SST summarizes the presentation styles and the contents
found in a set of web pages. It is built by scanning a set of
pages and adding to SST every distinct DOM node found.
If the same (or similar) node is found in several pages, this
is registered in the SST by means of a frequency counter.
Once the SST is constructed, the likelihood of its nodes
representing noisy nodes on the pages is evaluated based on
the diversity of presentation styles and contents associated
to it on the SST tree. Less diversity indicates there is a
higher likelihood of noise. The final cleaning process, i.e.,
elimination of noisy nodes, is accomplished by mapping the
DOM tree for each page into the SST. If a given DOM node
of a page is mapped to a SST node considered as noisy,
this node is removed. This process is applied to all pages
in the target site. In contrast to the work reported in [1]
and our work, the work in [21] does not directly address the
problem of finding a template on a set of pages. Their focus
is on finding common parts on web pages of a given site, with
respect to formatting/style and contents and to evaluate the
relative importance of these parts. However, their ultimate
goal is the same, that is, removing from web pages content
that may negatively impact searching and mining methods.

Similarly to [21], our approach relies on the underlying
tree structure of the pages to be cleaned, but in a different
way. We view a template as a subtree that is common to the
DOM trees of the target web pages. Thus, we reduce the
problem of template detection to the problem of finding a
common subtree in a set of given trees. This simpler formu-
lation works well in practice and, using a small number of
sample pages, it is able to extract templates with high pre-
cision (see Section 6). In contrast, Yi et al. need to examine
a large number of pages to accumulate reliable statistics. In
their experiments, to obtain results with quality comparable
to ours, they use over an order of magnitude more sample
pages.

In addition, in their approach, two passes over the page
collection are required. In the first pass, the SST is built and
in the second, each page in the collection is compared against
the SST. On the other hand, our approach requires a single
pass over the collection: templates are first detected from
sample pages and then they are removed from the remaining
pages using an inexpensive procedure. Another advantage
of our approach is that it is completely automatic. Yi et al.,
in contrast, require users to define thresholds that indicate
whether elements in the SST are noisy or not and to tune
the similarity comparison between DOM trees elements.

Debnath et al. [9] proposed an approach similar to the
one in [21]. They also select portions of web pages, called

259

blocks, which have an importance level above a given thresh-
old. However, while Yi et al. defined the notion of im-
portance in [21] based on features of the whole target site
summarized in style trees, Debnath et al. estimate the im-
portance for each individual block. Two distinct strategies
are proposed. One is based on occurrence of similar blocks
among the pages of the site and another is based on a spe-
cific predefined set of desired features that must be present
on blocks. By using a set of parametrized heuristics to de-
limit blocks, identify features and calculate importance, the
method achieved good precision and recall levels when ap-
plied to collections of news pages from several web sites.

Song et al. [16] proposed a learning method that automat-
ically assigns importance weights to hierarchically arranged
segments in web pages, termed as blocks. The method re-
quires blocks in sample web pages to be labeled by users
based on their judgment of the importance of each block.
Next, using the labeled blocks as training data, classifiers
are used to automatically label other unseen pages. Tem-
plate identification can be seen as a specific instance of this
problem, since templates can be regarded as sets of blocks
that have very low importance. However, as we show in
this paper, templates can be automatically (and reliably)
detected without any training.

Using a method based on the approaches in [1]and [21],
with some simplifications, Gibson et al. [10] have conducted
an extensive survey on the use of templates on the Web
which revealed interesting facts. For instance, they have
found that templates currently represent between 40% and
50% of the volume of the Web and that this volume is grow-
ing at a rate of approximately 6% per year. In addition,
around 30% of the visible terms and hyperlinks appear in
templates.

3. TREE MAPPING
To detect templates in a collection of web pages, our

method tries to identify mappings among their tree struc-
ture. In what follows, we review the concept of tree mapping
and describe a restricted version of the problem used in our
approach.

We represent each HTML page as a labeled ordered rooted
tree that corresponds to its underlying DOM tree. From
now on, we refer to labeled ordered rooted trees simply by
trees, except when explicitly stated.

The concept of tree mapping was introduced in [17] and
is formally defined as follows.

Definition 1. (Tree Mapping) Let Tx be a tree and let
tx[i] be the i-th vertex of tree Tx in a preorder walk. A map-
ping between a tree T1 of size n1 and a tree T2 of size n2

is a set M of ordered pairs (i, j), satisfying the following
conditions for all (i1, j1), (i2, j2) ∈M

• i1 = i2 iff j1 = j2;

• t1[i1] is on the left of t1[i2] iff t2[j1] is on the left of
t2[j2];

• t1[i1] is an ancestor of t1[i2] iff t2[j1] is an ancestor of
t2[j2].

