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This paper is concerned with the uncertainty quantification of high-frequency acoustic scattering from objects with
random shape in two-dimensional space. Several new methods are introduced to efficiently estimate the mean and
variance of the random radar cross section in all directions. In the physical domain, the scattering problem is solved
using the boundary integral formulation and Nystrom discretization; recently developed fast algorithms are adapted to
accelerate the computation of the integral operator and the evaluation of the radar cross section. In the random domain,
it is discovered that due to the highly oscillatory nature of the solution, the stochastic collocation method based on sparse
grids does not perform well. For this particular problem, satisfactory results are obtained by using quasi—Monte Carlo
methods. Numerical results are given for several test cases to illustrate the properties of the proposed approach.
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1. INTRODUCTION

Acoustic and electromagnetic wave propagation in the presence of impenetrable scatterers is a commonly studied
problem, with applications such as radar/sonar imaging and wireless communications. In many of these practical
situations, the shape and properties of the scattering object may be slightly perturbed from the specifications of the
original geometry. This may occur if a vehicle has manufacturing defects or if it has suffered damage after combat use.
As aresult, there is a level of uncertainty when observing physical quantities that are dependent on the characteristics
of the scatterer. Quantifying this uncertainty is an important question, from an engineering point of view, and is
typically done using probabilistic methods.

The work presented here deals with high-frequency acoustic scattering from an impenetrable object with a ran-
domly perturbed surface in two dimensions. I2tC R%(d = 2, 3) be a sound-soft scatterer with bounda® sam-
pled from a certain probability space. For a given incident figlg:), the scattered field(x) satisfies the Helmholtz
equation in the exterior ab with the following conditions:

Au(z) + Ku(z) =0, z = (x1,29) € R\D,

u(z) = —ur(z), =z €D, 1.1
lim r(@=1/2 (9,4 — 1ku) = 0,
7—00

where: = /-1, k is the wavenumber, and the wavelength- 27 /k. The last equation, known as the Sommerfeld
radiation condition, enforces the scattered field to propagate from the scatterer to infinity; this ensures the uniqueness
of the solution to the exterior scattering problem. Here, we are interested in the high-frequency setting, in which the
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size of the domairD is much larger than the wavelengthThe far-field pattern of the scattered fiel(lr) is defined
as

F(s) = lim u(rs)

Jim e 5 S, (1.2)

wheres is the unit circle/sphere. For many applications, the most important quantity is the radar cross section (RCS)
R(s), defined as
R(s) = |F(s)]*, se€S.

Because the scatterer’s shape is random, there is uncertainty associated with the radar crogg sedtiquractice,
we are more interested in the statistical quantitieRef), such as the mean and variance.

From a numerical point of view, this problem involves two issues. The first is related to the high-frequency nature
of the scattering problem. In many settings, the operating wavelength is much smaller than the radius of the scattering
object in question; for example, a typical wavelength used by military communications devices ranges between several
millimeters to a few centimeters, whereas the length of a fighter jet2@ m. In order to accurately capture the
scattering phenomena, itis commonly necessary to use a grid that resolves the oscillations of each wavelength. Hence,
a large number of discretization points is necessary for such objects that are electrically or acoustically large. The
standard finite element and finite difference methods for this scattering problem face several difficulties. First, the
number of degrees of freedom grows{daiam(D)/A]d. Other difficulties include artificial truncation of the unbounded
computational domain, mesh generation of the scattering domain, and the large condition number of the resulting
linear systems.

Because of these reasons, the most effective method for sound-soft scattering in linear homogeneous media is the
boundary integral or boundary element method, where the scattered(figlés represented as the acoustic potential
generated by a layered density@p that satisfies a boundary integral equation. Once this layered density is resolved,
guantities such as the far-field pattern or total field can be calculated by the appropriate integrals. Compared to the
aforementioned methods, the boundary integral formulation has several advantages, inclufiligithe) /A]”
scaling of the number of unknowns, automatic treatment of the Sommerfeld radiation condition, and good conditioning
properties of the resulting linear systems. The main drawback of the method is that the matrix equation which results
from the discretization of a boundary integral equation is dense. In the past two decades, several efficient algorithms
have been developed to speed up the iterative solution of such systems [1-7].

The randomness of the boundary surface poses the second challenge. In the traditional case, the geometry of the
object in question is known and the main goal is to examine the deterministic scattered field. However, in many in-
stances, the exact geometry of the object is not known or there is some perturbation from the geometry that would
cause a notable uncertainty in the scattered field and its far-field pattern. Naturally, this problem falls into the category
of stochastic modeling. The traditional approach is the Monte Carlo method [8], but it usually results in long com-
putational times due to its slo®(1/v/N) convergence with respect to the number of realizativnslore recently,

