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Point Set Registration Using Havrda—Charvat—T'sallis
Entropy Measures

Nicholas J. Tustison*, Suyash P. Awate, Gang Song, Tessa S. Cook, and James C. Gee

Abstract—We introduce a labeled point set registration algo-
rithm based on a family of novel information-theoretic measures
derived as a generalization of the well-known Shannon entropy.
This generalization, known as the Havrda—Charvat-Tsallis en-
tropy, permits a fine-tuning between solution types of varying
degrees of robustness of the divergence measure between multiple
point sets. A variant of the traditional free-form deformation
approach, known as directly manipulated free-form deformation, is
used to model the transformation of the registration solution. We
provide an overview of its open source implementation based on
the Insight Toolkit of the National Institutes of Health. Charac-
terization of the proposed framework includes comparison with
other state of the art kernel-based methods and demonstration of
its utility for lung registration via labeled point set representation
of lung anatomy.

Index Terms—Directly manipulated free-form deformation,
Jensen—-Havrda—Charvat-Tsallis, lung registration, manifold
Parzen windowing, point set registration.

1. INTRODUCTION

OINT set registration is an important element in many

medical image analysis solutions which aim to establish
geometric correspondences between structures represented as
point sets. Early seminal research in point set matching includes
the iterative closest point (ICP) algorithm of Besl and McKay
[1]. Nearest neighbors are matched between fixed and moving
point sets. The optimal transformation parameters are subse-
quently generated from the matching process which are then
used to warp the moving point set. This iterative procedure cy-
cles until convergence. Subsequent extension proposals sought
to improve various aspects of the algorithm from tailored opti-
mization strategies [2] to varying the geometric entities of in-
terest [3]. A formal classification of such improvements is pro-
vided in [2]. Rangarajan et al. formulate a related algorithm
known as “softassign” which relaxes the exact correspondence
problem [4]. Extensions to this work include that of [5] and [6].
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Other foundational research in point set registration encom-
passes the exact landmark matching methodology of Bookstein
[7] who used thin-plate splines to define the spatial trans-
formation between corresponding sets of landmarks. Rohr et
al. continued this development in designing approximating
thin-plate splines [8] which relax the exact correspondence
constraint. Joshi and Miller introduced the landmark matching
problem to a transformation space defined by diffeomorphisms
for large, topologically consistent deformations [9].

More recent work has drawn upon the rich information-theo-
retic research literature for inspiration of new metrics for point
set correspondence. Tsin and Kanade use a kernel density esti-
mation scheme for approximating a smoothed probability den-
sity function (PDF) from a point set [10]. Correspondence with
other similarly constructed PDFs are assessed utilizing correla-
tion. Independently formulated yet employing a similar strategy,
Singh et al., dub their correspondence measure kernel density
correlation [11].

In order to mitigate the effects of outlier and noise over pre-
vious approaches, Jian and Vemuri formulate an L» distance be-
tween two PDFs generated from distinct point sets using non-
parametric density estimation with Gaussian kernels [12]. As
an interesting theoretical contribution, they elicit the connection
between their L5 distance and ML-based estimation not only for
a pair of PDFs but for multiple PDFs as well. Such investigation
draws interesting relationships to an actual distance metric. An
L distance is also used by Guo et al. who match point sets in
the space of diffeomorphisms [13].

Wang et al. generalize the Kullback-Leibler (KL) divergence
measure to the Jensen-Shannon (JS) divergence measure for
point set registration [14]. They couple the JS divergence for
point sets with a thin-plate transformation model for the con-
struction of unbiased atlases. Not only does this generalization
accommodate the unbiased registration of multiple point sets
but several interesting properties of the Jensen-Shannon mea-
sure make it viable for paired point set registration. Recent ex-
tension of their work includes a generalization of the JS diver-
gence measure [15]. This so-called Generalized L2-divergence
is also used to construct unbiased shape templates.

Also related to our research is the work of Basu et al. who
propose a class of estimators between pairs of PDFs, known
as the density power divergence (DPD), which is characterized
by a single, tunable parameter, ¢ € [0,1] [16]. The authors
demonstrate that at the lower extreme, i.e., ¢ = 0, the DPD
reduces to the KL divergence whereas at the upper extreme, i.e.,
¢ = 1, the DPD is equivalent to the Ls measure between the two
PDFs thus allowing a control mechanism for tuning between
these two types of solutions. Further discussion is provided in
[17].
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In this paper we detail the following contributions. 1) We
propose a novel point set similarity measure based on the
Havrda—Charvat-Tsallis entropy which has a tuneable param-
eter for controlling the type of solution obtained (Section II).
2) Manifold Parzen windowing is used for assessing the local
point set structure (Section II-C). 3) Source code, including
testing and documentation, is provided as open source based
on the Insight Toolkit (Section IV). 4) We also perform an
extensive performance evaluation including comparison with
previous kernel-based methods (Section V). We point out
that preliminary work was discussed in [18] which has been
significantly revised and expanded in this work including the
extensive evaluation section.

