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ABSTRACT
To better understand the central nervous system, neurobiolo-
gists need to reconstruct the underlying neural circuitry from
electron microscopy images. One of the necessary tasks is to
segment the individual neurons. For this purpose, we propose
a supervised learning approach to detect the cell membranes.
The classifier was trained using AdaBoost, on local and con-
text features. The features were selected to highlight the line
characteristics of cell membranes. It is shown that using fea-
tures from context positions allows for more information to be
utilized in the classification. Together with the nonlinear dis-
crimination ability of the AdaBoost classifier, this results in
clearly noticeable improvements over previously used meth-
ods.

Index Terms— Serial-section TEM, cell membrane de-
tection, AdaBoost, Segmentation, Machine Learning.

1. INTRODUCTION

Neuroscientists are currently developing new imaging tech-
niques to better understand the complex structure of the cen-
tral nervous system. In particular, researchers are making ef-
forts to map the connectivity of large volumes of individual
neurons in order to understand how signals are communicated
across processes. The most extensive study undertaken thus
far uses electron microscopy to create detailed diagrams of
neuronal structure [1] and connectivity [2, 3]. The most well
known example of neural circuit reconstruction is of the 302
neurons in the C. elegans worm. Even though this is one of
the simplest organisms with a nervous system, the manual re-
construction process took ten years. Human interpretation of
data over large volumes of neural anatomy is so labor inten-
sive that very little ground truth exists. For this reason, im-
age processing and machine learning algorithms are needed
to automate the process and allow analysis of large datasets
by neural circuit reconstruction.

Serial-section transmission electron microscopy (TEM)
is the preferred data acquisition technology for capturing
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images of large sections of neuronal tissue. Images from
TEM span a wide field of view, capturing processes that
may wander through a specimen and have an in-plane resolu-
tion useful for identifying cellular features such as synapses.
These structures are critical in understanding neuron activity
and function. Images from serial-section TEM are captured
by cutting a section from the specimen and suspending it
over an electron beam which passes through the section cre-
ating a projection which is captured as a digital image. See
figure 2(a) for an example serial-section TEM image corre-
sponding to a cross-section of the nematode C. elegans with
a resolution of 6nm×6nm×33nm.

An accurate mapping of neuron features begins with the
segmentation of the neuron boundaries. Jurrus et al. [4] uses
these boundaries to extract the three dimensional connectiv-
ity present in similar image volumes. In their method, a con-
trast enhancing filter followed by a directional diffusion filter
is applied to the raw images to enhance and connect cellular
membranes. The images are then thresholded and neuron cell
bodies are identified using a watershed segmentation method.
This method fails when membranes are weak or there are too
many intracellular features. This indicates that more adap-
tive algorithms need to be developed to segment these struc-
tures. For this reason, machine learning algorithms have been
shown as a successful alternative for identifying membranes
in TEM data. In related work, Jain et al. [5] uses a multilayer
convolution neural network to classify pixels as membrane
and non-membrane. However, the stain used on the specimen
highlights cell boundaries, attenuating intracellular structures,
simplifying the segmentation task. Another successful appli-
cation of learning applied to TEM is the use of a perceptron
trained with a set of predefined image features [6]. However,
extensive post processing is required to close the detected cell
membranes and remove internal cellular structures.

The method described in this paper improves upon previ-
ous work by utilizing context information for classification.
By including the features of neighboring pixels as inputs to
the classifier, the classifier can utilize the context to deal with
membrane disconnectivities. The features were designed to
improve the classification accuracy of elongated structures,
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Fig. 1. Diagram of the proposed method.
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Fig. 2. Example serial-section TEM images: (a) original and
(b) CLAHE enhanced.

like the membranes. The non-linear decision boundary is
learnt by a classifier trained under the Adaboost framework.
The following sections gives the overview of the entire pro-
cess, followed by the details on the image enhancement,
learning procedures and finally a discussion of the results on
an C. elegans dataset.

2. METHODS

We now describe in detail the proposed method. Figure 1
provides an overview of the fundamental steps.

2.1. Image Enhancement

Before feature extraction, contrast limited adaptive histogram
equalization (CLAHE) [7] is applied to the raw electron mi-
croscopy images. This improves the contrast of the mem-
branes, fixes local variations in contrast and overall bright-
ness variability between images [4]. The decrease in variabil-
ity greatly helps the classifier since it reduces the difference
between training and testing images. An example of such
CLAHE enhancement is shown in figure 2(b).

2.2. Features

Four features were computed for each pixel in the image: the
pixel intensity, and eigenvalues and orientation of the first
eigenvector of the Gaussian smoothed Hessian matrix. The
gray value of the pixel is utilized since membranes are usu-
ally dark and therefore is useful for segmentation, as verified

Fig. 3. Stencil neighborhood.

in previous works [4, 5, 6]. The other three features are prop-
erties derived from the Gaussian smoothed Hessian matrix,
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]
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where I is the (CLAHE enhanced) image, and Gσ is the
Gaussian blurring kernel with standard deviation σ. The Hes-
sian matrix was used in the context of filtering [8] and seg-
menting [6] electron microscopy images. Since membranes
are elongated structures the eigenvalues of the smoothened
Hessian matrix represent the anisotropic nature of the region
around the pixel. The eigenvalue of the principal eigenvector
of the Hessian is proportional to the gradient orthogonal to
the membrane and the smaller eigenvalue is proportional to
the gradient along the cell membrane. The fourth feature is
the orientation of the principal eigenvector at that point. The
inclusion of the this feature gains significance during learning
of the classifier because the neighboring pixels features are
also considered.