a class of methods based on generalized polynomial chaos (gPC) [9, 10] have been developed and become popular
in many practical applications. Most notable is the stochastic collocation method using Smolyak sparse grids [11],
which may offer much better convergence properties than the Monte Carlo method while keeping the same ease of
implementation. (A recent review of gPC methods can be found in [12].) The gPC methods have been applied in sev-
eral cases to study random surface or roughness problems (for example, [13, 14]). For wave scattering with random
shapes, the gPC method was applied in [15] and found to be effective in low-frequency scattering. However, for the
high-frequency scattering problem considered here, the sparse grid collocation method does not offer a big advantage
over other methods. In order to resolve the highly oscillatory solution, a higher order method is required in the ran-
dom space; in addition, to properly model the rough physical domain, the random space needs to be parametrized by
a larger set of random variables. Therefore, for gPC-based methods, the problem would require a high-order imple-
mentation in a large number of dimensions. This will almost certainly result in a large number of unknowns, which
grows quickly for a higher-order method. This is essentially the effect of the “curse of dimensionality,” though its
more familiar effect is the fast growth of the number of unknowns in the physical domain. To alleviate this com-
putational difficulty, quasi-Monte Carlo (QMC) methods based on low-discrepancy sequences are introduced. The
QMC methods [16, 17] are in fact deterministic approaches based on pseudo random numbers; they have much faster
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convergence rate®)(1/N) up to logarithmic factors] without sacrificing the generality of the Monte Carlo method,
and their dependence on dimensionality is much weaker than for stochastic collocation methods.

In this paper, we combine the recent development on fast algorithms for the boundary integral solver with the
QMC method to efficiently address the uncertainty quantification problem for high-frequency acoustic scattering. The
rest of this paper is organized as follows. In Section 2, we derive the boundary integral formulation of the scattering
problem and demonstrate how the randomness of the boundary is modeled. In Section 3, we detail the main numerical
methods, including the numerical discretization, fast summation techniques, and QMC methods. In Section 4, we
report the numerical experiments.

2. MATHEMATICAL FORMULATIONS
2.1 Boundary Integral Formulation

We consider the two-dimensional acoustic scattering problem with a sound-soft scBttérethe presence of an
incident fieldu; (z), the scattered field(z) satisfies the following exterior boundary value problem:

Au(z) + K*u(z) =0, x = (21,20) € R?\D,
u(z) = —us(x), x€0D, (2.1)
lim /7 (9pu — 2ku) = 0.

It is convenient to set the wavenumber= 27 so that the wavelength = 2x/k = 1. We further assume thd® is
supported in the squafe K /2, K/2]?, so thatK can be considered effectively as the diametePDofror the high-
frequency problems that we are interestediinis much larger thaia = 1. The boundary integral formulation of Eq.
(2.2) utilizes the free-space fundamental solution (or the Green’s function) of the 2D Helmholtz equation:

Gla,y) = TH} (k| — y)). (2.2)

Here,H} is the zero-order Hankel function of the first kind. Using Green’s third identity and the boundary condition of
the sound-soft object, we can formulate the scattereddiglflas a combination of single- and double-layer potentials
with surface densityp (z) for z € 0D,

_ 0G(z.y) o,
we) = [ |2 G| ot @3

wheren(y) is the unit normal of the scatterer surfaceyandn ~ k = 2r. Lettingx approactvD gives rise to the
boundary integral equation

[m —m- G(way)] ¢(y)dy. (2.4)
Here, the extrd1/2)¢(x) term appears because the kerféls(z, y)]/[0n(y)] become singular asapproaches the
boundary, and its limit is a combination of thgerm plus the improper integral in Eq. (2.4). The overall method to
solve foru(x) is as follows: one first solves for surface densityr) in Eq. (2.4); after the surface density is found, it
can be substituted back into Eq. (2.3) to calculate the scattered field. The total field is now found through adding the
scattered field to the incident field. For more details, we refer to [18].

The far-field patterrF'(s) of the scatterer can also be calculated once the surface dertsitys found. In the 2D
case, it is given by

—ure) = 5ola) + [

oD

F(s) = m [ () s+ e o)y, (2.5)

and the radar cross sectidi{s) is equal to| F'(s)|.
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2.2 Probabilistic Modeling of Domain Uncertainty

To incorporate the uncertainty of the scatteferwe switch to a probabilistic setting and model the surface as a
random process. That is, we allow the boundary to take the form

D (w) = {a(t, w) = b(t) - [1 + p(t, w)],t € [0,27),w € O},

whereb(t) = [b1(t), b2(t)] is the base geometry) is the event space in a properly defined probability space, and
p(t, w) is the perturbation. For a fixad, p(¢, w) is a deterministic function representing how the base georhétry
is scaled, while for a fixed locatioh p(t, w) is a random variable representing the uncertainty of the surface at the
location associated with The perturbation(¢, w) is also assumed to be sufficiently regular so that the scattering
problem is well posed almost everywherein

A critical step in modeling the random surface is to properly parametrize the random process by a finite number
of independent random variables. L&fw) = [Z;(w), ..., Zpy(w)], M > 1, be such a set of independent random
variables, whose probability distribution 5z (z) = Pro(Z < z), wherez € RM. Without loss of generality,
we focus on the continuous random variables, where a probability density fupction= dF'z(z)/dz exists. The
random surface can now be expressed in ternis iofthe following manner:

oD, = {b(t) - [1 + p(t, Z)],t € [0,27), Z € RM}.

The requirement of the independenceffw), ..., Zy (w) is important for numerical purposes because most
random number generators are designed to generate independent random numbers. Common tools for constructing
such a finite-dimensional representation or approximation are more established for Gaussian processes. For example,
spectral expansion [19] and Karhunen—-Loeve expansions [20] are quite effective. For non-Gaussian processes, the
parametrization procedure is still an active research topic, with many open issues. For the purpose of this paper, we
simply assume that such a representation has already been established.