In Definition 1, the first condition establishes that each
vertex can appear no more than once in a mapping, the
second enforces order preservation between sibling nodes
and the third enforces the hierarchical relation between the

nodes in the trees. Figure 1 illustrates a mapping between
two trees.

D E

C B

EA

RR

A

T1

G

T2

Figure 1: Mapping between two labeled ordered
rooted trees.

Intuitively, a mapping is a description of how a sequence
of edit operations transform a tree into another, ignoring the
order in which these operations are applied. Tree operations
are commonly considered: (a) vertex removal, (b) vertex
insertion, and (c) vertex replacement. In Figure 1, a dashed
line from a vertex of T1 to vertex of T2 indicates that the
vertex of T1 should be changed if the vertices are different,
remaining unchanged otherwise. Vertices of T1 not touched
by dashed lines should be deleted, and vertices of T2 not
touched should be inserted. If we associate a cost to each of
the operations considered, it’s possible to evaluate the cost
of a given mapping between two trees, as defined below.

Definition 2. (Mapping Cost) Let M be a mapping be-
tween tree T1 and tree T2; S a subset of pairs (i, j) ∈M with
distinct labels; D the set of nodes in T1 that do not occur in
any (i, j) ∈ M ; and I the set of nodes in T2 that do not
occur in any (i, j) ∈M . The cost of mapping M is given by
c = |S|p+ |I |q + |D|r, where p,q and r are the costs assigned
to the replacement, insertion, and removal operations, re-
spectively.

It is common to associate a unit cost to all operations,
although specific applications may require the assignment of
distinct costs to each type of operation. Other applications
may even require a distinct set of operations.

As many mappings can exist between two trees, an impor-
tant problem is how to find the optimal mapping, that is,
the one with the minimal cost among all possible mappings.
This problem is also known as the Tree-Edit Distance(TED)
problem [14, 17]. From now on, we refer to the optimal tree
mapping problem simply as the mapping problem.

Despite the inherent complexity of the mapping problem
in its generic formulation [6, 22], there are several practi-
cal applications that can be modeled using restricted for-
mulations of it. By imposing conditions to the basic oper-
ations corresponding to the original formulation in Defini-
tion 1 (i.e., replacement, insertion and removal), four classi-
cal restricted formulations are obtained: alignment, distance
between isolated trees, top-down distance, and bottom-up dis-
tance, for which more convenient and fast algorithms have
been proposed [18, 19].

Our approach is based on the top-down mapping formu-
lation, that restricts the removal and insertion operations
to take place only in the leaves of the trees. Figure 2(a)
illustrates a top-down mapping which is formally defined as
follows.

Definition 3. A mapping M between a tree T1 and a
tree T2 is said to be top-down if and only if for every pair
(i1, i2) ∈M there is also a pair (parent(i1),parent(i2)) ∈M .

260

D E

C B

EA

RR

A

T1

G

T2

D E

C B

EA

RR

A

T1

G

T2

(a) (b)

Figure 2: Examples of generic (a) and restricted (b)
top-down mappings.

The first algorithm for the top-down edit distance prob-
lem was proposed by Selkow [14]. One of the most popular
algorithms for the problem is presented in [5] and has time
complexity of O(n1n2), where n1 and n2 correspond to the
number of nodes in the trees being mapped. Top-down map-
pings have been successfully applied to several web related
applications such as document categorization. For instance,
Nierman and Jagadish [13] use a top-down distance algo-
rithm to cluster XML documents.

In our work we use a restricted form of top-down map-
ping between two pages in which, besides the insertion and
removal operations, the replacement operation of different
vertices is also restricted to the leaves of the trees. More
formally, we have the following definition.

Definition 4. A top-down mapping M between a tree T1

and a tree T2 is restricted if and only if for every pair
(i1, i2) ∈ M , such that t1[i1] �= t2[i2], there is no descen-
dant of i1 or i2 in M .

Figure 2(b) shows a restricted top-down mapping. Similar
to the family of edit distances mentioned before, we can de-
fine the restricted top-down edit distance between two trees
T1 and T2 as the cost of the restricted top-down mapping
between the two trees.

The concept of restricted top-down mapping was intro-
duced in [7] along with the RTDM algorithm. RTDM is
well suited for problems that require the evaluation of struc-
tural similarity between web pages. Because edit operations
are restricted to leaf nodes, while a mapping is constructed,
there is no need to look for nodes in subtrees rooted at a
changed node since they cannot appear in the mapping. As
a result, only nodes in common subtrees spanning from the
root to the leaves may be considered for the mapping. As
we discuss later, we regard these subtrees as indicators of
the presence of a template.

