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ABSTRACT

Quantitative analysis of early brain development through imaging
is critical for identifying pathological development, which may in
turn affect treatment procedures. We propose a framework for an-
alyzing spatiotemporal patterns of brain maturation by quantifying
intensity changes in longitudinal MR images. We use a measure
of divergence between a pair of intensity distributions to study the
changes that occur within specific regions, as well as between a pair
of anatomical regions, over time. The change within a specific region
is measured as the contrast between white matter and gray matter tis-
sue belonging to that region. The change between a pair of regions
is measured as the divergence between regional image appearances,
summed over all tissue classes. We use kernel regression to inte-
grate the temporal information across different subjects in a consis-
tent manner. We applied our method on multimodal MRI data with
T1-weighted (T1W) and T2-weighted (T2W) scans of each subject
at the approximate ages of 6 months, 12 months, and 24 months. The
results demonstrate that brain maturation begins at posterior regions
and that frontal regions develop later, which matches previously pub-
lished histological, qualitative and morphometric studies. Our multi-
modal analysis also confirms that T1W and T2W modalities capture
different properties of the maturation process, a phenomena referred
to as T2 time lag compared to T1. The proposed method has poten-
tial for analyzing regional growth patterns across different popula-
tions and for isolating specific critical maturation phases in different
MR modalities.

Index Terms— Early brain development, structural MRI, longi-
tudinal analysis, distribution statistics, MR contrast analysis

1. INTRODUCTION

The brain undergoes far more significant changes with respect to
shape, structure, size, and chemical composition between birth and
two years than at any other stage [1]. Quantifying these changes at
this critical stage of development is clinically relevant for analyzing
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normal and pathological development, and can provide information
about effective clinical intervention and management procedures.
The processes which take place during the early development of the
brain, such as premyelination, myelination, axonal pruning, and wa-
ter compartmentalization, are highly region-specific [2]. Growth and
maturation of different cortical regions are therefore known to be
heterogeneous [1, 3]. Myelination is the creation of a lipid myelin
bilayer around neuronal axons which alters the properties of water in
brain tissue. This process in turn leads to changes in the longitudinal
and transverse relaxation times which are measured in T1-weighted
(T1W) and T2-weighted (T2W) MR images respectively. The pro-
gression of myelination from posterior regions of the brain, such as
the parietal and occipital lobes, to anterior regions, such as the tem-
poral and frontal lobes, has been studied by visual inspection of MRI
[1] and with the use of specialized MR sequences [2]. Fig. 1 shows
spatially registered,longitudinal MR scans of an infant with changes
due to myelination, cortical folding, and variations in biophysical
properties, along with the parcellation atlas used to extract each lo-
bar region.

Quantitative studies of longitudinal MR images have demon-
strated change of emorphometric properties such as volumes of brain
tissues and cortical thickness [3, 4]. However, only a few quantita-
tive studies have analyzed the temporal variations seen in the sig-
nal intensity of MRI [5, 6, 7]. In a recent study, Serag et al. [5]
performed a kernel regression based cross-sectional analysis on MR
images of premature infants to track spatiotemporal changes in MR
intensity. Sadeghi et al. [6] used the Gompertz function to model
time varying intensities and characterize white matter maturation.
Aljabar et al. [7] focused on modeling both shape as well as appear-
ance but did not quantify temporal changes in regional contrast and
inter-region variations in appearance.

Similar to [5], we seek to characterize the trajectory of brain
growth and maturation by quantifying changes in the intensity and
contrast of Magnetic Resonance (MR) images. We propose a frame-
work to measure differences between intensity distributions across
brain regions, ages and modalities using divergence measures. Tem-
poral analysis of these differences is performed through the use of
kernel regression to obtain consistent spatiotemporal measures of
growth over time. Our new method is applied to image data taken
from longitudinal structural MR imaging study of infants from age 6
months to 2 years for analysis of temporal changes in the occipital,
temporal, frontal, and parietal lobes.

2. METHOD

We use a subset of the longitudinal dataset from the Infant Brain
Imaging Study of the University of North Carolina Autism Cen-
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ter for Excellence (ACE-IBIS) project. The dataset used consists
of scans of 10 subjects with three repeated scans acquired at 6-9
months, 12-15 months, and 24-28 months of age. Each scan consists
of T1W and T2W structural modalities, which results in a total of 60
images used in our analysis.

In order to analyze properties of the intensity distributions, we
standardize each image to a common reference space, hence remov-
ing shape and size differences. This is done using a localized, free
form deformation method based on B-splines, which uses normal-
ized mutual information as the metric for image matching [8]. This
is followed by applying an image segmentation method that uses the
segmentation map of a 2 year old as a prior for segmenting the 6
month and 12 month old MR scans [9]. Images are preprocessed for
bias inhomogeneity by using the N3 algorithm [10], which adopts
a nonparametric approach to estimate true tissue intensity values in
the presence of a multiplicative bias field. We remove variations
in the intensity ranges of images by performing intensity normal-
ization on the entire dataset. The intensity values of each image
are normalized using a multiplicative factor which was obtained by
computing the median value of manually segmented regions of fatty
tissue and ventricular cerebrospinal fluid (CSF), in the T1W and
T2W scans respectively. Fig. 1 shows the spatially registered and
intensity-normalized longitudinal MR scans of one infant, clearly
demonstrating the changes due to myelination and variations in bio-
physical properties, along with the parcellation atlas used to extract
each lobar region.