Now, the integral formulations given in Section 2.1 all depend ofhe densityyp . (x) for x € 0D, satisfies

“urle) = g0+ [ 250D iG] 0. 26)

on(y)
The far-field pattern and the radar cross sections are equal to

P = S [ fhnty) s e o R(s) = P (57

Finally, the mean and the variance of the observétile are given by
BIR(s) = [ Ru(s)p(z)dz,

R,
var[R(s)] = [ {Ra(s) — E[R(s)]}” p(2)dz.

2.7)

It is worth noting thatM, the dimensionality of the random variablesdepends on the domain uncertainty. In
many realistic cases, the uncertainty presents itself with “fine” structure and as surface roughness. This implies that
the random processes describing such an uncertainty should have short correlation length. Subsequently, the dimen-
sionality M resulting from the parametrization procedure will be large. Therefore, in many practical simulations, the
integrals Eq. (2.7) will be in a high-dimensional random sgaéewith M > 1.

3. NUMERICAL METHODS

3.1 Nystr 6m Discretization

To numerically solve for the surface density from Eq. (2.4), the Nystmethod is used to discretize the integral
equation. Using the periodic boundary parametrizatiGn = [z (t), z2(t)] for ¢ € [0, 27|, the parametrized integral
equation takes the following form:

International Journal for Uncertainty Quantification



Fast Method for High-Frequency Acoustic Scattering from Random Scatterers 103

2
—ul(t):%(p(t)—&— [ ke, e .2, 3.1)

K(t,t) = {W - mG[x(t),m(t')]} J(t). (3.2)

By abusing the notation slightly, we denate(t) = ur[z(t)], @(t) = @[z(¢)], and the Jacobiad(t) = J[z(t)]. To
discretize the integral equation (3.1), we create an equispsic@aint grid over the variablesuch that; = 2xi/N;
fori =0,1,2,...,N; — 1, with N; = O(K); these points are the Ny&tn (or quadrature) points. The condition
N; = O(K) corresponds to discretizing the boundary witfil) grid points per wavelength. The equations enforced
at the Nystom points are written

with

1 2w

3.1.1 Quadrature Rule

The next component of the Nys&tn method is the quadrature rule for the integral in Eq. (3.3). More specifically,
glven the values ofp(¢;) fori = 0,1,..., N; — 1, one should be able to compute an accurate approximation of

" K(t;,t)@(t)dt. Once the quadrature rule is determined, the resulting linear system of Eq. (3.3) is solved using
iterative methods such as GMRES. If the kernel in the integrand had been smoothtfathallstandardV-point
trapezoidal rule with quadrature poings; } could be ideal for approximating the integral operator. Unfortunately,
because the kerndt'(¢;,t) has a logarithmic singularity @t = ¢;, a special quadrature rule is required. For this
purpose, we utilize the modified trapezoidal rule proposed by Kapur and Rokhlin in [21]. The main idea of [21] is
to build a local correction near the singularity. Takifi¢g) = K(¢;,t)o(¢t) andh = 27/N,, the Kapur—Rokhlin
quadrature rule applied to the integral in Eq. (3.3) takes the form

Nt—l i+m
/f Db+ Z Ft)B—iths (3.9)

Jsﬁz J#l

where the second summation is the correction termfand; are the local correction weights. One drawback that we
noted about the correction weights is that they can have large negative numbers, which causes the resulting matrix to
become less stable and results in an increased number of GMRES iterations.

In order to remedy this problem, we modify the approach slightly by introducing a denser grid just for the purpose
of numerical integration, while keeping the original grid for the identity tétn'2) ¢ (¢) and incident fieldu, (¢). In
essence, this will only change the matrix-vector multiplication step in the GMRES iteration, as we will soon show;
the SO|UtI0n(p( ) will still be computed on the original mesh. We denote the density at these poikté gsfor
ji=0,1,.. .,N; — 1, whereN, = rN, for some integer refinement rateandt = 27Tj/Nt In practice; is chosen
to be4 or 8. W|th the more refined mesh, the quadrature formula becomes

o N.—1 ri+m
K(ti, t)o(t)dt ~ Z K(ti, t))e(t;)h + Z K(ti,t;)@(t;)Bj—rih- (3.5)
0 =0 j=ri—m
i T itri
Here, we've run into another problem: the original grid defipesnly at points{¢; };V:fgl, a subset of?; }jvfo ! that

is, we must somehow recovex(t;) from the original grid. Because the surface of the scattering object is smooth in
R?, we choose to use Fourier interpolation to recover the surface density on the refined grid.

We can now apply the GMRES solver to the system of equations using the refined grid in the matrix-vector
multiplication within each iteration. For each iteration, we are given the depsity for j = 0,1,2,..., N, —1, and
we are required to calculate the right-hand side of Eq. (3.3). Based on the above discussion, we perform the following
steps:
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1. Giveng(t;) for j = 0,1,2,..., N; — 1, we use Fourier interpolation to gett;) for j = 0,1,2,.. ., N, — 1.
2. For:=0,1,2,..., N, — 1, compute

Ne—1 ~
a;i= Y K(ti,t;)o(l;)h (3.6)

=0
i

3. Fori =0,1,2,...,N; — 1, compute the matrix-vector product

ri+m

bi= Y K(tit;)o(t;)Bj—rih- (3.7)
j=ri—m

j#Ti
4. Fori=0,1,2,...,N; — 1, the right hand side of Eq. (3.3) ($¢(t;) + a; + b;).