II. JENSEN—HAVRDA—CHARVAT-TSALLIS
DIVERGENCE MEASURE

A. Overview

For a random variable X : Q — RP, on sample space ©,
taking N values z € RP and with PDF P(X), the well-known
Shannon entropy is defined as follows [19]:

HP(X))= - /w) P(z)logP(x)dx

1
Ny > logP(x) (1)

z~P(X)

where © ~ P(X) denotes that x is randomly drawn from
the PDF P(X)—a step directly justified by the weak law of
large numbers [20]. An extension of the Shannon entropy, the
Havrda—Charvat-Tsallis (HCT) entropy, was introduced in [21]
and further developed in [22], [23]. It is parameterized by a
variable, oo > 0, such that the HCT entropy [19] is defined to be

1P = o | [ P -1
1 1 a—1
~ v S P@t-1]. @

z~P(X)

Itis well known that H,,(+) reduces to the conventional Shannon
entropy as « — 1 [19], [23].

Similar to the Jensen—Shannon (JS) divergence, given the
HCT entropy, one can define a generalized mutual information
measure for a set of random variables. This measure is known
as the Jensen—Havrda—Charvat-Tsallis (JHCT) divergence [19]
and is calculated from K PDFs as follows:

JHCTo(P1(X1), .., Pr(Xk), 715+, 7K)

= H, <Z%Pk(Xk)) =Y wHa (Pr(X2) G

k=1

where the set of v, can be construed as prior weights on the
point sets. The values of these weights are constrained such that
Yk Z 0 and 25:1 Ye = 1.

Segmentation protocols often yield multiple objects with
each object corresponding to a unique label. Assuming a point
set surface representation of those labeled objects, we denote
the point subset of X, corresponding to label [ as X3 ; and,
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similarly, the corresponding PDF as Pj ;(X} ;). For inclusion
of multi-label information (assuming L labels), we define
the energy function to be minimized as the sum of the JHCT
entropies for the L sets of K PDFs written as follows:

JHCTo(Pyy..n(X11.2),-- - Pra1..o(Xk1..2),7)

— Z (H(, (Z ’YkPk,l(Xk,l))

k=1

K
-3 kaa(Pk,l(Xk,l))> : “)

k=1

B. Properties of the JHCT, Divergence

Several salient properties are associated with the HCT gen-
eralized entropy. Burbea and Rao demonstrate that the JHCT,,
divergence is convex if and only if o € [1,2] [19]. Addition-
ally, the mutual information defined via the JS or JHCT,, diver-
gences is not a distance metric due to their failure to satisfy the
triangular inequality [19]. Nevertheless, extending that which is
demonstrated in [24] with respect to the JS divergence, Majtey
et al. show that the square root of the JHCT,,, a € [1,2] is in-
deed a distance metric [25]. For a similarity measure, this is a
desirable property that allows one to treat the measure with the
usual intuitive notions of distance in Euclidean space.

Of equal importance is the « tuning parameter which charac-
terizes the HCT entropy. By varying the « value between [1, 2]
one can ’tune’ the solution type between the ML estimate (a la
[10]) at « = 1 for a more sensitive measurement and the more
noise robust Lo estimate (@ la [12]) at « = 2. Sections IITI-VI
are meant to illustrate this spectrum of solutions by providing
several experimental evaluations where this feature is explored
using our point set registration method in comparison with the
algorithms of [12] and [10]. A good discussion of related topics
is provided in [17].

C. Manifold Parzen Windowing for Geometrically-Based
Density Estimation

The calculation of the JHCT divergence requires the transfor-
mation of each point set to its corresponding PDF. Each point set
is represented as a PDF via a Gaussian mixture model (GMM).
Assuming K point sets denoted by { X,k € {1,...,K}},
the kth point set is comprised of /Vy, points and is denoted by
{«},... % }. The kth PDF is calculated from the kth point
set as

Ny,

1
P(s) = MZG(s;xﬁ,Cf) )
i=1

where G (s; z¥, CF) is a Gaussian with mean z¥ and covariance
CF evaluated at s.

Whereas previous work used isotropic Gaussians [14], we
use the local point set neighborhood to estimate an appropriate
covariance matrix where the local structure of the point set is
reflected in the anisotropy of that covariance using a technique
called manifold Parzen windowing [26]. As described earlier,
the point sets discussed in this work refer to point set surface
representations derived, for example, from a segmentation
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protocol. A traditional Parzen window representation of the
manifold utilizes spherical Gaussians where the density of each
Gaussian is isotropic in space regardless of the configuration
of the manifold at that point. In contrast, the manifold Parzen
windowing approach allows us to model the surface in a more
accurate way by using a training set of surface points in the
vicinity of an individual point. These training points are used
to formulate the corresponding Gaussian density such that
is oriented along the manifold which is a better reflection of
the underlying structure. Further discussion in the context
of classification is provided in [26] although the results and
illustrations are equally applicable to this work.