4. THE RTDM-TD ALGORITHM
Whereas the main goal of the RTDM algorithm is to de-

termine the cost of the minimal mapping, i.e., the tree-edit
distance between two input trees, to perform template detec-
tion we need to find the actual sequence of operations that
lead to this minimal mapping. Here, we introduce RTDM-
TD, an extension of RTDM in which the mapping result is
built while the mapping is determined. There are several
differences between the two algorithms. RTDM requires as
input a threshold, since processing can be halted in cases in
which the partial cost being calculated is already above this
threshold. As RTDM-TD needs to construct the complete
sequence of operations, regardless of the cost, it does not
need such a threshold. Another distinction is that RTDM-
TD treats certain nodes in a special way. Because nodes
that are identical in two trees are regarded as being part

of a template, RTDM-TD keeps track of cases in which no
insertion, removal or update operations were applied to a
given node.

The RTDM-TD algorithm, shown in Figure 3, is an adap-
tation of the algorithms by Yang [20] and Reis [7] applied to
obtain minimal restricted top-down mappings. It takes as
input two trees and outputs two matrices: the cost matrix
M ; and the backtracking matrix B. Elements in matrix M
represent the minimum cost for mapping a subtree of T1 to
a subtree of T2. In matrix B, each element B[i, j] represents
the operations over two nodes, t1[i] of T1 and t2[j] of T2,
that lead to the minimum cost.

Each B[i, j] is a tuple of the form 〈op, src, cost, next〉,
where op stores the operation that led to minimum cost,
src indicates the node in T1 that was used in this operation,
cost stores the cost of this operation and next is a pointer
for the backtracking matrix corresponding to the children of
t1 and t2. As we explain later, the backtracking matrices are
used for retrieving the nodes composing the template. No-
tice that we do not need to represent the value of the cost
in component cost, since it is already available in M—we
do this only for convenience in the retrieval process. Also,
notice that we only keep track of nodes of T1 in src, since
for template detection, we are only interested in nodes that
appear in the two trees (the corresponding node in T2 will
be the same).

In the RTDM-TD algorithm, functions replace, delete and
insert give the costs of vertex replacement, vertex removal
and vertex insertion, respectively. Notation tx[k] is used
to refer to the kth node of tree Tx according to a post-order
traversal and Tx[k] refers to the subtree of Tx rooted at tx[k].
Moreover, δ(Tx, i) is used to refer the post-order traversal
index of the ith child of the root of the tree Tx.

As other top-down mapping algorithms [20, 7], RTDM-
TD works similarly to algorithms that solve string edit dis-
tance. In our case, we are trying to find the best assignment
between the children of the roots of T1 and T2. Thus, when
both of these children nodes have their own children nodes,
we make a recursive call to solve the mapping in lower levels
of the trees (Line 28-29). In the algorithm, this only occurs
when processing two children nodes that have the same label
(Line 25) but are not roots of identical subtrees (Line 27).

In our implementation, the ident function used in Line 25
consists only of looking into sets of equivalent subtrees. If
two sub-tress are in the same set, they are considered iden-
tical. These sets are computed from the two input trees in a
pre-processing step, similar to what is done in [18] and [7].
As in the original RTDM algorithm, in RTDM-TD this ap-
proach is applicable because we only look for the identical
subtrees of the same level. This pre-processing has linear
cost with respect to the number of vertices in the trees.

After the recursive call in Lines 28-29, argument B′ con-
tains a “reference” to the backtracking matrix corresponding
to the children of the nodes being currently processed. It is
assigned to B[i, j].next in Line 44.

The traditional top-down mapping algorithm by Chawathe
[5] has time-complexity of O(n1n2), where nx is the size of
Tx. For all cases, O(n1n2) is the best, the expected and
the worst cases. The RTDM-TD algorithm also has a worst
case complexity of O(n1n2), but, in practice, it performs
much better due to the fact that it only deals with restricted
top-down mappings. The worst case of the RTDM-TD al-
gorithm occurs when the two trees being compared are all
identical, except for their leaves. In all other cases, the cost

261

1 RTDM-TD(T1, T2, B)
2 begin
3 let m be the number of children of T1 root
4 let n be the number of children of T2 root
5 for i = 1 to m
6 Ci ← descendants(δ(T1, i))

7 M [i, 0]←M [i− 1, 0] +
Pt1[k]∈Ci

k delete(t1[k])
8 end

10 for j = 1 to n
11 Cj ← descendants(δ(T2, j))

12 M [0, j]←M [0, j − 1] +
Pt2[k]∈Cj

k insert(t2[k])
13 end
14 for i = 1 to m
15 for j = 1 to n
16 B′ ← null
17 Ci ← descendants(δ(T1, i))
18 Cj ← descendants(δ(T2, j))

19 D ←M [i− 1, j] +
Pt1[k]∈Ci

k delete(t1[k])+
20 delete(δ(T1, i))

