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This paper is concerned with the uncertainty quantification of high-frequency acoustic scattering from objects with
random shape in two-dimensional space. Several new methods are introduced to efficiently estimate the mean and
variance of the random radar cross section in all directions. In the physical domain, the scattering problem is solved
using the boundary integral formulation and Nyström discretization; recently developed fast algorithms are adapted to
accelerate the computation of the integral operator and the evaluation of the radar cross section. In the random domain,
it is discovered that due to the highly oscillatory nature of the solution, the stochastic collocation method based on sparse
grids does not perform well. For this particular problem, satisfactory results are obtained by using quasi–Monte Carlo
methods. Numerical results are given for several test cases to illustrate the properties of the proposed approach.
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1. INTRODUCTION

Acoustic and electromagnetic wave propagation in the presence of impenetrable scatterers is a commonly studied
problem, with applications such as radar/sonar imaging and wireless communications. In many of these practical
situations, the shape and properties of the scattering object may be slightly perturbed from the specifications of the
original geometry. This may occur if a vehicle has manufacturing defects or if it has suffered damage after combat use.
As a result, there is a level of uncertainty when observing physical quantities that are dependent on the characteristics
of the scatterer. Quantifying this uncertainty is an important question, from an engineering point of view, and is
typically done using probabilistic methods.

The work presented here deals with high-frequency acoustic scattering from an impenetrable object with a ran-
domly perturbed surface in two dimensions. LetD ⊂ Rd(d = 2, 3) be a sound-soft scatterer with boundary∂D sam-
pled from a certain probability space. For a given incident fielduI(x), the scattered fieldu(x) satisfies the Helmholtz
equation in the exterior ofD with the following conditions:

∆u(x) + k2u(x) = 0, x = (x1, x2) ∈ Rd\D,

u(x) = −uI(x), x ∈ ∂D, (1.1)

lim
r→∞

r(d−1)/2 (∂ru− ıku) = 0,

whereı =
√−1, k is the wavenumber, and the wavelengthλ = 2π/k. The last equation, known as the Sommerfeld

radiation condition, enforces the scattered field to propagate from the scatterer to infinity; this ensures the uniqueness
of the solution to the exterior scattering problem. Here, we are interested in the high-frequency setting, in which the
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size of the domainD is much larger than the wavelengthλ. The far-field pattern of the scattered fieldu(x) is defined
as

F (s) = lim
r→∞

u(rs)
eıkr/r(d−1)/2

, s ∈ S, (1.2)

whereS is the unit circle/sphere. For many applications, the most important quantity is the radar cross section (RCS)
R(s), defined as

R(s) = |F (s)|2, s ∈ S.
Because the scatterer’s shape is random, there is uncertainty associated with the radar cross sectionR(s). In practice,
we are more interested in the statistical quantities ofR(s), such as the mean and variance.

From a numerical point of view, this problem involves two issues. The first is related to the high-frequency nature
of the scattering problem. In many settings, the operating wavelength is much smaller than the radius of the scattering
object in question; for example, a typical wavelength used by military communications devices ranges between several
millimeters to a few centimeters, whereas the length of a fighter jet is∼20 m. In order to accurately capture the
scattering phenomena, it is commonly necessary to use a grid that resolves the oscillations of each wavelength. Hence,
a large number of discretization points is necessary for such objects that are electrically or acoustically large. The
standard finite element and finite difference methods for this scattering problem face several difficulties. First, the
number of degrees of freedom grows as[diam(D)/λ]d. Other difficulties include artificial truncation of the unbounded
computational domain, mesh generation of the scattering domain, and the large condition number of the resulting
linear systems.

Because of these reasons, the most effective method for sound-soft scattering in linear homogeneous media is the
boundary integral or boundary element method, where the scattered fieldu(x) is represented as the acoustic potential
generated by a layered density on∂D that satisfies a boundary integral equation. Once this layered density is resolved,
quantities such as the far-field pattern or total field can be calculated by the appropriate integrals. Compared to the
aforementioned methods, the boundary integral formulation has several advantages, including the[diam(D)/λ]d−1

scaling of the number of unknowns, automatic treatment of the Sommerfeld radiation condition, and good conditioning
properties of the resulting linear systems. The main drawback of the method is that the matrix equation which results
from the discretization of a boundary integral equation is dense. In the past two decades, several efficient algorithms
have been developed to speed up the iterative solution of such systems [1–7].

The randomness of the boundary surface poses the second challenge. In the traditional case, the geometry of the
object in question is known and the main goal is to examine the deterministic scattered field. However, in many in-
stances, the exact geometry of the object is not known or there is some perturbation from the geometry that would
cause a notable uncertainty in the scattered field and its far-field pattern. Naturally, this problem falls into the category
of stochastic modeling. The traditional approach is the Monte Carlo method [8], but it usually results in long com-
putational times due to its slowO(1/

√
N) convergence with respect to the number of realizationsN . More recently,

a class of methods based on generalized polynomial chaos (gPC) [9, 10] have been developed and become popular
in many practical applications. Most notable is the stochastic collocation method using Smolyak sparse grids [11],
which may offer much better convergence properties than the Monte Carlo method while keeping the same ease of
implementation. (A recent review of gPC methods can be found in [12].) The gPC methods have been applied in sev-
eral cases to study random surface or roughness problems (for example, [13, 14]). For wave scattering with random
shapes, the gPC method was applied in [15] and found to be effective in low-frequency scattering. However, for the
high-frequency scattering problem considered here, the sparse grid collocation method does not offer a big advantage
over other methods. In order to resolve the highly oscillatory solution, a higher order method is required in the ran-
dom space; in addition, to properly model the rough physical domain, the random space needs to be parametrized by
a larger set of random variables. Therefore, for gPC-based methods, the problem would require a high-order imple-
mentation in a large number of dimensions. This will almost certainly result in a large number of unknowns, which
grows quickly for a higher-order method. This is essentially the effect of the “curse of dimensionality,” though its
more familiar effect is the fast growth of the number of unknowns in the physical domain. To alleviate this com-
putational difficulty, quasi–Monte Carlo (QMC) methods based on low-discrepancy sequences are introduced. The
QMC methods [16, 17] are in fact deterministic approaches based on pseudo random numbers; they have much faster
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convergence rates [O(1/N) up to logarithmic factors] without sacrificing the generality of the Monte Carlo method,
and their dependence on dimensionality is much weaker than for stochastic collocation methods.