For each point, x;, the associated weighted covariance matrix,
Ck,, is given by

K(zi; aj)(w; — 25)" (5 — x5)
Cv — z;EN;,xj#;
o > K(wiiz)
.T/je./\/'“:r/j;ém,

(6)

where N is the local neighborhood of the point z; and K is
a user-selected neighborhood weighting kernel. We use an
isotropic Gaussian for K with variance 0,2C7 as well as a k-d tree
structure for efficient determination of A [27].

Calculation of the gradient requires the inverse of each co-
variance matrix. Determination of C, from (6) could poten-
tially result in an ill-conditioned matrix problematizing the cal-
culation of the gradient. For this reason, we use the modified
covariance [26]

C; = Cx, + 021 ©)
where [ is the identity matrix and o, is a parameter denoting
added isotropic Gaussian noise. This particular aspect of our
point set matching formulation will be explained in a later sec-
tion as it is incorporated into a deterministic annealing strategy
during optimization.

D. Calculation of the JHC'T,, Divergence Measure and
Gradient

Subsequent to calculation of the covariances, sample sets are
generated for calculation of both the JHCT, measure and its
gradient. Both evaluations require the generation of a set of
sample points from each of the K PDFs. These samples are gen-
erated by sampling n points from the distribution.

We designate the number of sample points generated for each
of the K probability density functions as {Mi, ..., M} and
the kth set of points as {3’1‘ ..... sljh } Equation (3) is then

’ ’

calculated using the sets of points and the formula

JHCT,(Py,...,Px)
K M,
1 1 * a—1
b 4 D3 MLt
k=1j=1
K M,
1 N a—
S D5l DU LACIREE IO
k=1 j=1

where
1 K Ny
P (X) =5 > G (maf.CF) ©)
k=11:=1
and
K K
N:ZNk,M:ZMk. (10)
k=1 k=1

The prior weighting values are calculated from v, = Ni/N
such that the larger point sets are weighted more heavily.

For many optimization routines the gradient with respect to
the individual points is also required. This is calculated in a
straightforward manner from (8)

= s]]2—ﬂ
| & M G (kb k) (0F) 7 (k- )
+ MN Z Z s % 2—«
k=1 j=1 [P (Sj ]

III. DEFORMABLE POINT SET REGISTRATION

The JHCT,, divergence measure introduced in the previous
sections can be used as a correspondence measure within a point
set registration framework. In this section we describe the re-
maining two components—the transformation model and the
optimization strategy.

Associating each point set with a continuous mapping func-
tion, 7, and minimizing the JHC'T, divergence with respect to
the parameters of all K transformation models brings the point
sets into correspondence. Assuming the L parameters for the
kth transformation model are denoted by the set { ¢}, ..., ¢} },
the derivative of the JHCT,, divergence with respect to the /th
transformation parameter of the kth transformation model is
given by

N
dJHCT,, 8JHCT, 0T,
=y (12)

Oy — oz} O

where the term on the right is derived from the selected trans-
formation model.

A. Directly Manipulated Free-Form Deformation

Given a transformation space, we attempt to find the optimal
transformation, 7 *, corresponding to each point set which min-
imizes the JHCT divergence between the PDF’s, i.e.,

T =T7,.... T}

= argmin{JHCT, (71 (Py),..., 7k (PK))}.
Ti e T

13)
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For the fixed/moving point set pair scenario, we apply the trans-
formation only to the moving point set and maintain the trans-
formation corresponding to the fixed point at identity.

For n-D domains, we define the kth transformational model
to be

M, M, n

Ti(biy,.in) = Z Z Giyo.vin H By, a;(uj)
=1 =

i1=1 1

(14)

where ¢;, .. i, is an n-D grid of control points and B;; 4, (u;) is
the B-spline in the %;th direction of order d;. To find the control
point values which define the minimizing transformation, we
employ the following steepest descent iterative scheme:

¢i+1 :¢i + /\iVJHCTa (’]’1 (Pl) b ,TK (PA))
_gi 4 i OJHCT, OT
= oT o4’

(15)

where ¢ is the set of control point values defining
T = {T,...,Tx} and )\ is the step size both taken at
the sth iteration. Traditional gradient-based optimization ap-
proaches, which are intrinsically susceptible to hemstitching
during the gradient ascent/descent, calculate 97 /0¢; as

07 =

— = B o (u;). 16
901 ]1:[1 1, (1) (16)

In contrast, we calculate a preconditioned version of the gradient

0T, i1 By, (ug) ITj=y BE 4, (us)
O¢y Al dutl
2 I BR g, (u))
ki=1 k=1

1
X IL5BE 4, ()

a7)

Additional details discussing the deficiency of traditional FFD
gradient approaches as well as the derivation of (17) can be
found in [28].