21 I ← M [i, j − 1] +
Pt2[k]∈Cj

k insert(t2[k])+
22 insert(δ(T2, j))
23 S ←M [i− 1, j − 1]
24 N ←∞
25 if ident(T1[δ(T1, i)], T2[δ(T2, j)])
26 S ← S + 0
27 elsif t1[δ(T1, i)] = t2[δ(T2, j)]
28 N ← S + RTDM-TD(T1[δ(T1, i)],
29 T2[δ(T2, j)],B′)
30 else
31 S ← replace(t1[δ(T1, i)], t2[δ(T2, j)])
32 if δ(T1, i) is a leaf

33 S ← S +
Pt2[k]∈Cj

k insert(t2[k])
34 elsif δ(T2, j) is a leaf

35 S ← S +
Pt1[k]∈Ci

k delete(t1[k])
36 fi
37 fi
38 M [i, j]← min(D, I, S, N);
39 B[i, j].cost←M [i, j];
40 B[i, j].src← t1[δ(T1, i)];
41 B[i, j].next← B′;
42 if M [i, j] = D B[i, j].op← “delete”
43 elsif M [i, j] = I B[i, j].op← “insert”
44 elsif M [i, j] = S B[i, j].op← “update”
45 elsif M [i, j] = N B[i, j].op← “no op”
46 fi
47 end
48 end
49 return M [m, n]
50 end

Figure 3: The RTDM-TD Algorithm.

is amortized by the short-cuts in Lines 16, which we call
the bottom-up short-cut, or in Line 21, which we call the
top-down short-cut. Notice that this important feature is
inherited from the original RTDM algorithm.

After the execution of RTDM-TD, we execute the re-
trieveTemplate algorithm, described in Figure 4. This al-
gorithm receives as input the backtracking matrix B, re-
turned by the RTDM-TD, and returns the set of nodes that
compose a template. We begin by interacting from the last
cell of B, traversing in the matrix according to the opera-
tions found, until the first line or the first column is reached.
Every time we find an update operation with a B[i, j].cost
that has not changed, the node B[i, j].src is added to the
template set. The same is done when we find that no oper-
ation was performed. However, in this last case, we make a
recursive call to retrieve the template nodes that are children
of the current node B[i, j].src, using the pointer B[i, j].next
(Line 25).

The RTDM-TD algorithm and retrieveTemplate are used
as the basis of our template detection and removal method,
described in the next section.

1 retrieveTemplate(B)
2 begin
3 let m number of rows of B
4 let n number of columns of B
8 i← m
9 j ← n

10 while i > 0 and j > 0
12 if B[i, j].op = “delete”
13 j ← j − 1
14 elsif B[i, j].op = “insert”
15 i← i− 1
16 elsif (B[i, j].op = “update” and
18 B[i, j].cost = B[i− 1, j − 1].cost)
19 template← template ∪ {B[i, j].src}
20 template← template ∪ descendants(B[i, j].src)
21 i← i− 1
22 j ← j − 1
23 elsif B[i, j].op = “no op”
24 template← template ∪ {B[i, j].src}
25 retrieveTemplate(B[i, j].next)
26 i← i− 1
27 j ← j − 1
28 fi
29 end
30 return template
31 end

Figure 4: The retrieveTemplate Algorithm.

5. TEMPLATE DETECTION AND
REMOVAL

The motivation for the design of RTDM-TD came from
the observation that templates are just fragments of HTML
code included in an collection of HTML documents and they
are fairly regular on specific portions of a site. Templates
are usually automatically generated by programs and are
copied to multiple pages. In fact, two important reasons for
the widespread use of are to ensure uniformity and to speed
up development.

This means, in practice, that a template can be viewed
as a subtree that is common to the DOM trees of a a web
page collection. Thus, we reduce the problem of template
detection to the problem of finding a subtree common to a
set of given trees. This simple formulation works in practice
and extracts templates with high precision, as shown by our
experiments presented in Section 6.

In addition to its simplicity and precision, our method has
a unique feature that represents an improvement over previ-
ous methods presented in the literature. It takes advantage
of the inherent regularity of templates and is able to detect
them without having to examine a large number of pages.
This is also demonstrated by our experiments in Section 6.

To find the common subtree that represents the template
in a set of pages, we compare these pages using the mapping
algorithm presented in Section 3. This procedure is detailed
in the FindTemplate algorithm, shown in Figure 5.

Before discussing the FindTemplate algorithm, we first
discuss the ExtractSubTree algorithm, presented in Figure 6.

262

1 FindTemplate(W)
2 begin
3 let W be a set of pages from a given web site
4 Px ← RandomPick(W)
5 Py ← RandomPick(W)
6 S0 ← ExtractSubTree(Px, Py)
8 for i← 1 to MaxPages− 2
9 P ← RandomPick(W)

10 if Match(Si−1, P)
11 Si ← Si−1

12 else Si ← ExtractSubTree(Si−1, P)
13 fi
14 end
15 return Si

16 end

Figure 5: The FindTemplate Algorithm.