In this paper, we combine the recent development on fast algorithms for the boundary integral solver with the
QMC method to efficiently address the uncertainty quantification problem for high-frequency acoustic scattering. The
rest of this paper is organized as follows. In Section 2, we derive the boundary integral formulation of the scattering
problem and demonstrate how the randomness of the boundary is modeled. In Section 3, we detail the main numerical
methods, including the numerical discretization, fast summation techniques, and QMC methods. In Section 4, we
report the numerical experiments.

2. MATHEMATICAL FORMULATIONS

2.1 Boundary Integral Formulation

We consider the two-dimensional acoustic scattering problem with a sound-soft scattererD. In the presence of an
incident fielduI(x), the scattered fieldu(x) satisfies the following exterior boundary value problem:

∆u(x) + k2u(x) = 0, x = (x1, x2) ∈ R2\D,

u(x) = −uI(x), x ∈ ∂D, (2.1)

lim
r→∞

√
r (∂ru− ıku) = 0.

It is convenient to set the wavenumberk = 2π so that the wavelengthλ = 2π/k = 1. We further assume thatD is
supported in the square[−K/2,K/2]2, so thatK can be considered effectively as the diameter ofD. For the high-
frequency problems that we are interested in,K is much larger thanλ = 1. The boundary integral formulation of Eq.
(2.2) utilizes the free-space fundamental solution (or the Green’s function) of the 2D Helmholtz equation:

G(x, y) =
ı

4
H1

0 (k|x− y|). (2.2)

Here,H1
0 is the zero-order Hankel function of the first kind. Using Green’s third identity and the boundary condition of

the sound-soft object, we can formulate the scattered fieldu(x) as a combination of single- and double-layer potentials
with surface densityϕ(x) for x ∈ ∂D,

u(x) =
∫

∂D

[
∂G(x, y)
∂n(y)

− ıη ·G(x, y)
]

ϕ(y)dy, (2.3)

wheren(y) is the unit normal of the scatterer surface aty andη ≈ k = 2π. Lettingx approach∂D gives rise to the
boundary integral equation

−uI(x) =
1
2
ϕ(x) +

∫

∂D

[
∂G(x, y)
∂n(y)

− ıη ·G(x, y)
]

ϕ(y)dy. (2.4)

Here, the extra(1/2)ϕ(x) term appears because the kernels[∂G(x, y)]/[∂n(y)] become singular asx approaches the
boundary, and its limit is a combination of theδ term plus the improper integral in Eq. (2.4). The overall method to
solve foru(x) is as follows: one first solves for surface densityϕ(x) in Eq. (2.4); after the surface density is found, it
can be substituted back into Eq. (2.3) to calculate the scattered field. The total field is now found through adding the
scattered field to the incident field. For more details, we refer to [18].

The far-field patternF (s) of the scatterer can also be calculated once the surface densityϕ(x) is found. In the 2D
case, it is given by

F (s) =
e−ı π

4√
8πk

∫

∂D

{k [n(y) · s] + η}e−ıks·yϕ(y)dy. (2.5)

and the radar cross sectionR(s) is equal to|F (s)|2.
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2.2 Probabilistic Modeling of Domain Uncertainty

To incorporate the uncertainty of the scattererD, we switch to a probabilistic setting and model the surface as a
random process. That is, we allow the boundary to take the form

∂Dz(ω) = {x(t,ω) = b(t) · [1 + p(t, ω)], t ∈ [0, 2π), ω ∈ Ω},
whereb(t) = [b1(t), b2(t)] is the base geometry,Ω is the event space in a properly defined probability space, and
p(t,ω) is the perturbation. For a fixedω, p(t,ω) is a deterministic function representing how the base geometryb(t)
is scaled, while for a fixed locationt, p(t, ω) is a random variable representing the uncertainty of the surface at the
location associated witht. The perturbationp(t, ω) is also assumed to be sufficiently regular so that the scattering
problem is well posed almost everywhere inΩ.

A critical step in modeling the random surface is to properly parametrize the random process by a finite number
of independent random variables. LetZ(ω) = [Z1(ω), . . . , ZM (ω)], M ≥ 1, be such a set of independent random
variables, whose probability distribution isFZ(z) = Prob(Z ≤ z), wherez ∈ RM . Without loss of generality,
we focus on the continuous random variables, where a probability density functionρ(z) = dFZ(z)/dz exists. The
random surface can now be expressed in terms ofZ in the following manner:

∂Dz = {b(t) · [1 + p(t, Z)], t ∈ [0, 2π), Z ∈ RM}.
The requirement of the independence ofZ1(ω), . . . , ZM (ω) is important for numerical purposes because most

random number generators are designed to generate independent random numbers. Common tools for constructing
such a finite-dimensional representation or approximation are more established for Gaussian processes. For example,
spectral expansion [19] and Karhunen–Loeve expansions [20] are quite effective. For non-Gaussian processes, the
parametrization procedure is still an active research topic, with many open issues. For the purpose of this paper, we
simply assume that such a representation has already been established.

Now, the integral formulations given in Section 2.1 all depend onz. The densityϕz(x) for x ∈ ∂Dz satisfies

−uI(x) =
1
2
ϕz(x) +

∫

∂Dz

[
∂G(x, y)
∂n(y)

− ıη ·G(x, y)
]

ϕz(y)dy. (2.6)

The far-field pattern and the radar cross sections are equal to

Fz(s) =
e−ı π

4√
8πk

∫

∂Dz

{kn(y) · s + η}e−ıks·yϕz(y)dy, Rz(s) = |Fz(s)2|.

Finally, the mean and the variance of the observableR(s) are given by

E[R(s)] =
∫

Rz(s)ρ(z)dz,

var[R(s)] =
∫
{Rz(s)− E[R(s)]}2 ρ(z)dz.