Step 1 of the procedure can be computed using the FFT, which al¢€slog N;) operations. Because is of
O(1), the amount of work necessary for step 8igV;). Obviously, step 4 also také¥(V;) steps. The only step that
takesO(IV?) operations is step 2, and a fast algorithm is required to bring down this complexity.

3.1.2 Fast Pairwise Summation

Let us denoter; = z(t;) andz; = z(¢;). Thenz; = x; if and only if j = r4. Under the new notation, Eq. (3.6)
becomes

Ne—1 G
> Kab)olih= 3 | P55 a2 £ 39

J#Ti 3T FT

with f; = J(&;) o(t;)h.
This new formulation is close to th&-body problem of the Helmholtz kernel: Given a point $gt}Y ; and
sourceq f;}_;, one wants to evaluate at egeh

N
u; = E G(pi,pj)fi (3.9)
j=0
Jj#i

Several methods [1-3] have been proposed to eva{ualé” , in O(N log V) steps. Here, we employ the directional
multilevel method proposed in [5, 6] by one of the authors. A brief description of this algorithm is provided in
Section A.1 in the Appendix for completeness.

However, our summation [Eq. (3.8)] is different from the standartbody problem [Eqg. (3.9)] in two aspects.
First, we are using different source and target points; in our ¢as¢are the source locations afd, } are the target
locations. This fact does not change the algorithm significantlfzas C {Z;}; we can simply ignore potentials
computed at the leaf box level f¢t; }...;. Second, the kernel function [8G (z, y)]/[0n(y) — mG(z,y)], a linear
combination of the Green'’s functidri(x, y) with its normal derivativdoG(z, y)]/[0n(y)] at the source pointg. We
can easily extend the directional algorithm to this kernel as well using the following argument: Because the normal
derivative with respect tg is a linear operatof9dG(z,y)]/[0n(y)] — mG(z,y) as a function ofe still satisfies the
Helmholtz equation. Thus, the potential generated by this mixed kernel can still be reproduced by the equivalent
sources of the Green’s functi@r(z, y). The only difference is that in the construction of the equivalent sources at
the leaf boxes, we use the kerf@G (z, y)]/[0n(y)] — mG(z, y) to determine the check potentials. The locations of
equivalent sources and potentials stay the same.
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3.1.3 Evaluation of the Far-Field Pattern

Onceg(z) is ready, the next step is to evaluate the far-field patt&r) numerically. Typically, one needs to compute
the F'(s) in a finite number of directions of ordér(K). To that end, we discretize the unit sphéreiith N, = O(K)
equally spaced pointg, for/ =0,1,..., N, — 1; as a parametrized function, it is easy to see that

—( )= 2ml . [ 2nd
se = (s01,802) = |cos v ) sin v, )|

Now, for eachs,, the far-field patter'(s,) is given by

e—u(m/4)
8k

F(se) = UG +nle Yo (y)dy. (3.10)

Because the integrand in the far-field operator contains no singular functions, the trapezoidal rule can be applied to
approximateF’(s,) with super algebraic convergence. Accordingly, Eqg. (3.10) is approximated by

1

—a(m/4) Ne
(k{nlz(t:)] - se} +mn) e o= @ (t;)] (t:)h. (3.11)

8w

e
F(sp) =~

Bl

Il
o

%

Direct evaluation of this sum for each takesO(NsN;) = O(K?) steps, which can be very expensive wheris
large. In order to speed up this calculation, we write the dot product in the brackets as the sum of two components,

E{n[z(t:)] - se} = k{n1]x(t;)]se1} + k{ne[z(t:)]se 2}, (3.12)

wheren = (n1,ns). Thus, the summation in Eq. (3.11) can be written as the sum of the following three sums:

N ) Gyt ot 1) (313
e "V {kng [y (L) e(ti)J (t: .
\/7 =0 1
671 (mw/4) Ne—1
s yeg 2 o tknaly(tle ) T(toh) (314)
e—(m/4) Ntz_l —ksey(ti) e (t:)J(t;)h] (3.15)
‘¢ ne(t:)J (1t '
Verk =5

After appropriate rescaling, each summation becomes an instance of the sparse Fourier transform introduced in [7],
where both the spatial and Fourier data are sparsely supported. More precisely,efin2K, p, = —K - sy,
& =2-x(t;), fi =nd(t:)J(t;)h, and Eq. (3.15) becomes

Nt
Z€2ﬂ1pg-£,;/Nfi (316)

=0

up to a constant scaling. Because we haves [—-N/2, N/2)%, & € [-N/2,N/2)?, andN; = O(K) = O(N),

Eqg. (3.16) fits exactly into the definition of the sparse Fourier transform. In [7], it is shown that the sparse Fourier
transform can be computed @( K log K) steps; a short description of the algorithm of [7] is outlined in Section A.2

in the Appendix for the sake of completeness. Now, since each of the three sums [Egs. (3.13)—(3.15)] can be computed
in O(K log K) steps, the total cost of computititf s,) for all s, is alsoO(K log K).
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3.2 Stochastic Algorithms: Sparse Grids and QMC Method

To efficiently evaluate the statistics defined by the integrals in Eq. (2.7), a careful approach must be taken. A popular
cubature scheme used to compute these multidimensional integrals is the Smolyak sparse grid [22]; though it was
shown to be effective for general purpose stochastic problems in [11], the sparse grid is found to be less effective in
this situation. The main reason is that the integrals resulting from high-frequency scattering are highly oscillatory, thus
requiring higher-order methods. For even moderately high dimensions, the number of points in the sparse grid grows
rapidly as the accuracy level is increased. This can be seen in Table 1, where the total number of points are tabulated
for moderate dimensions @f = 8 andM = 10. At the modest accuracy level of 3, the total number of points quickly
exceedd 03, which is usually considered to be an impractical number of samples. (Details of the construction of the
sparse grids can be found in numerous references such as [22].)