1 ExtractSubTree(Tx,Ty)
2 let Tx and Ty be trees
3 begin
4 RTDM-TD(Tx, Ty, B)
5 template nodes← retrieveTemplate(B)
6 S ← the smallest Tx subtree
7 that contains all nodes in template nodes
8 return S
9 end

Figure 6: The ExtractSubTree Algorithm.

It simply applies the RTDM-TD algorithm (Figure 3) to ob-
tain a mapping between two given trees Tx and Ty followed
by the application of retrieveTemplate (Figure 4) to obtain
the nodes that compose a template. The resulting common
subtree is the smallest one that contains all of these common
nodes.

FindTemplate algorithm begins by applying the Random-
Pick function to randomly select and remove two of the
pages from the input set of web pages W (Lines 4–5). Next,
the ExtractSubTree algorithm is used to extract a common
subtree between these pages. At each iteration of the algo-
rithm (Lines 8–14), a a subtree previously generated (Si−1)
is matched against a newly selected web page P from W .
If P does not contain Si−1, then a new subtree is extracted
(Line 12). Finally, the last subtree extracted is returned as
a result.

An important aspect related to the FindTemplate is the
number of iterations it requires in the loop of Lines 8–14 to
obtain the correct template. As discussed above, templates
are fairly regular and they are present in all of the pages.
However, as between any two randomly picked pages there
can be a common subtree larger than the template, we usu-
ally need more pages to converge to the correct template.
We represent the number of pages necessary to be examined
by MaxPages. In our experiments we have found that a
few dozen of pages are usually enough.

If we consider that all pages have an average of n nodes,
the ExtractSubTree has a complexity of O(n2). Then, if
MaxPages is equal to a constant M , FindTemplate has a
worst-case complexity of O(n2). Notice that, in practice, we
expect Match(Si−1,P) to have complexity O(n) for many
cases.

In contrast to previous approaches proposed in the litera-

ture, our method does not need to examine a large quantity
of pages to find the correct template. This is important for
applications in which not all pages are known in advance, for
instance, during a web crawling process or while processing
a stream of pages. Once a template has been detected, the
removal process from a given page consists in finding a sub-
tree in this page, what is obtained in linear time. We omit
the description of the procedure to remove the template due
to its simplicity.

6. EXPERIMENTAL RESULTS
This section presents experiments we have performed to

verify the effectiveness of our approach. First, to verify the
effective our method for the tasks of detecting and removing
templates, we manually extracted sets of terms from tem-
plates and compared them with the sets of terms present
in the templates automatically identified by our template
detection procedure. We then study the impact of our tem-
plate removal procedure when used conjunction with clus-
tering and classification methods, similar to the evaluation
done in [21]. The experiments and their results are presented
and discussed below.

6.1 Direct Experimental Evaluation
We selected 10 (real) web sites. For each site i, we manu-

ally identified the template by visually inspecting the pages.
We built a reference set Si containing the terms (words)
present in the template. Then, for each of these sites we
applied our method to automatically remove the template
and generated a corresponding set Ti of the terms present
in the detected template. Sets Si and Ti were then com-
pared using the well-known F-measure defined as: Fi =
2(Ri.Pi)/(Ri + Pi), where Ri = |Si ∩ Ti|/|Si| (Recall) and
Pi = |Si ∩ Ti|/|Ti| (Precision).

Five of the sites, CNET, J&R, PCConnection (PC) and
PCMagazine and ZDNET, are e-commerce sites used in the
experiments previously presented in [21]. The other five are
popular sites in distinct domains: CNN, E-Jazz, Encyclope-
dia Mythica, UBL (Ultimate Band List) and Wikipedia.

In Figure 7, we show F-measure values obtained by run-
ning our methods using a number of pages varying from 2
to 100, for each of the web sites considered.

We notice that for all but one site, E-Jazz, F-measure
values above 0.95 were achieved when the number of sample
pages is fewer than 25. Even for e-jazz, the F-measure value
with this number of pages is above 0.85. This indicates that
a suitable approximation of the template was found, since
the terms present in the templates were precisely identified.
Also, notice that the number of samples pages required for
this to happen is rather small.

Being able to identify the correct set of terms present in
the templates is important to neutralize the negative effects
caused by templates in web searching and web mining meth-
ods. In the next section we show experiments in which we
evaluate the impact of using our template detection tech-
nique as a preprocessing step in some of such methods.

6.2 Impact on Web Mining Problems
Below we evaluate the impact of our method on web min-

ing tasks. These experiments are the same as those reported
in [21], but with slightly distinct data sets. As in [21], we
have used several pages containing information on products
from five distinct categories: Notebook, Digital Camera, Mo-
bile Phone, Printer and TV. These pages were collected from

263

Figure 7: Direct evaluation of template removal based on terms.

five distinct commercial web sites: PCConnection (PC),
CNet, PCMag, J&R and ZDnet. In Table 1, we show the
number of pages collected in each category from each site.