B. Deterministic Annealing

Minimization of the divergence measure occurs via gradient
descent within a deterministic annealing framework [29], both
in terms of the transformation model as well as the JHCT, di-
vergence, which decreases the susceptibility to local minima. At
the initial stage of the optimization, the B-spline transformation
model is defined by a low-resolution mesh to determine more
global correspondence. At each subsequent level, the mesh-res-
olution is doubled [30] for increased local, refined registration.
In coordination with this hierarchical registration, we specify an
annealing schedule for the isotropic Gaussian noise discussed
previously. At the pth iteration the covariance is calculated as

C; = Cx, + \No?I (18)
where )\ is the annealing rate (typical values are in the range
[0.93,1.0]). This also has the effect of increasing the localization
during the course of the optimization.
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Fig. 1. JHCT profiles generated by translating a single point with no addi-
tive noise and different o values: (a) ¢ = 5 mm and (b) ¢ = 20 mm. For
reference, each of these plots has been created with the standard ICP metric
which is represented by a dashed line. Note that the catchments widen with
increasing o and with decreasing o value where the illustrated « values are
{1.0,1.01,1.1,1.25,1.5,1.75,2.0}.

IV. OPEN SOURCE IMPLEMENTATION

The open source implementation of our point set registra-
tion methodology is currently available online [31]. Much of
the basic functionality of our contribution and the code organi-
zation is based on the Insight Toolkit of the National Institutes
of Health. Two principal components of our work derive from
two previous contributions that we made to the open source
community, specifically the JHCT divergence measure between
two point sets [32] and a B-spline scattered data approxima-
tion algorithm [33], [34] used in our transformation model. As
with all software in the Insight Toolkit our contribution includes
source code, documentation, sample data, and automated testing
through the CMake testing environment.

V. EXPERIMENTAL EVALUATION

Several experimental evaluations were performed to illustrate
the concepts mentioned in previous sections. We first evaluate
the JHCT divergence in comparison with ICP! on sample point
sets to demonstrate the effects of the « parameter. We then apply
our point set registration framework to matching 2-D point sets
derived from lung boundaries and comparing algorithmic per-
formance with the algorithms of [10] and [12], and standard ICP
combined with DMFFD. Finally, we demonstrate how the pro-
posed algorithm performs on large 3-D multilabeled data sets
derived from segmentations of pulmonary CT.

A. Evaluation of the Jensen—Havrda—Charvat-Tsallis
Divergence

To demonstrate the flexibility afforded by the JHCT diver-
gence, we show measurement profiles illustrating its catchment
area, the extent of local minima, and the susceptibility to noise.
In addition, for each set of profiles, we plot the corresponding
ICP metric value for comparison. To provide an adequate con-
text for the remainder of this subsection, we first generate pro-
files, given in Fig. 1, from the simple scenario of a single moving
point measured against a single fixed point. The moving point
was translated from 0 mm relative to the fixed point to a dis-
tance of 100 mm. Measurements were taken from -100 to 100

'We used a standard implementation provided in the Insight Toolkit.
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Fig. 2. Top row: Sample point set data derived from the segmentation of a coronal he-3 MRI which were used to create the profiles given in Fig. 2. Each of these
four data are characterized by the type and amount of noise added to the noise-free point set in the first column: (second column) Gaussian noise only with a 5 mm
standard deviation where the number of points was approximately half the number of total points in the noise-free point set, (third column) the same parameters as
the second column but with additive uniform noise where 1% of voxels in the original he-3 MRI were converted to uniform noise outliers, (fourth column) Gaussian
noise and 5% uniform noise, and (fifth column) only 10% uniform noise. Middle row: Profiles generated by translating the corresponding point sets between
[—350 mm, 350 mm] in each column and varying the «r parameter (ICP is represented by the dashed black line). Bottom row: Profiles generated by rotating the
corresponding point sets around the center of mass of the true point set between [—60°, 60°] in each column where o € {1.0,1.01,1.1,1.25,1.5,1.75,2.0}.

mm to provide the symmetric profiles which demonstrate that as
« increases value from 1 to 2, the profiles narrow. We also see
that increasing ¢ has a similar effect which increases the capture
range, as is expected.

Similar measurements and corresponding profiles were de-
rived from 2-D point sets extracted from axial lung boundaries.
15 pairs of 3-D helium-3 MRI of the lungs were acquired be-
fore and after respiratory challenge (exercise or methacholine
induced). Axial MRI data were acquired on a 1.5 T whole body
MRI scanner (Siemens Sonata, Siemens Medical Solutions,
Malvern, PA) with broadband capabilities and a flexible 3He
chest radiofrequency coil (IGC Medical Advances, Milwaukee,
WI; or Clinical MR Solutions, Brookfield, WI). During a
10-20 s breath hold following the inhalation of approximately
300 mL of hyperpolarized *He mixed with approximately
700 mL of nitrogen a set of 19-28 contiguous axial sections
were collected. Parameters of the fast low angle shot sequence
for *He MR imaging were as follows: repetition time msec/echo
time msec, 7/3; flip angle, 10°; matrix, 80 x 128; field of view,
26 cm X 42 cm; section thickness, 10 mm; and intersection gap,
none. Following acquisition of the hyperpolarized helium-3
MR data, the data was de-identified prior to analysis. In-plane
resolution was approximately 3.2 mm X 3.2 mm.