After extensive testing, we determined that it is more appropriate to use the QMC method for the integrals in
Eq. (2.7). We follow [16] for a short description of the QMC methods. The main idea of the QMC method is the
construction of low-discrepancy sequences. For any intege®, we defineZ, = {0,1,...,b — 1}. For any integer
n > 1, let us write the uniqué-ary representation of as

n= Zaj(n)bj, a;(n) € Zy,.
=0
The radical inverse functiof,(n) is defined to be

dp(n) = Zaj(n)b_j_l, Yn > 0.

j=0

Clearly, we haved < ¢,(n) < 1. Two of the most commonly used low-discrepancy sequences are defined based
on the radical inverse functions. L&f be an arbitrary dimension amdl, . . . , by, coprime to each other. The Halton
sequence is defined for each integer 0 as

2™ = [d)bl (n)7 sy Goy (n)] € [Oa 1]M

The definition of the Hammersley sequence is similar.lebe the dimensiony be the length of the sequence, and
b1,...,byr—1 coprime to each other. The Hammersley sequence is defined=ot, ..., N as

Z(n) = [%7 (bbl (n)7 ) d)bM—l(n) € [0’ l]M

For a fixed sample siz&, we can generate the sampk¥), 2(?), ..., (V) using a low-discrepancy sequence (in
our numerical examples, we choose the Hammersley sequence due to its lower discrepancy). For eaclf’sample
we use the algorithms described in Section 3.1 to compute thelRG3s,) for £ = 0,1, ..., Ns — 1. Once they are
ready, the statistical estimations of the mean and variance are given respectively by

N

_ 1

Ry (se) = N E R, (s¢)
=1

N
Vn(se) = ﬁ Z [R.c(se) — RN(Sé)]2

TABLE 1: Number of points in Smolyak sparse grids

DimensionM | Level1l | Level 2 | Level 3| Level 4
M=238 17 145 849 3937
M =10 21 221 1581 8801
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4. NUMERICAL EXPERIMENTS
4.1 Method and Error Estimates

In this section, we present the results of some numerical experiments. Recall that the uncertainty of the scatterer is
modeled by
0D, ={x(t) =b(t) - [1 +p(t,Z2)],t € [0,2m)}

whereb(t) = [b1(t), b2(t)] is the base geometry andt, Z) is the (multiplicative) random perturbation. Two base
shapes on which we have tested are the cylinder and the kite (Fig. 1). These objects were chosen because they are
smooth and have a simple parametrization in the two-dimensional plane:

Cylinder: b(t) = [b1(t), b2(t)] = % [cos(t), sin(t)] .

Kite: b(t) = [by(t),ba(t)] = % cos(t) + 0.651.c;s(2t) — 0.657

sin(t) | .

The perturbation(t, z) is modeled as follows. First, choose a set number of frequencies or n{lbgéﬁé/f. For
simplicity, we assume that each compongnbf the random parametéf = (74, . .., Z;) has a uniform probability
density function over the unit intervdl, 1] (this assumption can certainly be removed by performing appropriate
reparametrization to each). As a result, the joint probability density function fois the constant one function over
the M-dimensional cubgn, 1]™. For a given sampl& = (Z1,. .., Zy), the perturbatiop(t, Z) is defined as

M/2

(¢, Z) = % ; KZQ“ - ;) cos(Eit) + (ZQZ- - ;) sin(&it)] . (4.1)

Depending on the choice of the frequenc{e$}?i/12, p(t, Z) can model both low- and high-frequency perturbations.

1. Low-frequency perturbation sets = i for i = 1,2,..., M/2; thus, the perturbation function does not have
many oscillations and the resulting boundaiy does not have rough edges.

2. High-frequency perturbation seis = i /M fori = 1,2, ..., M /2. Here, the high-frequency range extends to
modes that are comparable to the size of the scattering object in terms of wavelength and the resulting boundary
0D exhibits small-scale oscillations.

In each case, we compare the uncertainty quantification results of the Monte Carlo method anld the QMC method
for a fixed sample siz&'. In Monte Carlo method, the random parameter sanplé = (Z{”, R Z](CI)) fori =
1,2,..., N is generated randomly for each enﬂy) forj =1,2,..., M. In QMC method, the random parameter

€Y (b)

FIG. 1: Base shape of the scatterers used in the test: (a) Circle and (b) kite
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Z0) = (ZY), cey Z](\})) for eachi is constructed using the Hammersley sequence. For our simulations, the goal is to
see how the estimations of the expected value and the variance of the radar cross section converge for the Monte Carlo
and QMC methods. In each case, the statistical estimations of the mean and variance for a fixed saivpgesize

given respectively by

N

. 1

By(se) = > Reo(se)
i=1

_ 1 XN _

2
VN(S@) = 7]\[ 1 Zl [Rz(i)(Sg) - RN(Sg)] .
1=
In order to measure the convergence rate depending on the samphé, sigeestimate the error using the relative
{5 norm. Suppose thaV,,.. is the largest sample size used in the tests. Then for eachfixeee define the errors

ep,y andey y as

Ns—1 | p P,

| S R0~ R (50
N T Ns—1,p

f:SO |RNIYIBX(86)|2

S0 IV (80) = Vi (50)2

N1 5
=0 | VNmax (80)[?