Sites PC CNet J&R PCMag ZDNet
Notebook 600 497 74 150 218
Camera 169 227 216 143 132
Mobile 8 120 47 52 118
Printer 496 511 133 117 97

TV 278 451 161 103 141

Table 1: Number of pages in each class per web site.

There are two noteworthy distinctions between the data-
sets used in [21] and the ones we have used here. First, we
use pages from the PCConnection web site instead of the
pages from the Amazon web site used in [21]. We had to
do this because of difficulties experimented when crawling
this site, possibly due to some form of spider trap deployed
there. Second, even for the remaining sites, the pages we
collected have a format that is distinct from the ones used
in [21], since these design of the pages have passed through
many changes over the years.

Despite these distinctions, the pages in our datasets are
similar in contents and number of pages to those used in [21].
More importantly, the pages we use also present naviga-
tional information, advertisements, and other information
not directly related to the main topic of the pages. This in-
formation is located on automatically generated templates
and, as demonstrated by the results we present, is correctly
removed along with the templates detected by our method.

6.2.1 Impact on Clustering
To evaluate the impact of using our template detection

method on a clustering task, we use the K-means algorithm
to build clusters of pages of a same category of products
taking as input a set of pages composed by all pages we
have collected as explained above.

The experiments consisted of running our implementation
of K-means 800 times with randomly selected seeds. To
evaluate the clusters resulting from each run, we used the
F-measure, which corresponds the harmonic mean of the
precision and recall metrics. The computation of precision
and recall was accomplished by taking the five categories of
the pages as a reference.

Notice that we have applied the same experimental pro-
cedure adopted in [21] to our page set, which, as we have
already mentioned, has the same features as the page set
used in that paper.

Figure 8 shows the number of experimental runs that have
achieved an F-measure value that falls on one of the value
intervals [0.0, 0.1), [0.1, 0.2), . . . , [0.9, 1.0]. Each bar corre-
spond to the average F value of the 5 categories, before and
after the application of the template removal method. Sim-
ilar results were presented in [21].

The bars in Figure 8 clearly show the positive impact
caused by our method over the clustering task. For instance,
it can be observed that 40% of the clustering experiments
over the set of cleaned pages reached F-measure values that
were not achieved by any of the experiments over the set of
original (noisy) pages.

In Table 2 we offer a perspective of the impact caused by
our method on a clustering task in comparison with the im-
pact caused by the method proposed in [21]. In the first row,
we reproduce the data reported in that paper for F-measure

264

0

50

100

150

200

250

300

350

400

450

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

F-measure

#
o

f
e
x
p

e
ri

m
e
n

ts
Before cleaning After cleaning

Figure 8: Average results of the clustering tasks be-
fore and after template removal.

values obtained with the clustering experiments before and
after applying the cleaning method based on Site Style Tress
(SST). Based on these values, we calculated the percentage
gain in F-measure. Similarly, in the second row we show the
same figures obtained with our proposed method. We no-
tice that, in absolute values, the F-measure values reported
in [21] are superior, after and before cleaning, that the val-
ues obtained in our method. However, the percentage gains
are comparable, with a slight advantage to our method.

Method Original Pages (F) Cleaned Pages (F) Gain
SST 0,506 0,751 48,42%
TDR 0,306 0,482 57,52%

Table 2: Impact of different cleaning techniques for
clustering web pages.

We stress that the experimental procedure we use is the
same as in [21], but the sets of pages used in the two exper-
iments, although similar, are not the same. This explains
the difference in absolute F-measure values for the uncleaned
pages. For the same reason, it is not possible to claim that
our method is superior, considering the impact on cluster-
ing. We can, however, conclude that the two methods lead
to comparable impact in such a task.

6.2.2 Impact on Classification
The evaluation of impact our method over classification

also follows the experimental procedure proposed in [21].
Using a Näıve Bayes classifier [11], we experiment with three
different configurations for classification tasks using all pos-
sible pairs of product categories. The configurations are
summarized in Table 3. For each of them, we first train the
Naive Bayes classifier using a Training Set (TR) and then
run the classifier over the corresponding Test Set (TE).

Tables 4 and 5 present results of the classification experi-
ments for each configuration over all pairs of categories be-
fore and after cleaning, using F-measure and Accuracy re-
spectively. All results show a noticeable improvement on
the quality of the classification process.