(2.7)

It is worth noting thatM , the dimensionality of the random variablesz, depends on the domain uncertainty. In
many realistic cases, the uncertainty presents itself with “fine” structure and as surface roughness. This implies that
the random processes describing such an uncertainty should have short correlation length. Subsequently, the dimen-
sionalityM resulting from the parametrization procedure will be large. Therefore, in many practical simulations, the
integrals Eq. (2.7) will be in a high-dimensional random spaceRM with M À 1.

3. NUMERICAL METHODS

3.1 Nystr öm Discretization

To numerically solve for the surface density from Eq. (2.4), the Nyström method is used to discretize the integral
equation. Using the periodic boundary parametrizationx(t) = [x1(t), x2(t)] for t ∈ [0, 2π], the parametrized integral
equation takes the following form:
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−uI(t) =
1
2
ϕ(t) +

∫ 2π

0

K(t, t′)ϕ(t′)dt′, t ∈ [0, 2π] , (3.1)

with

K(t, t′) =
{

∂G[x(t), x(t′)]
∂n[x(t′)]

− ıηG[x(t), x(t′)]
}

J(t′). (3.2)

By abusing the notation slightly, we denoteuI(t) = uI [x(t)], ϕ(t) = ϕ[x(t)], and the JacobianJ(t) = J [x(t)]. To
discretize the integral equation (3.1), we create an equispacedNt-point grid over the variablet such thatti = 2πi/Nt

for i = 0, 1, 2, . . . , Nt − 1, with Nt = O(K); these points are the Nyström (or quadrature) points. The condition
Nt = O(K) corresponds to discretizing the boundary withO(1) grid points per wavelength. The equations enforced
at the Nystr̈om points are written

−uI(ti) =
1
2
ϕ(ti) +

∫ 2π

0

K(ti, t)ϕ(t)dt, i = 0, 1, 2, . . . , Nt − 1. (3.3)

3.1.1 Quadrature Rule

The next component of the Nyström method is the quadrature rule for the integral in Eq. (3.3). More specifically,
given the values ofϕ(ti) for i = 0, 1, . . . , Nt − 1, one should be able to compute an accurate approximation of∫ 2π

0
K(ti, t)ϕ(t)dt. Once the quadrature rule is determined, the resulting linear system of Eq. (3.3) is solved using

iterative methods such as GMRES. If the kernel in the integrand had been smooth for allt, the standardN -point
trapezoidal rule with quadrature points{tj} could be ideal for approximating the integral operator. Unfortunately,
because the kernelK(ti, t) has a logarithmic singularity att = ti, a special quadrature rule is required. For this
purpose, we utilize the modified trapezoidal rule proposed by Kapur and Rokhlin in [21]. The main idea of [21] is
to build a local correction near the singularity. Takingf(t) = K(ti, t)ϕ(t) andh = 2π/Nt, the Kapur–Rokhlin
quadrature rule applied to the integral in Eq. (3.3) takes the form

∫
f(t)dt ≈

Nt−1∑

j=0
j 6=i

f(tj)h +
i+m∑

j=i−m
j 6=i

f(tj)β|j−i|h, (3.4)

where the second summation is the correction term andβ|j−i| are the local correction weights. One drawback that we
noted about the correction weights is that they can have large negative numbers, which causes the resulting matrix to
become less stable and results in an increased number of GMRES iterations.

In order to remedy this problem, we modify the approach slightly by introducing a denser grid just for the purpose
of numerical integration, while keeping the original grid for the identity term(1/2)ϕ(t) and incident fielduI(t). In
essence, this will only change the matrix-vector multiplication step in the GMRES iteration, as we will soon show;
the solutionϕ(t) will still be computed on the original mesh. We denote the density at these points asϕ(t̃j) for
j = 0, 1, . . . , Ñt − 1, whereÑt = rNt for some integer refinement rater andt̃j = 2πj/Ñt. In practice,r is chosen
to be4 or 8. With the more refined mesh, the quadrature formula becomes

∫ 2π

0

K(ti, t)ϕ(t)dt ≈
Ñt−1∑

j=0
j 6=ri

K(ti, t̃j)ϕ(t̃j)h̃ +
ri+m∑

j=ri−m
j 6=ri

K(ti, t̃j)ϕ(t̃j)β|j−ri|h̃. (3.5)

Here, we’ve run into another problem: the original grid definesϕ only at points{tj}Nt−1
j=0 , a subset of{t̃j}Ñt−1

j=0 ; that
is, we must somehow recoverϕ(t̃j) from the original grid. Because the surface of the scattering object is smooth in
R2, we choose to use Fourier interpolation to recover the surface density on the refined grid.

We can now apply the GMRES solver to the system of equations using the refined grid in the matrix-vector
multiplication within each iteration. For each iteration, we are given the densityϕ(tj) for j = 0, 1, 2, . . . , Nt−1, and
we are required to calculate the right-hand side of Eq. (3.3). Based on the above discussion, we perform the following
steps:
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1. Givenϕ(tj) for j = 0, 1, 2, . . . , Nt − 1, we use Fourier interpolation to getϕ(t̃j) for j = 0, 1, 2, . . . , Ñt − 1.

2. For i = 0, 1, 2, . . . , Nt − 1, compute

ai =
Ñt−1∑

j=0
j 6=ri

K(ti, t̃j)ϕ(t̃j)h̃ (3.6)

3. For i = 0, 1, 2, . . . , Nt − 1, compute the matrix-vector product

bi =
ri+m∑

j=ri−m
j 6=ri

K(ti, t̃j)ϕ(t̃j)β|j−ri|h̃. (3.7)

4. For i = 0, 1, 2, . . . , Nt − 1, the right hand side of Eq. (3.3) is
(

1
2ϕ(ti) + ai + bi

)
.

Step 1 of the procedure can be computed using the FFT, which takesO(Nt log Nt) operations. Becausem is of
O(1), the amount of work necessary for step 3 isO(Nt). Obviously, step 4 also takesO(Nt) steps. The only step that
takesO(N2

t ) operations is step 2, and a fast algorithm is required to bring down this complexity.