4.2 Numerical Results

In our tests, we set the diameter of the scattéféo be512, the number of random mod@¢ = 8 and the perturbation

amplitude in Eqg. (4.1 = 0.1. We choose the incident field to be a plane wave propagating in;t@ection, i.e.,
ur(z) = 2™, (4.2)

wherez = (x1, z2); once again, the wavenumberis and the wavelengthis 1. We tested on both cylinder and kite

geometries, using both low- and high-frequency perturbations mentioned earlier.

First, we show the results of stochastic collocation using Smolyak sparse grids for the random parameter, with
accuracy level of 1, 2, and 3. Figure 2 shows close-ups of the variance curve for the low- and high-frequency pertur-
bations of the kite, respectively. It is clear that stochastic collocation produces somewhat nonsensical results because
it should be impossible to have a negative value for the variance of the RCS. This artifact is purely a result of utilizing
negative weights in the quadrature of the random space; for this reason, stochastic collocation does not work well
when the solution is highly oscillatory.

Next, we present the results of both the Monte Carlo and QMC methods. In order to measure the convergence,
different sample sizes df = 64, 256, 1024 are used withV,,,, = 1024 for the highest-order accuracy. Figures 3 and
4 summarize the results of the cylinder for the low- and high-frequency perturbations, respectively. The errors in both
cases are tabulated in Table 2. For low-frequency perturbations, the expectation and variance converge significantly
faster for QMC when the sample si2éincreases. However, for the high-frequency perturbations, it is observed that
the improvement in error for both quantities is modest at best; that is, the rougher the surface of the cylinder, the more
difficult it is to accurately quantify the RCS. We have also performed tests for larger vallésaofl have observed
similar results for both low- and high-frequency perturbations.

Figures 5 and 6 summarize the results of the kite for the high- and low-frequency perturbations, respectively,
using QMC. The errors in both cases are tabulated in Table 3. The results suggests that, when the samjiée size
guadrupled, the expectation for both the low frequency and high-frequency perturbations converge by aJdotor of
the QMC method and by a factor 2ffor the standard Monte Carlo method. On the other hand, the convergence rates
for the variance seem to be comparable for the two methods.
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FIG. 2: Variance of the radar cross section for the kite, using stochastic collocation. (left) For low-frequency pertur-
bations and (right) for high-frequency perturbations. For each type of perturbation, the top figure shows the full plot,
while the bottom figure shows a close-up where the curves show negative variance

One difficulty we encountered in our numerical tests is the sensitivity of the RCS calculation varying with the size
of the perturbationt. For larger perturbations approaching the size of the operating wavelength, such convergence to
the actual mean or variance proved to be quite difficult without having an inordinate number of samples. In order to
achieve something sensible, especially for high-frequency problems, we found computationally that the perturbation
size must satisfyt < A/5.

5. CONCLUSION

In this paper, we presented a new numerical algorithm for quantifying the uncertainty of high-frequency acoustic
scattering from scatterers with random shape in two-dimensional space. It allows one to effectively estimate the
mean and variance of the random radar cross section in all directions. For each realization of the domain boundary,
the boundary integral formulation is used with the standard Ngsuliscretization. The computation of the integral
operator and the evaluation of the radar cross section are accelerated by the fast directional multilevel algorithm
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FIG. 3: Expectation and variance of the radar cross section for low-frequency perturbations on the cylinder. (left)
Regular Monte Carlo and (right) use the Hammersley low-discrepancy sequence

and the butterfly algorithm (for the sparse Fourier transform). The statistical averaging is performed using the QMC
method. When compared to the standard Monte Carlo method, the QMC method provides faster convergence to the
mean and variance.

In our numerical tests, the random domain is modeled by a small random perturbation around a base shape.
Numerical results suggest that the algorithm performs quite well when the perturbation is of low frequency compared
to the wavelength of the scattering problem. More in-depth studies for high-frequency perturbations or large random
perturbations are under investigation.

APPENDIX A. FAST ALGORITHMS
A.1 Fast Directional Multilevel Algorithm

Here, we briefly outline the directional method presented in [6].{e} Y, C [-K/2, K/2]? and{fi:}Y, be the
sources located dp; }_,. The N-body problem of the Helmholtz kernel is to compute
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FIG. 4: Expectation and variance of the radar cross section for high-frequency perturbations on the cylinder

TABLE 2: Two-norm errors for the RCS of the cylinder geometry

Low-frequency perturbations High-frequency perturbations
(MethodN) | ep v EV.N ER.N EV.N
MC, 64 6.17x 107 1.33x 107! | 2.35x 1073 2.69x 107!
MC, 256 1.50x 107° 9.68x 1072 | 1.28x 1073 1.62x 107!
QMC, 64 2.71x 107° 8.06x 1072 | 2.25x 1073 2.27x 107!
QMC, 256 | 4.80x 107 3.48x 1073 | 9.32x10* 1.11x 107!