Table 6 provides a comparison of the relative impact on
classification tasks caused by our method (TDR) and the
impact caused by the method proposed in [21] (SST). For
this comparison we computed the gain obtained in terms of
F-measure (F) and in terms of Accuracy (A). All figures in

Conf. Training Set (TR) Test Set (TE)
1 Pages from cate-

gories p and q from
site i

Pages from categories p
and q from all sites ex-
cept i

2 Pages from category
p from site i and
pages from category
q from site j �= i

Pages from categories p
and q from all sites ex-
cept i and j

3 Pages from category
p from site i and
pages from category
q from site j �= i

Pages from categories p
and q from all sites ex-
cept pages in the train-
ing Set

Table 3: Configuration of classification experiments

SST were calculated from F-measure and accuracy values
provided in [21]. Notice that the relative gain in Config-
urations 1 and 2 are slightly better in our method, while
in Configurations 3 the SST method reaches slightly bet-
ter gain levels. This leads us to conclude that the methods
cause a comparable impact on classification task, as they do
for clustering tasks.

Conf. 1 Conf. 2 Conf. 3
TDR SST TDR SST TDR SST

F 11,17% 6,84% 45,51% 26,80% 52,30% 58,36%
A 10,03% 6,33% 32,85% 23,00% 52,64% 41,02%

Table 6: Impact of different cleaning techniques for
web page classification.

The results in Tables 4, 5 and 6 were all obtained using 100
pages for detecting the template. However, similar results
are obtained when we use fewer pages for the detection. To
demonstrate this, we show in Figure 9 values of F-measure
for the classification process in all three configurations, con-
sidering that N = 10,20,30,40 and 50 pages were used for
detecting the template. The results with 100 are also shown
as a reference.

0.000

0.200

0.400

0.600

0.800

1.000

1.200

10 20 30 40 50 100

of pages

F
-m

e
a
s
u
re

Conf.1

Conf.2

Conf.3

Figure 9: Results of classification for all three con-
figurations after template removal. Templates were
detected using N = 10,20,30,40,50 and 100 pages.

We notice that the F-measure values are identical for all
values of N , thus the same gain values presented in Table 6
are also observed with all these values. This corroborates
our results in Section 6.1 and confirms that useful templates
can be obtained with only a small fraction of the pages.

265

Categories Conf. 1 Conf. 2 Conf. 3
p q Orig. Clean. Orig. Clean. Orig. Clean.

Notebook Camera 0.902 0.978 0.583 0.813 0.417 0.625
Notebook Mobile 0.762 0.845 0.347 0.615 0.251 0.462
Notebook Printer 0.902 0.989 0.574 0.776 0.419 0.599
Notebook TV 0.902 0.987 0.532 0.747 0.382 0.584
Camera Mobile 0.789 0.901 0.389 0.736 0.293 0.568
Camera Printer 0.866 0.961 0.636 0.818 0.477 0.643
Camera TV 0.911 0.975 0.579 0.816 0.427 0.623
Mobile Printer 0.822 0.875 0.581 0.759 0.439 0.573
Mobile TV 0.675 0.885 0.506 0.742 0.382 0.556
Printer TV 0.911 0.989 0.527 0.823 0.379 0.655

Average F 0.844 0.939 0.525 0.765 0.387 0.589

Table 4: F-measure classification results for each configuration over all pairs of categories before and after
cleaning.

Categories Conf. 1 Conf. 2 Conf. 3
p q Orig. Clean. Orig. Clean. Orig. Clean.

Notebook Camera 0.906 0.980 0.611 0.817 0.438 0.631
Notebook Mobile 0.795 0.860 0.409 0.636 0.288 0.488
Notebook Printer 0.903 0.989 0.621 0.788 0.452 0.612
Notebook TV 0.903 0.988 0.578 0.755 0.411 0.598
Camera Mobile 0.798 0.905 0.459 0.751 0.336 0.587
Camera Printer 0.880 0.962 0.703 0.836 0.531 0.668
Camera TV 0.913 0.975 0.625 0.823 0.462 0.632
Mobile Printer 0.842 0.889 0.679 0.782 0.530 0.613
Mobile TV 0.719 0.896 0.608 0.762 0.457 0.582
Printer TV 0.914 0.989 0.561 0.827 0.403 0.664
Average Accuracy 0.857 0.943 0.585 0.778 0.431 0.608

Table 5: Accuracy classification results for each configuration over all pairs of categories before and after
cleaning.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a new approach to the prob-

lem of detecting and removing templates from web pages. In
our approach, templates are detected by constructing map-
pings between the DOM trees of distinct pages and finding
subtrees that are common in these pages. We showed that,
not only can this mapping be computed efficiently using our
RTDM-TD algorithm, but also, high precision can be ob-
tained with a small number of samples. In addition, once a
template is detected, it can be removed from new web pages
by a simple (and inexpensive) procedure. Our experimental
results also show that our approach leads to substantial im-
provements in quality for both clustering and classification
tasks.

We notice that our approach can be extended to derive
multiple templates. Such an extension is planed as future
work.

Another interesting direction of future work we intend to
pursue is to apply our work to search engines. The simplic-
ity and efficiency of our approach make it especially suitable
for this task—few samples are needed for template detection
and a single pass over the Web pages is sufficient for tem-
plate removal.