3.1.2 Fast Pairwise Summation

Let us denotexi = x(ti) and x̃j = x(t̃j). Thenx̃j = xi if and only if j = ri. Under the new notation, Eq. (3.6)
becomes

Ñt−1∑

j 6=ri
j=0

K(ti, t̃j)ϕ(t̃j)h̃ =
∑

j:x̃j 6=xi

[
∂G(xi, x̃j)

∂n(x̃j)
− ıηG(xi, x̃j)

]
fj (3.8)

with fj = J(t̃j)ϕ(t̃j)h̃.
This new formulation is close to theN -body problem of the Helmholtz kernel: Given a point set{pi}N

i=1 and
sources{fi}N

i=1, one wants to evaluate at eachpi,

ui =
N∑

j=0
j 6=i

G(pi, pj)fj (3.9)

Several methods [1–3] have been proposed to evaluate{ui}N
i=1 in O(N log N) steps. Here, we employ the directional

multilevel method proposed in [5, 6] by one of the authors. A brief description of this algorithm is provided in
Section A.1 in the Appendix for completeness.

However, our summation [Eq. (3.8)] is different from the standardN -body problem [Eq. (3.9)] in two aspects.
First, we are using different source and target points; in our case,{xi} are the source locations and{x̃j} are the target
locations. This fact does not change the algorithm significantly, as{xi} ⊂ {x̃j}; we can simply ignore potentials
computed at the leaf box level for{x̃j}j 6=ri. Second, the kernel function is[∂G(x, y)]/[∂n(y) − ıηG(x, y)], a linear
combination of the Green’s functionG(x, y) with its normal derivative[∂G(x, y)]/[∂n(y)] at the source pointsy. We
can easily extend the directional algorithm to this kernel as well using the following argument: Because the normal
derivative with respect toy is a linear operator,[∂G(x, y)]/[∂n(y)] − ıηG(x, y) as a function ofx still satisfies the
Helmholtz equation. Thus, the potential generated by this mixed kernel can still be reproduced by the equivalent
sources of the Green’s functionG(x, y). The only difference is that in the construction of the equivalent sources at
the leaf boxes, we use the kernel[∂G(x, y)]/[∂n(y)]− ıηG(x, y) to determine the check potentials. The locations of
equivalent sources and potentials stay the same.
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3.1.3 Evaluation of the Far-Field Pattern

Onceϕ(x) is ready, the next step is to evaluate the far-field patternF (s) numerically. Typically, one needs to compute
theF (s) in a finite number of directions of orderO(K). To that end, we discretize the unit sphereS with Ns = O(K)
equally spaced pointss`, for ` = 0, 1, . . . , Ns − 1; as a parametrized function, it is easy to see that

s` = (s`,1, s`,2) =
[
cos

(
2π`

Ns

)
, sin

(
2π`

Ns

)]
.

Now, for eachs`, the far-field patternF (s`) is given by

F (s`) =
e−ı(π/4)

√
8πk

∫

∂D

{k[n(y) · s`] + η}e−ıks`·yϕ(y)dy. (3.10)

Because the integrand in the far-field operator contains no singular functions, the trapezoidal rule can be applied to
approximateF (s`) with super algebraic convergence. Accordingly, Eq. (3.10) is approximated by

F (s`) ≈ e−ı(π/4)

√
8πk

Nt−1∑

i=0

(k{n[x(ti)] · s`}+ η) e−ıks`·x(ti)ϕ(ti)J(ti)h. (3.11)

Direct evaluation of this sum for eachs` takesO(NsNt) = O(K2) steps, which can be very expensive whenK is
large. In order to speed up this calculation, we write the dot product in the brackets as the sum of two components,

k{n[x(ti)] · s`} = k {n1[x(ti)]s`,1}+ k {n2[x(ti)]s`,2} , (3.12)

wheren = (n1, n2). Thus, the summation in Eq. (3.11) can be written as the sum of the following three sums:

s`,1
e−ı(π/4)

√
8πk

Nt−1∑

i=0

e−ıks`·y(ti) {kn1[y(ti)]ϕ(ti)J(ti)h} (3.13)

s`,2
e−ı(π/4)

√
8πk

Nt−1∑

i=0

e−ıks`·y(ti) {kn2[y(ti)]ϕ(ti)J(ti)h} (3.14)

e−ı(π/4)

√
8πk

Nt−1∑

i=0

e−ıks`·y(ti) [ηϕ(ti)J(ti)h] (3.15)

After appropriate rescaling, each summation becomes an instance of the sparse Fourier transform introduced in [7],
where both the spatial and Fourier data are sparsely supported. More precisely, defineN = 2K, p` = −K · s`,
ξi = 2 · x(ti), fi = ηφ(ti)J(ti)h, and Eq. (3.15) becomes

Nt∑

i=0

e2πıp`·ξi/Nfi (3.16)

up to a constant scaling. Because we havep` ∈ [−N/2, N/2]2, ξi ∈ [−N/2, N/2]2, andNt = O(K) = O(N),
Eq. (3.16) fits exactly into the definition of the sparse Fourier transform. In [7], it is shown that the sparse Fourier
transform can be computed inO(K log K) steps; a short description of the algorithm of [7] is outlined in Section A.2
in the Appendix for the sake of completeness. Now, since each of the three sums [Eqs. (3.13)–(3.15)] can be computed
in O(K log K) steps, the total cost of computingR(s`) for all s` is alsoO(K log K).
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3.2 Stochastic Algorithms: Sparse Grids and QMC Method

To efficiently evaluate the statistics defined by the integrals in Eq. (2.7), a careful approach must be taken. A popular
cubature scheme used to compute these multidimensional integrals is the Smolyak sparse grid [22]; though it was
shown to be effective for general purpose stochastic problems in [11], the sparse grid is found to be less effective in
this situation. The main reason is that the integrals resulting from high-frequency scattering are highly oscillatory, thus
requiring higher-order methods. For even moderately high dimensions, the number of points in the sparse grid grows
rapidly as the accuracy level is increased. This can be seen in Table 1, where the total number of points are tabulated
for moderate dimensions ofM = 8 andM = 10. At the modest accuracy level of 3, the total number of points quickly
exceeds103, which is usually considered to be an impractical number of samples. (Details of the construction of the
sparse grids can be found in numerous references such as [22].)