Fig. 1. T1W (top) and T2W (bottom) MR images scanned at age
6, 12, and 24 months (from left to right). Lobar regions are shown
as a color image on the right (Occipital = cyan, Temporal = brown,
Frontal = yellow, Parietal = orange).

2.1. Distance Metric between Intensity Distributions

We use the Hellinger distance (HD) as the basis of our measure-
ments. The Hellinger distance is a divergence measure between two
probability distributions that is derived from the Bhattacharyya co-
efficient (BC). It satisfies the properties of a metric and is hence
applied instead of measures such as the Kullback-Leibler divergence
or the Bhattacharyya distance. It has been successfully used in sev-
eral statistical applications and does not require the underlying dis-
tribution to be in a specific form. Given two probability distributions
m(x) and n(x), the Bhattacharyya coefficient between them is de-
fined as an integral over the range of x , given by : BC(m,n) =∫ √

m(x)n(x)dx. This gives rise to the Hellinger distance between
m and n, defined according to [11] as :

HD(m,n) =
√

2 (1−BC(m,n)) (1)

Following this definition, it can be seen that the Hellinger distance is
bounded as HD ∈

(
0,
√
2
)
. For a particular modality, each subject

s is imaged at 3 discrete time points {ts,1, ts,2, ts,3}, giving rise to

Figure 2. Overview of the
distances between distribu-
tions used in our analysis,
Class1 and Class 2 are given
by the red curve and green
curve respectively. Dis-
tances are shown within a
region between two classes
(light blue band), and be-
tween a pair of regions (or-
ange band).

a tuple of probability distribution functions given by :

PRi,s,c =
(
P

ts,1
Ri,s,c

, P
ts,2
Ri,s,c

, P
ts,3
Ri,s,c

)
(2)

for a region of interest Ri ∈ {Occipital, T emporal, Frontal,
Parietal} and tissue class c ∈ {white−matter, gray−matter}.
Thus, the Hellinger distance at a time point ts,k, between a pair of
intensity distributions is written as

HDts,k

(
P

ts,k
Ri,s,ca

, P
ts,k
Rj ,s,cb

)
. (3)

A conceptual overview of two cases involving this distance is given
in Fig. 2. They are outlined as :

1. Ri = Rj = R and ca 6= cb, where the distance gives us the
contrast between classes ca, cb in a region R at a time point
ts,k, measured as,

HDts,k

(
P

ts,k
R,s,ca

, P
ts,k
R,s,cb

)
. (4)

2. Ri 6= Rj and ca = cb = c, where the distance gives us the
regional differences of a class c between the regions Ri, Rj

at a time point ts,k measured as

HDts,k

(
P

ts,k
Ri,s,c

, P
ts,k
Rj ,s,c

)
. (5)

2.2. Longitudinal Analysis of Distances

As we are analyzing longitudinal data, we are interested in deter-
mining how these distances vary as a function of time. We perform
kernel regression on the distances between distributions to measure
these variations. At time t, the distance between classes ca and cb
across all subjects is measured as

DR,ca,cb(t) =

∫
s

∑
ts,k

K(t, ts,k)HDts,k

(
P

ts,k
R,s,ca

, P
ts,k
R,s,cb

)
∑

ts,k
K(t, ts,k)

ds

(6)
Similarly, at time t, the distance between regions Ri and Rj across
all subjects is measured as

DRi,Rj (t) =

∫
s

∑
ts,k

K(t, ts,k)
∑

cHDts,k (P
ts,k
Ri,s,c

, P
ts,k
Rj ,s,c

)∑
ts,k

K(t, ts,k)
ds

(7)
where ts,k denotes the observed time points of scans specific to the
subject s, andK(·, ·) denotes a kernel function which is chosen to be
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Figure 4.
Distance
function
DR,ca,cb (t)
measuring
contrast for
lobes: Occip-
ital (cyan),
Temporal
(brown),
Frontal (yel-
low), Parietal
(orange).

a Gaussian kernel in all our subsequent analysis. Different modali-
ties (T1W and T2W) display varying trajectories of contrast change,
since they capture different biophysical properties involved in brain
development. To quantify the differences in time taken for each
modality to reach adult-like image contrast, we define τ as the ear-
liest time taken to reach 90 percentage of the maximum contrast, a
monotonically increasing function which reaches a maximum value
at 24 months or time tmax. More specifically,

τ = min
t
DR,ca,cb(t) ≥ 0.9 DR,ca,cb(tmax) (8)

3. RESULTS

We perform analysis of the different lobes in the left and right hemi-
spheres separately to preserve possible asymmetry in growth pat-
terns. The changes in the intensity distributions of one subject are
shown in Fig. 3. As seen in the figure, contrast between white and
gray matter tends to increase with time while the distances between
distributions at different lobes tend to stabilize. T1W and T2W
modalities also show dissimilar progression of changes.