J=0
JFi

N
ui =Y G(pi,p;)fj,

(A.1)

fori =1,..., N, whereG(z,y) is the Green’s function of the Helmholtz equation [Eq. (2.2)]. The main idea behind
this approach is a directional low-rank property of the Helmholtz kernel. Consider & loéxvidth wA and a wedge
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FIG. 5: Expectation and variance of the radar cross section for low-frequency perturbations on the kite scatterer

WEB-* as illustrated in Fig. 7a. Becau$B?¢ is centered at the vectdwith an opening angle of size/w and is a
distancew?\ away fromB, we say thai?’ ?-* and B follow a directional parabolic configuration.

We proved that for any accuraey there exists a rank; separated approximation 6f(z,y), i.e., there are sets
{vE" Y <q<r. C B, {2l 1<q<r, € WHY, and amatrixD = (dgp)1<p,q<r. Such that

<e (A.2)

G(z,y) = > Gx,yl")> dypG(zEt y)
g=1 p=1

fory € Bandz € W5, where the matriXD = (dgp)1<p,9<,, Can be computed easily frofy -} and{z5-}. It
is important to emphasize that the rankis independent of the size &f.

Suppose{ f;} are the sources located fy;} in B. After applying the separated approximation in Eq. (A.2) to
{y;} and summing the approximations up with weighfs}, we obtain

ZG(xvyz)fl - EE:G(xaqu7€) [ZC dqp ZG(xpB’evyz)fZ]
7 g=1 p=1 7

= 0(e). (A.3)
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FIG. 6: The expectation and variance of the radar cross section for high-frequency perturbations on the kite scatterer

TABLE 3: Two-norm errors for the RCS of the kite geometry

Low-frequency perturbations High-frequency perturbations
(MethodN) | ez n £y N ER N £V N
MC, 64 1.91x 107® 1.27x 107! | 3.39x 107® 2.15x 107!
MC, 256 1.07x 107® 7.08x 1072 | 1.84x 1072 9.87x 1072
QMC, 64 1.60x 107 9.90x 1072 | 2.01x 107® 1.29x 10!
QMC, 256 | 5.01x10* 5.08x 102 | 6.45x 10°* 6.01x 1072

This states that we can place a set of souv{cfgﬁve =3, dgp >0, Gl yi)fi} at points{y**} in order to repro-

duce the potential generated by the soufgé$ located at point$y; }. We call these sources the directional equivalent
sources of3 in direction/. In our algorithm, these equivalent sources play the role of the multipole expansions in the
FMM algorithm [23, 24]. Itis clear from Eq. (A.3) that the computation{gf**} utilizes only kernel evaluation and
small matrix-vector multiplications.
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[T ] L1 #
= 1
i J
H i T _E
(b)

Fig 7: (@) B andW B+ follows a directional parabolic configuration and (b) quadtree of a kite-shaped scatterer

Let us now reverse the role of the source and the target. Suppose that we have a set of{gputoeated at
points{x;} in W5+, Because&:(z,y) = G(y, ), we have

S Gl fi— S Gl B |3 dy ZG(yf’%im]
) p=1 q=1 7

This means that we can reproduce the potential generated gt ang by using the auxiliary potenti::usuj]w =
Do G(yfvl, x;) fi}. These potentials are called the directional check potentialsiafdirection. In our algorithm,
these potentials play the role of the local expansions of the FMM algorithm.

Our algorithm starts by constructing a quadtree that contains the whole scatterer (see Fig. 7bp Aftvaiith
wA is said to be in the low-frequency regimeif < 1 and in the high-frequency regimedf > 1. In the high-

= O(e).

frequency regime of the quadtree, the domain is partitioned uniformly without any adaptivity. In the low-frequency

regime, a squaré is partitioned as long as the number of pointdins greater than a fixed constan. In order to
use the low-rank separated representation in Eq. (A.2) in the high-frequency regime, we define the Fif-bélal
box B to be the region that is separated fréhby a distance ofy?A. A box A is said to be in the interaction list &
if Aisin B’s far-field but not in the far-field oB’s parent.F? is further partitioned into a group of directional wedges
{WE:£1 each in a cone of spanning andléw. Because the wedges of the parent box and the child box are nested,
we are able to construct M2M, M2L, and L2L translationgXfi) complexity as in the FMM algorithm. However, it

is important to note that these translations are now directional. In the low frequency regime, the directional equivalent
sources and check potentials reduce to the nondirectional equivalent sources and check potentials introduced in [25].

Putting all of these components together gives us the following directional multilevel algorithm:

1. Construct the quadtree. In the high-frequency regime, the squares are partitioned uniformly. In the low-frequency

regime, a leaf square contains at mdstpoints.

2. Travel up the low-frequency part of the octree. For each sqigreompute the nondirectional equivalent
sources following [25].

3. Travel up the high-frequency part of the quadtree. For each sdianel each directiof, compute{qu’é} using

the directional M2M translation. We skip the squares with width greateryfianbecause their interaction lists
are empty.

4. Travel down the high-frequency part of the quadtree. For each sdqgiamed each directiod, perform the
following two steps:

a. Transform{f;"e} of all of the square§ A} in B’s interaction list and in directiof via the directional
M2L translation. Next, add the result fa.}-}.
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b. Perform the directional L2L translation to transfo{quf} into the incoming check potentials fd&’s
children.