After extensive testing, we determined that it is more appropriate to use the QMC method for the integrals in
Eq. (2.7). We follow [16] for a short description of the QMC methods. The main idea of the QMC method is the
construction of low-discrepancy sequences. For any integerb ≥ 2, we defineZb = {0, 1, . . . , b− 1}. For any integer
n ≥ 1, let us write the uniqueb-ary representation ofn as

n =
∞∑

j=0

aj(n)bj , aj(n) ∈ Zb.

The radical inverse functionφb(n) is defined to be

φb(n) =
∞∑

j=0

aj(n)b−j−1, ∀n ≥ 0.

Clearly, we have0 ≤ φb(n) ≤ 1. Two of the most commonly used low-discrepancy sequences are defined based
on the radical inverse functions. LetM be an arbitrary dimension andb1, . . . , bM coprime to each other. The Halton
sequence is defined for each integern > 0 as

z(n) = [φb1(n), . . . , φbM (n)] ∈ [0, 1]M

The definition of the Hammersley sequence is similar. LetM be the dimension,N be the length of the sequence, and
b1, . . . , bM−1 coprime to each other. The Hammersley sequence is defined forn = 1, . . . , N as

z(n) =
[ n

N
, φb1(n), . . . , φbM−1(n)

]
∈ [0, 1]M .

For a fixed sample sizeN , we can generate the samplesz(1), z(2), . . . , z(N) using a low-discrepancy sequence (in
our numerical examples, we choose the Hammersley sequence due to its lower discrepancy). For each samplez(i),
we use the algorithms described in Section 3.1 to compute the RCSRz(i)(s`) for ` = 0, 1, . . . , Ns − 1. Once they are
ready, the statistical estimations of the mean and variance are given respectively by

R̄N (s`) =
1
N

N∑

i=1

Rz(i)(s`)

V̄N (s`) =
1

N − 1

N∑

i=1

[
Rz(i)(s`)− R̄N (s`)

]2
.

TABLE 1: Number of points in Smolyak sparse grids
DimensionM Level 1 Level 2 Level 3 Level 4

M = 8 17 145 849 3937
M = 10 21 221 1581 8801
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4. NUMERICAL EXPERIMENTS

4.1 Method and Error Estimates

In this section, we present the results of some numerical experiments. Recall that the uncertainty of the scatterer is
modeled by

∂Dz = {x(t) = b(t) · [1 + p(t, Z)], t ∈ [0, 2π)}
whereb(t) = [b1(t), b2(t)] is the base geometry andp(t, Z) is the (multiplicative) random perturbation. Two base
shapes on which we have tested are the cylinder and the kite (Fig. 1). These objects were chosen because they are
smooth and have a simple parametrization in the two-dimensional plane:

Cylinder: b(t) = [b1(t), b2(t)] =
K

2
[cos(t), sin(t)] .

Kite: b(t) = [b1(t), b2(t)] =
K

2

[
cos(t) + 0.65 cos(2t)− 0.65

1.5
, sin(t)

]
.

The perturbationp(t, z) is modeled as follows. First, choose a set number of frequencies or modes{ξi}M/2
i=1 . For

simplicity, we assume that each componentZi of the random parameterZ = (Z1, . . . , ZM ) has a uniform probability
density function over the unit interval[0, 1] (this assumption can certainly be removed by performing appropriate
reparametrization to eachZi). As a result, the joint probability density function forz is the constant one function over
theM -dimensional cube[0, 1]M . For a given sampleZ = (Z1, . . . , ZM ), the perturbationp(t, Z) is defined as

p(t, Z) =
µ

K

M/2∑

i=1

[(
Z2i−1 − 1

2

)
cos(ξit) +

(
Z2i − 1

2

)
sin(ξit)

]
. (4.1)

Depending on the choice of the frequencies{ξi}M/2
i=1 , p(t, Z) can model both low- and high-frequency perturbations.

1. Low-frequency perturbation setsξi = i for i = 1, 2, . . . , M/2; thus, the perturbation function does not have
many oscillations and the resulting boundary∂D does not have rough edges.

2. High-frequency perturbation setsξi = iK/M for i = 1, 2, . . . , M/2. Here, the high-frequency range extends to
modes that are comparable to the size of the scattering object in terms of wavelength and the resulting boundary
∂D exhibits small-scale oscillations.

In each case, we compare the uncertainty quantification results of the Monte Carlo method and the QMC method
for a fixed sample sizeN . In Monte Carlo method, the random parameter sampleZ(i) = (Z(i)

1 , . . . , Z
(i)
M ) for i =

1, 2, . . . , N is generated randomly for each entryZ
(i)
j for j = 1, 2, . . . , M . In QMC method, the random parameter

(a) (b)

FIG. 1: Base shape of the scatterers used in the test: (a) Circle and (b) kite
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Z(i) = (Z(i)
1 , . . . , Z

(i)
M ) for eachi is constructed using the Hammersley sequence. For our simulations, the goal is to

see how the estimations of the expected value and the variance of the radar cross section converge for the Monte Carlo
and QMC methods. In each case, the statistical estimations of the mean and variance for a fixed sample sizeN are
given respectively by

R̄N (s`) =
1
N

N∑

i=1

Rz(i)(s`)

V̄N (s`) =
1

N − 1

N∑

i=1

[
Rz(i)(s`)− R̄N (s`)

]2
.