The feature vector for every pixel in the image consists
of the concatenated feature values of that pixel and its neigh-
bors. The neighborhood is defined by a star shaped stencil
with its 8 arms forking out every 45 degrees (figure 3). This
neighborhood has the ability to sample a larger context area
around the pixel than choosing a complete sample of the local
area for the same number of features. We show in the results
section that the neighboring pixel features adds relevant in-
formation for the classification. The context helps to identify
membranes at regions were there are minor discontinuities, as
it allows for the classifier to utilize the context information to
“interpolate” the cell membrane. In this regard, the orienta-
tion feature plays an important role by imposing a smoothness
constraint on the curvature of the membrane.

2.3. Classifier

We propose to utilize a classifier trained with AdaBoost [9]
since such a classifier can model a nonlinear decision bound-
ary. AdaBoost is a meta-algorithm that builds the classifier
from “weak” classifiers, such as a decision stump. At each
round, AdaBoost adds a weak classifier to the set of weak
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Fig. 4. Semilog plot of number of boosting rounds versus the
area under the ROC curve for that boosting round.

classifiers by training for best classification performance ac-
cording to samples weights. The sample weights are varied
depending on the classification result of the previous round,
by increasing the weights of incorrectly classified samples
and decreasing the weights of correctly classified samples.
The final classifier is a weighted sum of the weak classifiers
according to their accuracy in the training rounds. It has been
observed in previous experiments that the obtained classifiers
generally do not overfit to training data [10].

In this paper, decision stumps are used for the weak classi-
fier. Decision stumps are the simplest form of binary decision
trees with just one decision node. The decision stump makes
the classification decision based on just the value of a par-
ticular feature with respect to a threshold. Given the feature
set, desired classification and prior of the samples, the thresh-
old for a particular feature can be chosen based on the proba-
bility distribution functions of membrane and non-membrane
classes over the feature values without making any underlying
assumption about the distribution of the feature. This gives
the stump of best accuracy compared to the ones built using
other metrics like information gain. The AdaBoost mecha-
nism along with the decision stump classifier acts as a feature
selection mechanism [10].

3. RESULTS

The proposed method for cell membrane detection was tested
on a C. elegans dataset. The entire volume is made of 149
slices of 662×697 grayscale images. Out of this stack, 5 im-
age slices where chosen at random from the first 50 slices and
the accuracy of the method was assessed using 5-fold cross-
validation. In each case, the training was done using four
of the five images and tested on the image that was left out
of training. The ratio of membrane/non-membrane pixels is
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Fig. 5. ROC curves of the classifiers trained with AdaBoost
at boosting round 3000 and, for comparison, the ROC for the
method by Jurrus et al. [4] is also shown.

unbalanced in the order of 1:10 and thus affect the perfor-
mance of the classifier. The classifier trained with a balanced
dataset (1:1 ratio) had the best accuracy compared to clas-
sifiers trained with various ratios of positive (membrane) and
negative (non-membrane) samples, with results shown for this
case. The negative samples were chosen at random.

The feature vectors were generated as described in sec-
tion 2.2, with a 7 × 7 neighborhood and Gaussian standard
deviation σ = 5. At any location, these parameters yielded
100 features (25 points in the neighborhood × 4 features for
every pixel). Initially, the decision stumps were boosted for
10000 rounds and the area under the ROC (averaged over the
5 folds) computed after each round. We can observe from
figure 4 that the area under the ROC curve flattens out after
around 3000 rounds of boosting. The corresponding ROCs
are shown in figure 5, and the test images results in Figure 6.

Figure 5 clearly shows that the use of neighborhood
context combined with proposed feature set yields signifi-
cantly better results than thresholding of the diffusion filter
image [4]. Moreover, comparing with the results without
context information underlines the importance of using the
neighborhood for membrane detection.

4. CONCLUSION

The proposed method utilizes neighborhood context informa-
tion to improve the accuracy of membrane detection. Along
with the nonlinear discrimination ability of the AdaBoost
classifier and the Hessian feature set, this results in improved
membrane detection compared to previous methods. Thus
one can expect a more robust segmentation of the individ-
ual neurons. However, the classifier fails to discern certain
structures and textures from membranes, which may result in
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Fig. 6. Membrane detection results on the test images of the
5-fold cross-validation: original images (left), and detected
membranes (right).

over-segmentation of individual neurons. Utilizing additional
features that discriminate these regions from membranes may
prevent these false positives. Moreover, recent work sug-
gests that cascading the classifier predictions as an additional
feature set onto another classifier may help connecting up
discontinuities in membranes and thereby avoid underseg-
mentation [11]. Further, considerable post-processing may
still be performed after applying the proposed pixel classifi-
cation to delineate the cells. Future work would address these
problems in membrane detection to improve the segmentation
accuracy of the individual neurons.
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