5. Travel down the low-frequency part of the quadtree. For each sdgtare

a. Transform the nondirectional equivalent sources of all the squ@aésin B’s interaction list via the
low-frequency nondirectional M2L operator. Next, add the result to the nondirectional check potentials.

b. Perform the low-frequency directional L2L translation. Depending on whebhisra leaf square or not,
add the result to the nondirectional check potential®&f children or to the potentials at the original
points insideB.

Itis shown in [5, 6] that for a point s€p;, } obtained from discretizing a scatterer boundary curje i /2, K/2)?,
the overall cost of this algorithm 9 (K log K).

A.2 Butterfly Algorithm for Sparse Fourier Transform

Recall that a sparse Fourier transform [7] is a computation of potentials in the form

u; = Z eQ‘n’zwi.kj/ij’ (A4)
J

where{k;} is a set ofO(N) points sampled from a smooth curve in the Fourier domaiN/2, N/2]2, { f;} are the
sources afk;}, and{z;} C [-N/2, N/2]* is a set ofO(V) points sampled from another smooth curve in the spatial
domain[—N/2, N/2]?. The algorithm proposed in [7] first constructs adaptive quadtféesnd T for the sets
{x;} and{k;}, respectively. The quadtrde, takes|—N/2, N/2]* as the top level square. Each square is partitioned
recursively into four identical child squares until all leaf squares are of unit size, and only the squares that contain
points in{x;} are kept. The quadtreEx is constructed in the same way with N/2, N/2]? as the top level square
and{k;} as the point set.

The main idea of the algorithm is based on the following geometric observatiosl hetl B be two squares in
Tx andTx, respectively. If the product of their widths,“w?, is bounded byV, then the interaction®™****/N for
x € Aandk € K is numerically low rank. More precisely, for any fixedthere exists a numbét. = O(log(1/¢))
and two sets of function§a;* B () }1<,<7. and{B% () }1<i<7. such that

T,
627rza;~k/N _ Z(x;lB(x) 243(](3) <e.
t=1

In fact, the functionx*Z () can be chosen to be of fored™=*# /N where{k5 }, <<, belong to a two-dimensional
Chebyshev grid of the squarg For a fixed accuracy, the size of this Chebyshev gridl;, is independent oV (see
[7] for details).

Let us define the partial sun” (x) by

UB(I) — Z 627rzz-gj/ij (A5)

£;eB

with the sum restricted té inside B. The geometric observation implies that, férand B with wAw? < N, the
restriction ofu” (z) to 2 € A can be approximated by placing a set of equivalent soyi¢£§ }1<,<7. at location
{kP}1<i<7.. The computation of the equivalent sourdg$'?} is done by equating the partial sun¥ () and the
potential generated byfAf} at a Chebyshev gridz4'} inside A. More precisely, one solves fdrf*Z1 from the
following equation:
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Solving this system requires inverting the maffa mual -k [N )st- However, due to the translation-invariant property
of the Fourier kernel, the matrices to be inverted for different combination$ @fd B are almost identical. Fur-
thermore, the solution dff/?} can be accelerated using the tensor-product structure of the two-dimensional Fourier
kernel.

Evaluatingu4? := «B(22) directly using Eq. (A.5) is computationally expensive when the sqiaig large.
The next ingredient of the butterfly algorithm addresses how to do this efficientlyP s the parent ofA and
B.,c=1,...,4 be the children of3. From the definition [Eq. (A.5)],

Now, suppose that the equivalent sour¢¢§ BC} are available already; then the quantitfeg'?} can be approxi-
mated by

4 4 T,
ultl = uP () = ZuBc(xf) R Z (Z e%lmfkfc/N.ftPB“> , 1<s<T:
c=1 c=1 t=1
based on precisely the definition of the equivalent sources. This offers a much more efficient way for computing
{uAP} as the size of the Chebyshev grid is a constant.
After putting these components together, the butterfly algorithm in [7] is in fact a systematic way to construct
{fAB}1<i<r. for all pairs of squarest € Tx and B € Tk with w?w?® = N. The algorithm consists of the
following steps:

1. Construct the quadtreeBy and Tk for the point setsX and K, respectively. These trees are constructed
adaptively, and all the leaf squares are of unit size.

2. Let A be the root square afx. For each leaf squarB of Tk, compute

A
u;‘\B _ § e271'mS ~kJ/ij’ 1<s<T.
k;eB

and solve for{ fAB},<;<r. from

T,
A LB
U?B — § eZﬂzmS ky /thAB7 1<s<T..
t=1

3. Foreacld = 1,2,...,log N, construct the equivalent sourcg?} for each pair 4, B) with A at level/ of
Tx andB at level(log N — ¢) of Tk. Let P be the parent o4, andB,., ¢ = 1,...,4 be the children of3.
Computeu? using

4 T
A, Be
ulf =3 ( ik /fo&‘) L 1<s<T.
1

c=1 \t=

Next, solve for{ fA8}1<;<r. from
TE
ufB _ Ze2mmf~kf/thAB’ 1<s<T..
t=1
4. Finally, let B be the root square dfx. For each leaf squaté of Tx and for each:; € A, set

TE

w; = Z e27rzwi-kf/thAB.
t=1

Under the assumption that the sé¢ts} and{k;} are both of orde©(V), the overall cost of the butterfly algorithm
is O(N log N), which is almost linear. We refer to [7] for the detailed complexity analysis.
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