In order to measure the convergence rate depending on the sample sizeN , we estimate the error using the relative
`2 norm. Suppose thatNmax is the largest sample size used in the tests. Then for each fixedN , we define the errors
εR̄,N andεV̄ ,N as

εR̄,N =

√√√√
∑Ns−1

`=0 |R̄N (s`)− R̄Nmax(s`)|2∑Ns−1
`=0 |R̄Nmax(s`)|2

εV̄ ,N =

√√√√
∑Ns−1

`=0 |V̄N (s`)− V̄Nmax(s`)|2∑Ns−1
`=0 |V̄Nmax(s`)|2

4.2 Numerical Results

In our tests, we set the diameter of the scattererK to be512, the number of random modesM = 8 and the perturbation
amplitude in Eq. (4.1)µ = 0.1. We choose the incident field to be a plane wave propagating in thex1 direction, i.e.,

uI(x) = e2πıx1 , (4.2)

wherex = (x1, x2); once again, the wavenumber is2π and the wavelengthλ is 1. We tested on both cylinder and kite
geometries, using both low- and high-frequency perturbations mentioned earlier.

First, we show the results of stochastic collocation using Smolyak sparse grids for the random parameter, with
accuracy level of 1, 2, and 3. Figure 2 shows close-ups of the variance curve for the low- and high-frequency pertur-
bations of the kite, respectively. It is clear that stochastic collocation produces somewhat nonsensical results because
it should be impossible to have a negative value for the variance of the RCS. This artifact is purely a result of utilizing
negative weights in the quadrature of the random space; for this reason, stochastic collocation does not work well
when the solution is highly oscillatory.

Next, we present the results of both the Monte Carlo and QMC methods. In order to measure the convergence,
different sample sizes ofN = 64, 256, 1024 are used withNmax = 1024 for the highest-order accuracy. Figures 3 and
4 summarize the results of the cylinder for the low- and high-frequency perturbations, respectively. The errors in both
cases are tabulated in Table 2. For low-frequency perturbations, the expectation and variance converge significantly
faster for QMC when the sample sizeN increases. However, for the high-frequency perturbations, it is observed that
the improvement in error for both quantities is modest at best; that is, the rougher the surface of the cylinder, the more
difficult it is to accurately quantify the RCS. We have also performed tests for larger values ofM and have observed
similar results for both low- and high-frequency perturbations.

Figures 5 and 6 summarize the results of the kite for the high- and low-frequency perturbations, respectively,
using QMC. The errors in both cases are tabulated in Table 3. The results suggests that, when the sample sizeN is
quadrupled, the expectation for both the low frequency and high-frequency perturbations converge by a factor of3 for
the QMC method and by a factor of2 for the standard Monte Carlo method. On the other hand, the convergence rates
for the variance seem to be comparable for the two methods.
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FIG. 2: Variance of the radar cross section for the kite, using stochastic collocation. (left) For low-frequency pertur-
bations and (right) for high-frequency perturbations. For each type of perturbation, the top figure shows the full plot,
while the bottom figure shows a close-up where the curves show negative variance

One difficulty we encountered in our numerical tests is the sensitivity of the RCS calculation varying with the size
of the perturbationµ. For larger perturbations approaching the size of the operating wavelength, such convergence to
the actual mean or variance proved to be quite difficult without having an inordinate number of samples. In order to
achieve something sensible, especially for high-frequency problems, we found computationally that the perturbation
size must satisfyµ ≤ λ/5.

5. CONCLUSION

In this paper, we presented a new numerical algorithm for quantifying the uncertainty of high-frequency acoustic
scattering from scatterers with random shape in two-dimensional space. It allows one to effectively estimate the
mean and variance of the random radar cross section in all directions. For each realization of the domain boundary,
the boundary integral formulation is used with the standard Nyström discretization. The computation of the integral
operator and the evaluation of the radar cross section are accelerated by the fast directional multilevel algorithm
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FIG. 3: Expectation and variance of the radar cross section for low-frequency perturbations on the cylinder. (left)
Regular Monte Carlo and (right) use the Hammersley low-discrepancy sequence

and the butterfly algorithm (for the sparse Fourier transform). The statistical averaging is performed using the QMC
method. When compared to the standard Monte Carlo method, the QMC method provides faster convergence to the
mean and variance.

In our numerical tests, the random domain is modeled by a small random perturbation around a base shape.
Numerical results suggest that the algorithm performs quite well when the perturbation is of low frequency compared
to the wavelength of the scattering problem. More in-depth studies for high-frequency perturbations or large random
perturbations are under investigation.

APPENDIX A. FAST ALGORITHMS

A.1 Fast Directional Multilevel Algorithm

Here, we briefly outline the directional method presented in [6]. Let{pi}N
i=1 ⊂ [−K/2,K/2]2 and{fi}N

i=1 be the
sources located at{pi}N

i=1. TheN -body problem of the Helmholtz kernel is to compute

International Journal for Uncertainty Quantification



Fast Method for High-Frequency Acoustic Scattering from Random Scatterers 111

0 1 2 3 4 5 6
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Expectation of RCS with Monte Carlo

s

R
N

 

 

N=64
N=256
N=1024

0 1 2 3 4 5 6
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Expectation of RCS with Quasi−Monte Carlo

s

R
N

 

 

N=64
N=256
N=1024

0 1 2 3 4 5 6
10

−4

10
−2

10
0

10
2

10
4

10
6

Variance of RCS with Monte Carlo

s

V
N

 

 

N=64
N=256
N=1024

0 1 2 3 4 5 6
10

−4

10
−2

10
0

10
2

10
4

10
6

Variance of RCS with Quasi−Monte Carlo

s

V
N

 

 

N=64
N=256
N=1024

FIG. 4: Expectation and variance of the radar cross section for high-frequency perturbations on the cylinder

TABLE 2: Two-norm errors for the RCS of the cylinder geometry
Low-frequency perturbations High-frequency perturbations

(Method,N ) εR̄,N εV̄ ,N εR̄,N εV̄ ,N

MC, 64 6.17× 10−5 1.33× 10−1 2.35× 10−3 2.69× 10−1

MC, 256 1.50× 10−5 9.68× 10−2 1.28× 10−3 1.62× 10−1

QMC, 64 2.71× 10−5 8.06× 10−2 2.25× 10−3 2.27× 10−1

QMC, 256 4.80× 10−6 3.48× 10−3 9.32× 10−4 1.11× 10−1

ui =
N∑

j=0
j 6=i

G(pi, pj)fj , (A.1)

for i = 1, ..., N , whereG(x, y) is the Green’s function of the Helmholtz equation [Eq. (2.2)]. The main idea behind
this approach is a directional low-rank property of the Helmholtz kernel. Consider a boxB of width wλ and a wedge
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FIG. 5: Expectation and variance of the radar cross section for low-frequency perturbations on the kite scatterer

WB,` as illustrated in Fig. 7a. BecauseWB,` is centered at the vector` with an opening angle of size1/w and is a
distancew2λ away fromB, we say thatWB,` andB follow a directional parabolic configuration.