Changing contrast (Eq. 6) at each lobe is illustrated in Fig. 4.
Contrast is measured between white matter and gray matter, as their
variations are of major concern compared to those of other structures
such as cerebrospinal fluid. The overall trend is for the contrast to
increase over time, though the progression differs for T1W and T2W
at the left and right hemispheres. This increase is also non-uniform,
with the greatest changes occurring between 6 and 12 months, par-
ticularly in T1W images while T2W images continue to undergo
significant change up to 2 years of age. Unlike T1W images, T2W
images show little contrast at 6 months.

We show the difference between pairs of regions (Eq. 7) in
Fig. 5. At 6 months, the distance between occipital and all other
lobes is the largest since at this stage it has undergone myelination
while the other lobes have not. The distance between parietal and
frontal lobes in T1W images is small at 24 months which confirms
previous studies stating that these regions are highly similar at this
age. The distances between regions in T2W images follows two
patterns: decreasing or increasing with time. The increasing pat-
tern occurs most clearly in the comparisons between occipital and
other lobes, where we observe significant increase after 12 months,
related to the early development of the occipital lobe. The differ-
ence of growth patterns between T1W and T2W is likely caused by
the fact that the first phase of growth is not captured by the T2W
modality at 6 months which results in low T2W contrast [1], and the
distance increases at 12 months during the second growth cycle.

Occipital Temporal Frontal Parietal
T1 T2 T1 T2 T1 T2 T1 T2

11.3 17.1 11.3 19.5 11.3 18.9 11.3 15.5
11.1 18.3 11.3 18.5 11.7 18.9 9.9 16.7
15.5 19.1 13.3 19.5 17.1 19.5 13.7 19.3
6.1 18.9 9.1 19.3 12.3 18.9 6.1 18.7
6.1 16.9 11.5 19.5 11.7 19.5 10.7 19.3
10.3 19.5 13.3 19.9 14.5 19.9 12.5 19.5
12.3 17.5 12.3 19.9 15.9 19.7 12.5 19.3
6.1 20.7 7.9 21.1 12.3 21.1 9.1 20.7
11.1 16.3 10.9 17.3 11.7 18.9 10.9 14.7
6.1 18.7 9.1 19.5 11.1 19.5 8.7 19.5

Table 1. τ of 10 subjects for right hemisphere T1W, T2W scans.

We list the values of τ in Table. 1, that quantifies the different
progressions of the image contrast changes for T1W and T2W in
the right hemisphere. The τ values for T1W are consistently lower
than the ones for T2W across all regions showing that image contrast
develops later for T2W modalities. The measured values of τ show
a similar trend in the left hemisphere, thereby indicating that these
modalities capture different characteristics of the growth process.

4. CONCLUSIONS

We have presented a framework for comparing growth patterns by
measuring distances between brain tissue intensity distributions on
intensity-normalized image data. We have defined a distance be-
tween spatial regions, and a distance that measures image contrast
of different tissue categories within one region. Longitudinal analy-
sis of these distance values via kernel regression yields observations
that conform with results from previous imaging studies [1, 2].

The results demonstrate that brain maturation begins at poste-
rior regions while frontal regions develop later, as previously estab-
lished in both qualitative and morphometric studies. Our multimodal
analysis also shows that T1W and T2W modalities capture different
properties of the maturation process, where the T2 changes seem
to lag behind the more rapid T1 changes. Further, the proposed
method has potential for isolating specific critical phases of mat-
uration, which might better explain a correlation between imaging
findings and cognitive assessments.

In the future, we will explore alternatives to kernel regression
which are more suited to longitudinal data to avoid the staircasing ar-
tifacts. Whereas this feasibility study was using a random selection
of subjects from an ongoing autism study, we will focus on a statis-
tical analysis of differences in growth trajectories between healthy
subjects and those at risk for autism. We will consider application
to other longitidinal infant studies to determine differences between
healthy populations and subjects with mental illness or neurologi-
cal disorders, and to detect longitudinal trajectories of pathological
patterns associated with cognitive and behavioral differences.
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Fig. 3. T1W and T2W intensity distributions for a chosen subject in the major lobes of the right hemisphere. The WM, GM, and CSF
distributions are represented by red, blue, and black curves respectively. The area under each curve is normalized to unity.
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Fig. 5. Distance between regions of the left and right hemispheres across time, for T1W (red) and T2W (blue) modalities. For each figure,
the vertical axis represents distance summed over all subject,the horizontal axis gives age in months.
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