The boundary of each set of lungs was segmented and 2-D
mid-axial or mid-coronal lung boundaries were converted into

point sets where each voxel on the boundary was converted to
a point. We only used one of the inspiratory lung pairs in this
particular section although all 15 lung pairs were used in the
experiments detailed in Section I'V.

In addition to comparing the different o values, we investi-
gated a couple different noise models. Specifically, we illustrate
how the different o values influence the similarity measure in
the presence of additive random Gaussian and uniform noise.
Similar to the single point profiles, we include the ICP similarity
measure for comparison. The coronal lung boundary point sets
used to produce the similarity profiles in Figs. 2 and 3 are illus-
trated in the first row of Fig. 2 where the original point set and
the additive noise is rendered in red and white, respectively.

Since varying the o value tends to only widen the catchment
area (as shown in Fig. 1) we maintain 0 = 20 mm for all the
derived profiles in this section. For each experiment involving
randomly generated noise, each measurement along the x-axis
was performed 10 times with different generated noise and the
average value was plotted. Whereas the number of Gaussian
noise points was held constant at approximately half the number
of points of the original point set with a standard deviation of 20
mm, the amount of uniform noise varied from 1% of voxels in
the original helium-3 MRI, which were converted to uniform
noise outliers, to 10% of the image voxels.
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(b)
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Fig. 3. (a) Outlier point set derived from the original lung coronal image con-
catenated with a shifted (40 mm in the positive = direction), incomplete copy
of itself. The corresponding profiles in (b) were created by translating the point
set in the x direction from —100 to 100 mm where the original lung coronal
boundary point set is situated at the origin (ICP is represented by the dashed
black line). Due to interpolation error, the number of boundary points in the
incomplete shifted copy were doubled in certain spots which caused the ICP
global minimum to shift to 2 = 40 mm. However, the robust JHCT measure
at & = 2 has a well-defined narrow valley close to the true minimum and that
the valley broadens as & — 1. (b) Second outlier point set where 5% uniform
noise was confined to a subregion of the original image. This causes the global
minimum of the JHCT family of similarity profiles to shift although the values
closer to a = 1 get shifted more than the values close to a = 2. In contrast the
global minimum for the ICP metric remains at the origin.

The translation profiles associated with the no-noise case in
the first column of Fig. 2 illustrate a very broad valley for o
values close to 1 (similar to the ICP profile) which progressively
narrow as « — 2. Additional local minima are present for these
larger « values due to, for example, the alignment of the left
and right lungs (consistent with discussion in [17]) which per-
sist despite additional Gaussian noise (second column of Fig. 2).
These local minima disappear as uniform noise is added which
is a rather unlikely scenario encountered in actual application.
Regardless of additive random noise type, though, profiles cor-
responding to « values closer to 2 are more narrow than those
closer to 1.

For the profiles in Fig. 2, it was implicitly assumed that the
noise has been centered on the true point set. However, that is
not necessarily always the case and in Fig. 3 we provide two
different examples which illustrate additional properties of the
JHCT similarity measure and a comparison with the ICP metric.
In Fig. 3(a) we construct a point set which is composed of the
original coronal lung boundary points rendered in red and a
shifted (Az = 40 mm), incomplete copy of itself rendered in
white. Due to interpolation issues, some portions of the shifted
lung boundary doubled in the number of points. The profiles
were created by translating this corrupted point set relative to the
fixed point set composed of the original lung boundary points.
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This resulted in the profiles seen in Fig. 3(c). It is interesting
to note, first, that the ICP global minimum has shifted from the
origin to the location of the shifted, incomplete copy whereas
the JHCT measures all maintain global minima at the origin al-
though local minima at the shifted location are seen for « values
closer to 2.

This is in contrast to the scenario depicted in Fig. 3(b) which
was created by confining 5% uniform noise to a subregion
located on the right side of the image and the original lung
boundary is translated with respect to the corrupted image.
Here, the ICP metric manifests its global minima at the origin
unlike the shifted global minima depicted by the profiles
associated with o values closer to 1. Although local minima
are present at this shifted location for a values closer to 2,
the global minima are shifted much closer to the origin. In
this way, the JHCT divergence for « values closer to 2 behave
like the statistical median as opposed to « values closer to 1
which are more analogous to the statistical mean [17]. The
JHCT divergence provides a simple tuning mechanism to alter
behavior in the presence of different types of noise.