We proved that for any accuracyε, there exists a rank-rε separated approximation ofG(x, y), i.e., there are sets
{yB,`

q }1≤q≤rε ⊂ B, {xB,`
p }1≤q≤rε ⊂ WB,`, and a matrixD = (dqp)1≤p,q≤rε such that

∣∣∣∣∣G(x, y)−
rε∑

q=1

G(x, yB,`
q )

rε∑
p=1

dqpG(xB,`
p , y)

∣∣∣∣∣ ≤ ε (A.2)

for y ∈ B andx ∈ WB,`, where the matrixD = (dqp)1≤p,q≤rε can be computed easily from{yB,`
q } and{xB,`

p }. It
is important to emphasize that the rankrε is independent of the size ofB.

Suppose{fi} are the sources located at{yi} in B. After applying the separated approximation in Eq. (A.2) to
{yi} and summing the approximations up with weights{fi}, we obtain

∣∣∣∣∣
∑

i

G(x, yi)fi −
rε∑

q=1

G(x, yB,`
q )

[
rε∑

p=1

dqp

∑

i

G(xB,`
p , yi)fi

]∣∣∣∣∣ = O(ε). (A.3)
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FIG. 6: The expectation and variance of the radar cross section for high-frequency perturbations on the kite scatterer

TABLE 3: Two-norm errors for the RCS of the kite geometry
Low-frequency perturbations High-frequency perturbations

(Method,N ) εR̄,N εV̄ ,N εR̄,N εV̄ ,N

MC, 64 1.91× 10−3 1.27× 10−1 3.39× 10−3 2.15× 10−1

MC, 256 1.07× 10−3 7.08× 10−2 1.84× 10−3 9.87× 10−2

QMC, 64 1.60× 10−3 9.90× 10−2 2.01× 10−3 1.29× 10−1

QMC, 256 5.01× 10−4 5.08× 10−2 6.45× 10−4 6.01× 10−2

This states that we can place a set of sources
{

fB,`
q :=

∑
p dqp

∑
i G(xB,`

p , yi)fi

}
at points{yB,`

q } in order to repro-

duce the potential generated by the sources{fi} located at points{yi}. We call these sources the directional equivalent
sources ofB in direction`. In our algorithm, these equivalent sources play the role of the multipole expansions in the
FMM algorithm [23, 24]. It is clear from Eq. (A.3) that the computation of{fB,`

q } utilizes only kernel evaluation and
small matrix-vector multiplications.
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(a) (b)

Fig 7: (a)B andWB,` follows a directional parabolic configuration and (b) quadtree of a kite-shaped scatterer

Let us now reverse the role of the source and the target. Suppose that we have a set of sources{fi} located at
points{xi} in WB,`. BecauseG(x, y) = G(y, x), we have

∣∣∣∣∣
∑

i

G(y, xi)fi −
rε∑

p=1

G(y, xB,`
p )

[
rε∑

q=1

dqp

∑

i

G(yB,`
q , xi)fi

]∣∣∣∣∣ = O(ε).

This means that we can reproduce the potential generated at anyy ∈ B by using the auxiliary potentials{uB,`
q :=∑

i G(yB,`
q , xi)fi}. These potentials are called the directional check potentials ofB in direction`. In our algorithm,

these potentials play the role of the local expansions of the FMM algorithm.
Our algorithm starts by constructing a quadtree that contains the whole scatterer (see Fig. 7b). A boxB of width

wλ is said to be in the low-frequency regime ifw < 1 and in the high-frequency regime ifw ≥ 1. In the high-
frequency regime of the quadtree, the domain is partitioned uniformly without any adaptivity. In the low-frequency
regime, a squareB is partitioned as long as the number of points inB is greater than a fixed constantNp. In order to
use the low-rank separated representation in Eq. (A.2) in the high-frequency regime, we define the far-fieldFB of a
boxB to be the region that is separated fromB by a distance ofw2λ. A box A is said to be in the interaction list ofB
if A is in B’s far-field but not in the far-field ofB’s parent.FB is further partitioned into a group of directional wedges
{WB,`}, each in a cone of spanning angle1/w. Because the wedges of the parent box and the child box are nested,
we are able to construct M2M, M2L, and L2L translations ofO(1) complexity as in the FMM algorithm. However, it
is important to note that these translations are now directional. In the low frequency regime, the directional equivalent
sources and check potentials reduce to the nondirectional equivalent sources and check potentials introduced in [25].

Putting all of these components together gives us the following directional multilevel algorithm:

1. Construct the quadtree. In the high-frequency regime, the squares are partitioned uniformly. In the low-frequency
regime, a leaf square contains at mostNp points.

2. Travel up the low-frequency part of the octree. For each squareB, compute the nondirectional equivalent
sources following [25].

3. Travel up the high-frequency part of the quadtree. For each squareB and each directioǹ, compute{fB,`
q } using

the directional M2M translation. We skip the squares with width greater than
√

kλ because their interaction lists
are empty.

4. Travel down the high-frequency part of the quadtree. For each squareB and each directioǹ, perform the
following two steps:

a. Transform{fA,`
q } of all of the squares{A} in B’s interaction list and in directioǹ via the directional

M2L translation. Next, add the result to{uB,`
q }.
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b. Perform the directional L2L translation to transform{uB,`
q } into the incoming check potentials forB’s

children.

5. Travel down the low-frequency part of the quadtree. For each squareB:

a. Transform the nondirectional equivalent sources of all the squares{A} in B’s interaction list via the
low-frequency nondirectional M2L operator. Next, add the result to the nondirectional check potentials.

b. Perform the low-frequency directional L2L translation. Depending on whetherB is a leaf square or not,
add the result to the nondirectional check potentials ofB’s children or to the potentials at the original
points insideB.