Acknowledgments
This work is partially supported by projects GERINDO
(CNPq/CT-INFO 552.087/02-5), SIRIAA (CNPq/CT-Ama-
zônia 55.3126/2005-9), 5S-VQ (CNPq/CT-INFO 55.1013/

2005-2), and by individual grants from CNPq to Altigran S.
da Silva (303032/2004-9), Edleno S. de Moura (303576/2004-
9), João M. B. Cavalcanti (303738/2006-5) and by CAPES
to Karane Mariano. Juliana Freire is supported by the Na-
tional Science Foundation (grants IIS-0534628, OCE-0424602
,IIS-0534628, IIS-0513692, and CNS-0528201) and by a Uni-
versity of Utah Seed Grant.

8. REFERENCES
[1] Z. Bar-Yossef and S. Rajagopalan. Template detection

via data mining and its applications. In Proceedings of
the International Conference on the World Wide Web,
pages 580–591, 2002.

[2] K. Bharat, A. Z. Broder, J. Dean, and M. R.
Henzinger. A comparison of techniques to find
mirrored hosts on the WWW. Journal of the
American Society for Information Science,
51(12):1114–1122, 2000.

[3] S. Chakrabarti, B. Dom, P. Raghavan,
S. Rajagopalan, D. Gibson, and J. M. Kleinberg.
Automatic resource compilation by analyzing
hyperlink structure and associated text. Computer
Networks, 30(1-7):65–74, 1998.

[4] S. Chakrabarti, M. Joshi, and V. Tawde. Enhanced
topic distillation using text, markup tags, and
hyperlinks. In Proceedings the of ACM Conference on
Research and Development in Information Retrieval,
pages 208–216, 2001.

266

[5] S. S. Chawathe. Comparing hierarchical data in
external memory. In Proceedings of the Very Large
Data Bases Conference, pages 90–101, 1999.

[6] W. Chen. New algorithm for tree-to-tree correction
problem. Journal of Algorithms, 40:135–158, 2001.

[7] D. de Castro Reis, P. B. Golgher, A. S. da Silva, and
A. H. F. Laender. Automatic web news extraction
using tree edit distance. In Proceedings of the
International Conference on the World Wide Web,
pages 502–511, 2004.

[8] E. S. de Moura, C. F. dos Santos, D. R. Fernandes,
A. S. da Silva, P. Calado, and M. A. Nascimento.
Improving web search efficiency via a locality based
static pruning method. In Proceedings of the
International Conference on the World Wide Web,
pages 235–244, 2005.

[9] S. Debnath, P. Mitra, and C. L. Giles. Automatic
extraction of informative blocks from webpages. In
ACM Symposium on Applied Computing, pages
1722–1726, 2005.

[10] D. Gibson, K. Punera, and A. Tomkins. The volume
and evolution of web page templates. In Proceedings of
the international conference on the World Wide Web -
Poster Session, pages 830–839, 2005.

[11] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.

[12] J. Nielsen. User interface directions for the web.
Communications of the ACM, 42(1):65–72, 1999.

[13] A. Nierman and H. V. Jagadish. Evaluating structural
similarity in XML documents. In Proceedings of the
International Workshop on the Web and Databases,
June 2002.

[14] S. M. Selkow. The tree-to-tree editing problem.
Information Processing Letters, 6:184–186, 1977.

[15] A. Soffer, D. Carmel, D. Cohen, R. Fagin, E. Farchi,
M. Herscovici, and Y. S. Maarek. Static index pruning
for information retrieval systems. In Proceedings the of
ACM Conference on Research and Development in
Information Retrieval, pages 43–50, 2001.

[16] R. Song, H. Liu, J.-R. Wen, and W.-Y. Ma. Learning
block importance models for web pages. In
Proceedings of the International Conference on the
World Wide Web, pages 203–211, 2004.

[17] K.-C. Tai. The tree-to-tree correction problem.
J. ACM, 26(3):422–433, 1979.

[18] G. Valiente. An efficient bottom-up distance between
trees. In Proceedings of the International Symposium
on String Processing and Information Retrieval, pages
212–219. IEEE Computer Science Press, 2001.

[19] J. T. L. Wang and K. Zhang. Finding similar
consensus between trees: an algorithm and a distance
hierarchy. Pattern Recognition, 34:127–137, 2001.

[20] W. Yang. Identifying syntactic differences between
two programs. Software – Practice And Experience,
21(7):739–755, 1991.

[21] L. Yi, B. Liu, and X. Li. Eliminating noisy information
in web pages for data mining. In Proceedings of the
International ACM Conference on Knowledge
Discovery and Data Mining, pages 296–305, 2003.

[22] K. Zhang, R. Statman, and D. Shasha. On the editing
distance between unordered labeled trees. Information
Processing Letters, 42(3):133–139, 1992.

267