B. Comparative Evaluation of Kernel-Based Methods on Real
Data

As a continuation of the last section, we explore the effects
of varying the a parameter on actual data. This data, described
previously, consisted of 15 pairs of helium-3 MRI lung image
volumes acquired either coronally or sagitally before and after
respiratory challenge. Depending on the acquisition orientation,
either a mid-axial or mid-coronal slice was extracted from each
image volume. In plane resolution varied from 1.6 x 1.6 mm?
to 3.3 x 3.3 mm?. Since each boundary point of the segmenta-
tion was converted to a 2-D point set, the in-plane resolution
provides a sense of the range in spacing between neighboring
points. Each point set was comprised of ~ 1000 points. Since
mid-volume slices might not necessarily correspond exactly be-
tween acquisition times or since gas may or may not be present
in the trachea, some features present in one point set might not
be present in its counterpart. We view this experimental fea-
ture as representative of possible outliers one might encounter in
likely applications and investigate the performance of our pro-
posed methodology with this in mind.

As an ancillary investigation, we compare our method with
other kernel-based point set registration strategies. Specifically,
we use the open source implementation of the algorithm de-
scribed in [12] recently implemented by one of the authors who
has made the source code available online.2 The author also
coded the algorithm discussed in [10] within the same frame-
work for easy comparison. This helps to ensure the quality of
the implementation of previously published routines for com-
parison with our method. An additional comparison is made by
incorporating the ICP similarity metric into our proposed algo-
rithmic framework using slightly modified ITK classes. Thus,
the transformation of the ICP-based algorithm is modeled using
the DMFFD transformation/regularization method discussed in
a previous section. Furthermore, we modified our code to en-
sure that certain common parameters between the algorithms

2http://code.google.com/p/gmmreg/
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had identical meaning such as the o parameter governing the
Gaussian kernel size in constructing the GMM.

For each registration, a similarity transform (scale and trans-
lation) was calculated from both point sets to warp the moving
point set into the space of the fixed point set. Translation and
scale values were calculated from the centroids and Frobenius
norms of the two point sets, respectively. This initial transfor-
mation was identical for all four algorithms (where we count
the JHCT family of algorithms as one) such that differences
in performance are strictly attributed to the deformable regis-
tration component. For the deformable registration, four levels
were used with a maximum of 100 iterations at each level. The
o values for the four levels were o = {2.0,1.0,0.5,0.25} and
no explicit regularization on the thin-plate spline transforma-
tion, i.e., A = O for all four levels. These values were similar to
the default values provided in the open source offering of these
two other algorithms where the sigma values were normalized
and scaled to the square root of the Frobenius norm of the fixed
point set.

A few differences should be noted. First, these two other algo-
rithms use thin-plate splines to model the deformation instead of
B-splines. In terms of capabilities, most of the point sets derived
from CT lung data used in a later experimental section consist of
approximately 10° points each with our implementation capable
of handling larger point sets. In contrast, the capabilities of the
previously specified available software for these other methods
are much more limited in that the maximum number of points
accommodated is at least a couple of orders of magnitude less
(e.g., point set sizes used in [12] is limited to less than 200 points
each with only a theoretical discussion of sizes exceeding 300
points). In addition, these other routines do not accommodate
labeled point sets (which would be obtained from such image
analysis tasks as multi-label image segmentation). This moti-
vates the rather limited point set data used in this experimental
section.

To compare the performance between algorithms and algo-
rithmic variants, we calculated the average directed distance, 9,
between the fixed point set, X, and the warped point set, Y, such
that ¢ is defined to be

§(X,Y) = (19)

d(X,Y) +d(Y, X)
2

where cf(X ,Y') is the directed distance from X to Y. This di-

rected distance is defined as

d(X,Y) |X| Z 1n1n||x =yl

(20)

The results of the 15 point set pairsx 10 algorithms = 150
registrations are illustrated in Fig. 4. Although all regis-
tration algorithms performed well (as attested by the me-
dian average directed distance), the JHCT algorithms for
a € {1,1.01,1.1,1.25} performed better than the other six
sets of results which were all sub-pixel resolution.3 The best
performer, in terms of the median average directed distance,
was the JHCT algorithm for « = 1.1. This points out the

3Median values are roughly significantly different at the 95% confidence level
if the notches do not overlap [35].

Lung Boundary Point Set Registration Results
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Fig. 4. Results of point set registration of the 15 pairs of helium-3 lung MRI.
Several o values, o € {1,1.01,1.1,1.25,1.5,1.75,2.0}, were used in regis-
tering each of the 15 pairs. Also included in this assessment are the algorithms
of Jian and Vemuri [12], Tsin and Kanade [10], and standard ICP [1] combined
with the DMFFD transformation model [28].

possible importance of being able to tune the « parameter for
optimal performance between the ML estimate and more robust
L> measure.