It is shown in [5, 6] that for a point set{pi} obtained from discretizing a scatterer boundary curve in[−K/2,K/2]2,
the overall cost of this algorithm isO(K log K).

A.2 Butterfly Algorithm for Sparse Fourier Transform

Recall that a sparse Fourier transform [7] is a computation of potentials in the form

ui =
∑

j

e2πıxi·kj/Nfj , (A.4)

where{kj} is a set ofO(N) points sampled from a smooth curve in the Fourier domain[−N/2, N/2]2, {fj} are the
sources at{kj}, and{xi} ⊂ [−N/2, N/2]2 is a set ofO(N) points sampled from another smooth curve in the spatial
domain[−N/2, N/2]2. The algorithm proposed in [7] first constructs adaptive quadtreesTX andTK for the sets
{xi} and{kj}, respectively. The quadtreeTX takes[−N/2, N/2]2 as the top level square. Each square is partitioned
recursively into four identical child squares until all leaf squares are of unit size, and only the squares that contain
points in{xi} are kept. The quadtreeTK is constructed in the same way with[−N/2, N/2]2 as the top level square
and{kj} as the point set.

The main idea of the algorithm is based on the following geometric observation. LetA andB be two squares in
TX andTK , respectively. If the product of their widths,wAwB , is bounded byN , then the interactione2πıx·k/N for
x ∈ A andk ∈ K is numerically low rank. More precisely, for any fixedε, there exists a numberTε = O(log(1/ε))
and two sets of functions{αAB

t (x)}1≤t≤Tε and{βAB
t (x)}1≤t≤Tε such that

∣∣∣∣∣e
2πıx·k/N −

Tε∑
t=1

αAB
t (x)βAB

t (k)

∣∣∣∣∣ ≤ ε.

In fact, the functionαAB
t (x) can be chosen to be of forme2πıx·kB

t /N , where{kB
t }1≤t≤Tε belong to a two-dimensional

Chebyshev grid of the squareB. For a fixed accuracyε, the size of this Chebyshev grid,Tε, is independent ofN (see
[7] for details).

Let us define the partial sumuB(x) by

uB(x) =
∑

ξj∈B

e2πıx·ξj/Nfj (A.5)

with the sum restricted tok insideB. The geometric observation implies that, forA andB with wAwB ≤ N , the
restriction ofuB(x) to x ∈ A can be approximated by placing a set of equivalent sources{fAB

t }1≤t≤Tε at location
{kB

t }1≤t≤Tε . The computation of the equivalent sources{fAB
t } is done by equating the partial sumuB(x) and the

potential generated by{fAB
t } at a Chebyshev grid{xA

s } insideA. More precisely, one solves for{fAB
t } from the

following equation:

uAB
s := uB(xA

s ) =
Tε∑
t=1

e2πıxA
s ·kB

t /NfAB
t , 1 ≤ s, t ≤ Tε.
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Solving this system requires inverting the matrix(e2πıxA
s ·kB

t /N )st. However, due to the translation-invariant property
of the Fourier kernel, the matrices to be inverted for different combinations ofA andB are almost identical. Fur-
thermore, the solution of{fAB

t } can be accelerated using the tensor-product structure of the two-dimensional Fourier
kernel.

EvaluatinguAB
s := uB(xA

s ) directly using Eq. (A.5) is computationally expensive when the squareB is large.
The next ingredient of the butterfly algorithm addresses how to do this efficiently. LetP be the parent ofA and
Bc, c = 1, . . . , 4 be the children ofB. From the definition [Eq. (A.5)],

uB(x) =
4∑

c=1

uBc(x).

Now, suppose that the equivalent sources{fPBc
t } are available already; then the quantities{uAB

s } can be approxi-
mated by

uAB
s := uB(xA

s ) =
4∑

c=1

uBc(xA
s ) ≈

4∑
c=1

(
Tε∑
t=1

e2πıxA
s kBc

t /NfPBc
t

)
, 1 ≤ s ≤ Tε

based on precisely the definition of the equivalent sources. This offers a much more efficient way for computing
{uAB

s } as the size of the Chebyshev grid is a constant.
After putting these components together, the butterfly algorithm in [7] is in fact a systematic way to construct

{fAB
t }1≤t≤Tε for all pairs of squaresA ∈ TX and B ∈ TK with wAwB = N . The algorithm consists of the

following steps:

1. Construct the quadtreesTX and TK for the point setsX and K, respectively. These trees are constructed
adaptively, and all the leaf squares are of unit size.

2. Let A be the root square ofTX . For each leaf squareB of TK , compute

uAB
s =

∑

kj∈B

e2πıxA
s ·kj/Nfj , 1 ≤ s ≤ Tε

and solve for{fAB
t }1≤t≤Tε from

uAB
s =

Tε∑
t=1

e2πıxA
s ·kB

t /NfAB
t , 1 ≤ s ≤ Tε.

3. For each̀ = 1, 2, . . . , log N , construct the equivalent sources{fAB
t } for each pair(A,B) with A at level` of

TX andB at level(log N − `) of TK . Let P be the parent ofA, andBc, c = 1, . . . , 4 be the children ofB.
ComputeuAB

s using

uAB
s =

4∑
c=1

(
Tε∑
t=1

e2πıxA
s kBc

t /NfPBc
t

)
, 1 ≤ s ≤ Tε.

Next, solve for{fAB
t }1≤t≤Tε from

uAB
s =

Tε∑
t=1

e2πıxA
s ·kB

t /NfAB
t , 1 ≤ s ≤ Tε.

4. Finally, letB be the root square ofTK . For each leaf squareA of TX and for eachxi ∈ A, set

ui =
Tε∑
t=1

e2πıxi·kB
t /NfAB

t .

Under the assumption that the sets{xi} and{kj} are both of orderO(N), the overall cost of the butterfly algorithm
is O(N log N), which is almost linear. We refer to [7] for the detailed complexity analysis.
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