Computation times (in seconds) to run the different algo-
rithmic implementations for the different point set pairs which
were comprised of different quantities of points is shown in
Fig. 5 where the algorithms of [12] and [10] do slightly better
than our algorithm in terms of absolute time for total point set
quantities of < 1000. However, computation times increase
rapidly for the other two kernel-based algorithms for quanti-
ties > 1000. These larger points sets were created by adding
correlated noise.

The shape of the plots are best understood by realizing that
the dominant portion of all three algorithms is the estimation of
the gradient and similarity measure at each iteration. Since we
use a kd-tree structure in our algorithm for quickly identifying
neighboring points, the computational complexity is dominated
by the time necessary to construct the kd-tree at each iteration
which is known to be O(nlogn) [27]. In contrast, the imple-
mentations of the other two algorithms written by the first author
of [12] do not use any such speed-ups although [12] contains a
discussion of potential speed-ups using a Gaussian transform.

C. Anatomically-Based CT Lung Registration

The motivating aim of this research is anatomically-based
registration for CT lung kinematic and morphometry studies.
Although success has been derived from applying inten-
sity-based registration techniques to this problem [36]-[38],
given the wealth of segmentation techniques that have been
developed specifically for CT lung imagery (e.g., whole lungs,
fissures, blood vessels, small and large airways), anatomi-
cally-driven registration is possible using our labeled point set
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Fig. 5. Computation times (in seconds) for all three registration algorithms for

the 68 registration pairs using the overall best parameter set for each algorithm.
The quantity of points in the 68 registration pairs varied from ~ 400 to ~ 2700.

registration algorithm where each labeled point subset is used
to represent specific anatomy.

The work presented in [39] and [40] describes an evaluation
framework for CT lung image registration involving 10 data sets
described as follows:

Patient identifiers were removed in accordance with an in-
stitutional review board approved retrospective study pro-
tocol (RCR 03-0800). Each patient underwent treatment
planning in which 4-D CT images of the entire thorax and
upper abdomen were acquired at 2.5 mm slice spacing
with a General Electric Discovery ST PET/CT scanner (GE
Medical Systems, Waukesha, WI).
Whereas the first five image sets were cropped to include
the entire rib cage and subsequently sub-sampled in plane
to 256 x 256 voxels, the second set of five image data were
left in their original in plane resolution of 512 x 512 voxels.
Final in-plane voxel dimensions ranged from (0.97 x 0.97) to
(1.16 x 1.16) mm? with each case exhibiting a slice thickness
of 2.5 mm.

A thoracic imaging expert manually delineated five image
pairs using a Matlab-based GUI created specifically for this pur-
pose. Manual demarcation of points was facilitated by gener-
ating a local neighborhood window over which is calculated
the normalized cross correlation to identify corresponding fea-
tures. After the initial landmark identification by the primary
reader, two secondary readers re-identified the points. The pri-
mary reader also re-identified the landmarks. These 10 data sets
have been made publicly available4 and were used in this section
to show the capabilities of our proposed method in comparison
with our modified deformable ICP algorithm.

For each of the 7 image data inspiratory/expiratory pairs (due
to technical issues, we only used 7 of the 10 image data) we seg-
mented the left and right lungs using the technique developed
in [41]. A segmentation of the blood vessels in both lungs was
then obtained using the technique described in [42] where the
pruning/smoothing stage was omitted to create realistic noise/
outliers potentially encountered in actual application. The inspi-
ratory point sets are registered to their expiratory counterparts

4http://www.dir-lab.com
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(which are kept fixed). These registrations were computed using
« values from the set {1.0,1.01,1.1,1.25,1.5,1.75, 2.0}.

The point set registration was performed in two stages.
During the first stage, only a small fraction the surface points
of both the left and right lungs were used to bring the lung
surfaces into alignment (typical point set sizes employed during
this registration step consisted of 10 000-20 000 points for each
lung). The results from this more global alignment stage were
then used as the initialization of a more refined registration
step in which the points from the vessel tree were combined
with the lung boundary points to drive the registration. Each
of the left and right vessel trees consisted of approximately
75 000-150 000 points. The parameters of these two registra-
tion steps were as follows.

1) Global Registration.

* B-spline order: cubic.
e Number of levels: 1.
* Number of control points: 5 X 5 X 4.
e Maximum number of iterations: 100.
e 0, = 4.0 [see (7)].
e A2 =0.93 [see (18)].
2) Local Registration
* B-spline order: cubic
e Number of levels: 3.
e Level 1
— number of control points: 11 x 11 x 7;
— maximum number of iterations: 20;
—o, = 2.0 [see (7)].
e Level 2
— number of control points: 19 x 19 x 11;
— maximum number of iterations: 10;
— o, = 1.0 [see (7)].
e Level 3
— number of control points: 35 x 35 x 19;
— maximum number of iterations: 5;
— o, = 0.5 [see (7)].
e ok, = 5.0 [see (6)].
o Nk, = 5 [see (6)].
e A2 = 0.93 [see (18)].
Note that the o values are based on normalization to the point
set, as described earlier, using the square root of the Frobenius
norm of the fixed point set. The reader should also be aware that
this experimental setup was not meant to be optimal in terms of
absolute registration results with respect to this data set. It was
merely meant for comparative purposes between the family of
JHCT algorithmic variants and the deformable ICP algorithm.

Registration accuracy was inferred by average landmark error
of the 300 landmarks, the selection process detailed earlier. It
should be noted that although the landmarks correspond within
each inspiratory/expiratory pair, they do not necessarily corre-
spond across data sets. The landmark analysis results are sum-
marized in Fig. 6.

Landmark error improved for all 7 point set pairs for all reg-
istrations during the global registration step which is probably
due to the minimal noise in the first registration component pro-
duced by the lung segmentation algorithm [41]. However, the
well-known susceptibility of the ICP metric to outliers (see, for
example, [2]) and the presence of such outliers in the second
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CT Lung Registration Results
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Fig. 6. Results from anatomic feature-based CT inspiratory/expiratory lung
registration across 7 image pairs using the different algorithmic configurations
listed in the figure. Note the improvement in average landmark error (. = 300
landmarks) for each algorithm at the end of the global registration stage. How-
ever, most likely due to the amount of noise present in the local point sets, the
ICP landmark error is slightly worse after the local registration step. Although
the JHCT family of algorithms performed similarly for these data, o values
closer to 1 showed a slight improvement over values closer to 2.

step of the registration process provides a possible explanation
for the increase of landmark errors seen in the ICP results fol-
lowing registration. In contrast, results obtained using different
« values were very similar after both registration steps with a
trend showing slightly better results for o values closer to 1.

VI. DISCUSSION AND CONCLUSION

Geometric feature analysis via point set correspondence
assessment is important for many medical image analysis tasks.
The work presented in this paper contributes to the growing
number of algorithms already published in the literature. A
generalization of the Jensen-Shannon divergence, known as
the Jensen—Havrda—Charvat-Tsallis divergence, was used to
measure the similarity between spatial configurations of la-
beled point sets. To accommodate the local structure of many
extracted point sets, we incorporated Manifold Parzen win-
dowing into the actual point set divergence measure for a more
accurate representation of the features of interest. We have also
presented this point set measure in conjunction with a relatively
novel transformation/regularization model based on B-splines
known as directly manipulated free form deformation. This
DMFFD transformation model takes advantage of many of the
salient properties of B-splines without the problematic energy
topographies associated with the traditional FFD transforma-
tion model.

Several experiments were performed to showcase the various
components of our contribution. Metric profiles with varying
alpha and sigma values in the presence of different noise models
were provided in various experimental evaluations to showcase
the flexibility of our method. This is important given the various
potential applications for which this work might prove useful.
We also provided a performance comparison of our algorithm

with the algorithms of [10] and [12] where it was demonstrated
that our algorithm, overall, performed favorably relative to these
other kernel methods. One of the practical considerations raised
from the experimental results was the utility of robust statistical
measures used in other algorithms. Such robustness is poten-
tially useful in the presence of certain type of outliers although
these types of outliers would most likely not be present in typ-
ical applications. Regardless of the outlier type, the results il-
lustrated from the JHCT « experiments motivates the use of not
just the ML estimate nor the robust L, measure but a tuning to
the specific application.

In addition there are several aspects of this work of practical
significance which is often omitted or not considered in previous
work. First, the algorithmic implementation was based on the
Insight Toolkit and provided to the research community com-
plete with technical documentation and testing. Thus, others can
use the approach reported in this paper for their own applica-
tions or for comparison with other algorithms. Also, we have
extended our algorithm to accommodate multilabeled point sets
which is very useful for certain applications (e.g., [43]). This is
an important consideration as many applications derive multi-
label segmentations from images which are then used to drive
the registration. For example, in the lung, there are several algo-
rithms which independently segment the whole lung, vascula-
ture, airway tree, lobar fissures, etc. Including this information
into a point set registration should improve registration results
over simply using a single label for all points.

We have also implemented the components of our approach
into the more generalized suite of open source registration tools
known as ANTS (Advanced Normalization Tools).5 Compo-
nents of this software toolkit have demonstrated competitive
performance in intensity-based registration scenarios [28], [44].
The inclusion of the work described in this paper into ANTS
allows for registration configurations not investigated in this
work but could potentially be explored in future work. For ex-
ample, one can combine the JHCT divergence measure with
intensity-based registration (e.g., cross correlation) using the
diffeomorphic Symmetric Normalization (SyN) transformation
model [45] for labeled image data. One can also adopt an adap-
tive strategy where the similarity metric is varied during the op-
timization.
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